Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation
Abstract
:1. Docosahexaenoic Acid: Novel Mandatory Constituent of Infant Formula in Europe
2. Literature Search on Docosahexaenoic Acid in Relation to Infant Nutrition
3. Docosahexaenoic Acid in Breastfed Infants
3.1. Docosahexaenoic Acid in Human Milk
3.2. Docosahexaenoic Acid Intake in the Breastfed Infant
3.3. Effects of Docosahexaenoic Acid on the Breastfed Infant
4. Docosahexaenoic Acid in Infants Fed Formula
4.1. Contribution of Infant Formula to the Diet of Full-Term Infants
4.2. Effects of Docosahexaenoic Acid in Infant Formula
5. Current Considerations with Docosahexaenoic Acid in Infant Formula
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, X. Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): Two distinct pathways. Prostaglandins Leukot. Essent. Fat. Acids 2003, 68, 181–186. [Google Scholar] [CrossRef]
- Burdge, G.C. α-linolenic acid interconversion is sufficient as a source of longer chain ω-3 polyunsaturated fatty acids in humans: An opinion. Lipids 2022, 57, 267–287. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, F.D.; Shab-Bidar, S.; Jayedi, A. The effects of omega-3 polyunsaturated fatty acids supplementation in pregnancy, lactation, and infancy: An umbrella review of meta-analyses of randomized trials. Pharmacol. Res. 2022, 177, 106100. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Xu, D. Docosahexaenoic Acid Delivery Systems, Bioavailability, Functionality, and Applications: A Review. Foods 2022, 11, 2685. [Google Scholar] [CrossRef]
- European Parliament and Council. COMMISSION DELEGATED REGULATION (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant and young child feeding. Off. J. Eur. Union 2016, 181, 35–56. [Google Scholar]
- Codex Stan 72-1981; Standard for Infant Formula and Formulas for Special Medical Purposes Intended for Infants. Codex Alimentarius Commission: Rome, Italy, 2020.
- Xavier, L.; Marian, B. Infant Formula; International Special Dietary Foods Industries: Brussels, Belgium, 2022; p. 38. [Google Scholar]
- Ma, J.; Palmer, D.J.; Geddes, D.; Lai, C.T.; Stinson, L. Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022, 14, 5148. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.-Y.; Tan, L.T.-H.; Law, J.W.-F.; Hong, K.-W.; Ratnasingam, V.; Ab Mutalib, N.-S.; Lee, L.-H.; Letchumanan, V. Exploring the Potential of Human Milk and Formula Milk on Infants’ Gut and Health. Nutrients 2022, 14, 3554. [Google Scholar] [CrossRef]
- Friedman, Z.; Danon, A.; Lamberth, E.L.; Mann, W.J. Cord blood fatty acid composition in infants and in their mothers during the third trimester. J. Pediatr. 1978, 92, 461–466. [Google Scholar] [CrossRef]
- Whitcutt, J.M. South African pilchard oil. 6. The isolation and structure of a docosahexaenoic acid from South African pilchard oil. Biochem. J. 1957, 67, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.H.; Van den Heuvel, F.A. 84. Unsaturated acids of natural oils. Part VII. Docosahexaenoic acid, an abundant highly-unsaturated acid of cod-liver oil. J. Chem. Soc. 1938, 427–430. [Google Scholar] [CrossRef]
- Jansson, L.; Akesson, B.; Holmberg, L. Vitamin E and fatty acid composition of human milk. Am. J. Clin. Nutr. 1981, 34, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, X.; Zhou, B.; Jiang, A.C.; Chai, L. An updated review of worldwide levels of docosahexaenoic and arachidonic acid in human breast milk by region. Public Health Nutr. 2016, 19, 2675–2687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.; Zhang, L.; Bao, W.; Rong, S. Nutritional composition of breast milk in Chinese women: A systematic review. Asia Pac. J. Clin. Nutr. 2018, 27, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Floris, L.M.; Stahl, B.; Abrahamse-Berkeveld, M.; Teller, I.C. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot. Essent. Fat. Acids 2020, 156, 102023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar] [CrossRef]
- Grote, V.; Verduci, E.; Scaglioni, S.; Vecchi, F.; Contarini, G.; Giovannini, M.; Koletzko, B.; Agostoni, C. Breast milk composition and infant nutrient intakes during the first 12 months of life. Eur. J. Clin. Nutr. 2015, 70, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69, 27–40. [Google Scholar] [CrossRef] [Green Version]
- George, A.D.; Gay, M.C.L.; Wlodek, M.E.; Geddes, D.T. The importance of infants’ lipid intake in human milk research. Nutr. Rev. 2021, 79, 1353–1361. [Google Scholar] [CrossRef]
- Welty, F.K. Omega-3 fatty acids and cognitive function. Curr. Opin. Lipidol. 2023, 34, 12–21. [Google Scholar] [CrossRef]
- Yamagata, K. Fatty acids act on vascular endothelial cells and influence the development of cardiovascular disease. Prostaglandins Other Lipid Mediat. 2023, 165, 106704. [Google Scholar] [CrossRef]
- Hidalgo, M.A.; Carretta, M.D.; Burgos, R.A. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front. Physiol. 2021, 12, 668330. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zheng, Q.; Zhu, M.; Liu, X.; Liu, J.; Lu, Y.; Cheng, J.; Chen, Y. Regulatory Effects of N-3 PUFAs on Pancreatic β-cells and Insulin-sensitive Tissues. Curr. Drug Metab. 2021, 22, 1017–1034. [Google Scholar] [CrossRef] [PubMed]
- Van Dael, P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021, 15, 137–159. [Google Scholar] [CrossRef] [PubMed]
- Prentice, A.M. Breastfeeding in the Modern World. Ann. Nutr. Metab. 2022, 78, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Bravi, F.; Wiens, F.; Decarli, A.; Dal Pont, A.; Agostoni, C.; Ferraroni, M. Impact of maternal nutrition on breast-milk composition: A systematic review. Am. J. Clin. Nutr. 2016, 104, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Noguera, M.F.; Calvache, J.A.; Bonfill Cosp, X.; Kotanidou, E.P.; Galli-Tsinopoulou, A. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst. Rev. 2015, 2015, CD007901. [Google Scholar] [CrossRef]
- Jensen, C.L.; Voigt, R.G.; Llorente, A.M.; Peters, S.U.; Prager, T.C.; Zou, Y.L.; Rozelle, J.C.; Turcich, M.R.; Fraley, J.K.; Anderson, R.E.; et al. Effects of Early Maternal Docosahexaenoic Acid Intake on Neuropsychological Status and Visual Acuity at Five Years of Age of Breast-Fed Term Infants. J. Pediatr. 2010, 157, 900–905. [Google Scholar] [CrossRef]
- Jensen, C.L.; Voigt, R.G.; Prager, T.C.; Zou, Y.L.; Fraley, J.K.; Rozelle, J.C.; Turcich, M.R.; Llorente, A.M.; Anderson, R.E.; Heird, W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125–132. [Google Scholar] [CrossRef]
- Gibson, R.A.; Neumann, M.A.; Makrides, M. Effect of increasing breast milk docosahexaenoic acid on plasma and erythrocyte phospholipid fatty acids and neural indices of exclusively breast fed infants. Eur. J. Clin. Nutr. 1997, 51, 578–584. [Google Scholar] [CrossRef] [Green Version]
- Lauritzen, L.; Jørgensen, M.H.; Mikkelsen, T.B.; Skovgaard, I.M.; Straarup, E.-M.; Olsen, S.F.; Høy, C.-E.; Michaelsen, K.F. Maternal fish oil supplementation in lactation: Effect on visual acuity and n−3 fatty acid content of infant erythrocytes. Lipids 2004, 39, 195–206. [Google Scholar] [CrossRef]
- Breastfeeding A Mother’s Gift, for Every Child; United Nations Children’s Fund: New York, NY, USA, 2018.
- World Health Organization (WHO). Infant and Young Child Feeding. Available online: https://www.who.int/data/nutrition/nlis/info/infant-and-young-child-feeding (accessed on 13 March 2023).
- Theurich, M.A.; Davanzo, R.; Busck-Rasmussen, M.; Díaz-Gómez, N.M.; Brennan, C.; Kylberg, E.; Bærug, A.; McHugh, L.; Weikert, C.; Abraham, K.; et al. Breastfeeding Rates and Programs in Europe: A Survey of 11 National Breastfeeding Committees and Representatives. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Vaz, J.S.; Maia, M.F.S.; Neves, P.A.R.; Santos, T.M.; Vidaletti, L.P.; Victora, C. Monitoring breastfeeding indicators in high-income countries: Levels, trends and challenges. Matern. Child Nutr. 2021, 17, e13137. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Santos, T.; Neves, P.A.; Machado, P.; Smith, J.; Piwoz, E.; Barros, A.J.D.; Victora, C.G.; McCoy, D. First-food systems transformations and the ultra-processing of infant and young child diets: The determinants, dynamics and consequences of the global rise in commercial milk formula consumption. Matern. Child Nutr. 2020, 17, e13097. [Google Scholar] [CrossRef]
- Neves, P.A.R.; Gatica-Dominguez, G.; Rollins, N.C.; Piwoz, E.; Baker, P.; Barros, A.J.D.; Victora, C.G. Infant Formula Consumption Is Positively Correlated with Wealth, Within and Between Countries: A Multi-Country Study. J. Nutr. 2020, 150, 910–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollins, N.; Piwoz, E.; Baker, P.; Kingston, G.; Mabaso, K.M.; McCoy, D.; Ribeiro Neves, P.A.; Pérez-Escamilla, R.; Richter, L.; Russ, K.; et al. Marketing of commercial milk formula: A system to capture parents, communities, science, and policy. Lancet 2023, 401, 486–502. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Cooke, R.J.; Rhodes, P.G.; Peeples, J.M.; Werkman, S.H.; Tolley, E.A. Long-Term Feeding of Formulas High in Linolenic Acid and Marine Oil to Very Low Birth Weight Infants: Phospholipid Fatty Acids. Pediatr. Res. 1991, 30, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Ponder, D.L.; Innis, S.M.; Benson, J.D.; Siegman, J.S. Docosahexaenoic Acid Status of Term Infants Fed Breast Milk or Infant Formula Containing Soy Oil or Corn Oil. Pediatr. Res. 1992, 32, 683–687. [Google Scholar] [CrossRef]
- Innis, S.M. Plasma and red blood cell fatty acid values as indexes of essential fatty acids in the developing organs of infants fed with milk or formulas. J. Pediatr. 1992, 120, S78–S86. [Google Scholar] [CrossRef]
- Uauy, R.; Birch, E.; Birch, D.; Peirano, P. Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J. Pediatr. 1992, 120, S168–S180. [Google Scholar] [CrossRef] [PubMed]
- Decsi, T.; Koletzko, B. Growth, fatty acid composition of plasma lipid classes, and plasma retinol and alpha-tocopherol concentrations in full-term infants fed formula enriched with omega-6 and omega-3 long-chain polyunsaturated fatty acids. Acta Paediatr. 1995, 84, 725–732. [Google Scholar] [CrossRef]
- Decsi, T.; Koletzko, B. Polyunsaturated fatty acids in infant nutrition. Acta Paediatr. 1994, 83, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, S.; Calder, P.C.; Zotor, F.; Amuna, P.; Meyer, B.; Holub, B. Dietary Docosahexaenoic Acid and Arachidonic Acid in Early Life: What Is the Best Evidence for Policymakers? Ann. Nutr. Metab. 2018, 72, 210–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasani, B.; Simmer, K.; Patole, S.K.; Rao, S.C. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2017, 2017, CD000376. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.C.; McSorley, E.M.; Mulhern, M.S.; Strain, J.J.; van Wijngaarden, E.; Yeates, A.J. Influence of fatty acid desaturase (FADS) genotype on maternal and child polyunsaturated fatty acids (PUFA) status and child health outcomes: A systematic review. Nutr. Rev. 2020, 78, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Decsi, T.; Kennedy, K. Sex-specific differences in essential fatty acid metabolism. Am. J. Clin. Nutr. 2011, 94, S1914–S1919. [Google Scholar] [CrossRef] [Green Version]
- Lohner, S.; Fekete, K.; Marosvölgyi, T.; Decsi, T. Gender Differences in the Long-Chain Polyunsaturated Fatty Acid Status: Systematic Review of 51 Publications. Ann. Nutr. Metab. 2013, 62, 98–112. [Google Scholar] [CrossRef]
- Lauritzen, L.; Jorgensen, M.H.; Olsen, S.F.; Straarup, E.M.; Michaelsen, K.F. Maternal fish oil supplementation in lactation: Effect on developmental outcome in breast-fed infants. Reprod. Nutr. Dev. 2005, 45, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Minda, H.; Larque, E.; Koletzko, B.; Decsi, T. Systematic review of fatty acid composition of plasma phospholipids of venous cord blood in full-term infants. Eur. J. Nutr. 2002, 41, 125–131. [Google Scholar] [CrossRef]
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Shaddy, D.J.; Kerling, E.H.; Thodosoff, J.M.; Gustafson, K.M.; Brez, C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am. J. Clin. Nutr. 2013, 98, 403–412. [Google Scholar] [CrossRef] [Green Version]
- Brito, N.H.; Fifer, W.P.; Amso, D.; Barr, R.; Bell, M.A.; Calkins, S.; Flynn, A.; Montgomery-Downs, H.E.; Oakes, L.M.; Richards, J.E.; et al. Beyond the Bayley: Neurocognitive Assessments of Development During Infancy and Toddlerhood. Dev. Neuropsychol. 2019, 44, 220–247. [Google Scholar] [CrossRef] [Green Version]
- Braddick, O.; Atkinson, J. Development of human visual function. Vis. Res. 2011, 51, 1588–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlow, N.; Morris, T.; Brocklehurst, P.; Carr, R.; Cowan, F.M.; Patel, N.; Petrou, S.; Redshaw, M.E.; Modi, N.; Dore, C. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: Outcomes at 2 years. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F46–F53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheatham, C.L.; Colombo, J.; Carlson, S.E. n−3 Fatty acids and cognitive and visual acuity development: Methodologic and conceptual considerations. Am. J. Clin. Nutr. 2006, 83, S1458–S1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, D.R.; Boettcher, J.A.; Diersen-Schade, D.A. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 151–158. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014, 12, 3760. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.; Mallick, R.; Banerjee, A.; Pathak, S.; Duttaroy, A.K. Maternal Supply of Both Arachidonic and Docosahexaenoic Acids Is Required for Optimal Neurodevelopment. Nutrients 2021, 13, 2061. [Google Scholar] [CrossRef]
- Koletzko, B.; Bergmann, K.; Brenna, J.T.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Colombo, J.; Daly, M.; Decsi, T.; Demmelmair, H.; et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef]
- Tounian, P.; Bellaïche, M.; Legrand, P. ARA or no ARA in infant formulae, that is the question. Arch. De Pédiatrie 2021, 28, 69–74. [Google Scholar] [CrossRef]
- Carlson, S.E.; Schipper, L.; Brenna, J.T.; Agostoni, C.; Calder, P.C.; Forsyth, S.; Legrand, P.; Abrahamse-Berkeveld, M.; van de Heijning, B.J.M.; van der Beek, E.M.; et al. Perspective: Moving Toward Desirable Linoleic Acid Content in Infant Formula. Adv. Nutr. 2021, 12, 2085–2098. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T. Arachidonic acid needed in infant formula when docosahexaenoic acid is present. Nutr. Rev. 2016, 74, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, M.A.; Wang, Y.; Forsyth, S.; Brenna, J.T. The European Food Safety Authority recommendation for polyunsaturated fatty acid composition of infant formula overrules breast milk, puts infants at risk, and should be revised. Prostaglandins Leukot. Essent. Fat. Acids 2015, 102–103, 1–3. [Google Scholar] [CrossRef] [PubMed]
- WHO. Review of the Codex Standard for Follow-Up Formula (CODEX STAN 156-1987); WHO: Geneva, Switzerland, 2013.
- Almeida, C.C.; Mendonca Pereira, B.F.; Leandro, K.C.; Costa, M.P.; Spisso, B.F.; Conte-Junior, C.A. Bioactive Compounds in Infant Formula and Their Effects on Infant Nutrition and Health: A Systematic Literature Review. Int. J. Food Sci. 2021, 2021, 8850080. [Google Scholar] [CrossRef] [PubMed]
Age (Number of Infants) | |||
---|---|---|---|
1 Month (n = 126) | 2 Months (n = 117) | 3 Months (n = 108) | |
HM intake (g/day) | 625 (135) | 700 (169) | 711 (166) |
Fat content in HM (g/100 mL) | 3.20 (1.27) | 3.16 (1.18) | 2.92 (1.23) |
DHA in FA composition (%) | 0.25 (0.11) | 0.24 (0.11) | 0.26 (0.09) |
DHA intake (mg/day) | 48.5 (25.5) | 51.3 (20.2) | 50.3 (17.1) |
Category of Confounding Factor | Recognized Biases |
---|---|
Genetic | Fatty acid desaturase genotype polymorphism |
Environmental | Differences between boys and girls Maternal DHA status during pregnancy Socioeconomic status of the family |
Dietary | Time duration of the supplementation Dosage of DHA Origin of DHA Fatty acid matrix of the formula Other nutritional matrix of the formula |
Methodological | Timing of assessment Different growth measurements among studies Different assessment of visual acuity among studies Different assessment of neurodevelopment among studies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decsi, T.; Marosvölgyi, T.; Szabó, É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life 2023, 13, 1326. https://doi.org/10.3390/life13061326
Decsi T, Marosvölgyi T, Szabó É. Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life. 2023; 13(6):1326. https://doi.org/10.3390/life13061326
Chicago/Turabian StyleDecsi, Tamás, Tamás Marosvölgyi, and Éva Szabó. 2023. "Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation" Life 13, no. 6: 1326. https://doi.org/10.3390/life13061326
APA StyleDecsi, T., Marosvölgyi, T., & Szabó, É. (2023). Docosahexaenoic Acid in Formulas for Term Infants: The Way from Pioneer Idea to Mandatory Dietary Recommendation. Life, 13(6), 1326. https://doi.org/10.3390/life13061326