Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Collection of Plant Material
2.3. Soxhlet Extraction
2.4. Determination of Extraction Yield
2.5. Fatty Acid GC-MS Analysis of P. lentiscus Extracts
2.6. Identification of Phenolic Compounds by HPLC-DAD
2.7. Antioxidant Activity
2.7.1. Determination of Antioxidants by DPPH Radical Scavenging Activity
2.7.2. β-Carotene Bleaching Assay
2.8. Antimicrobial Activity
2.8.1. Bacterial Strains
2.8.2. Agar-Diffusion Method
2.8.3. Determination of MIC and MBC
2.9. Antifungal Activity
2.9.1. Selection of Fungal Strains for Antifungal Activity Testing Using P. Lentiscus Extract
2.9.2. Agar Diffusion Method
2.9.3. Determination of MIC and MBC
2.10. ADME and Toxicity Prediction
2.11. PASS Prediction
2.12. Molecular Docking Analysis
3. Results
3.1. Extraction Yield
3.2. Fatty Acid Analysis
3.3. HPLC-DAD Analysis
3.4. Antioxidant Activity
3.5. Antibacterial Activity
3.6. Antifungal Activity
3.7. Physiochemical and ADME Prediction Analysis
3.8. Toxicity Prediction Using Pro-Tox II Webserver
3.9. PASS Prediction and Molecular Docking Analysis
3.9.1. PASS Prediction
3.9.2. Molecular Docking Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rauf, A.; Patel, S.; Uddin, G.; Siddiqui, B.; Bashir, A.; Muhammad, N.; Mabkhot, Y.; Ben Hadda, T. Phytochemical, Ethnomedicinal Uses and Pharmacological Profile of Genus Pistacia. Biomed. Pharmacother. 2017, 86, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Bozorgi, M.; Memariani, Z.; Mobli, M.; Surmaghi, M.; Ardekani, M.; Rahimi, R. Five Pistacia Species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. Sci. World J. 2013, 2013, 219815. [Google Scholar] [CrossRef] [Green Version]
- Kafkas, S.; Khodaeiaminjan, M.; Guney, M.; Kafkas, E. Identification of Sex-Linked SNP Markers Using RAD Sequencing Suggests ZW/ZZ Sex Determination in Pistacia vera L. BMC Genom. 2015, 16, 98. [Google Scholar] [CrossRef] [Green Version]
- Munné-Bosch, S.; Penuelas, J. Photo- and Antioxidative Protection During Summer Leaf Senescence in Pistacia lentiscus L. Grown under Mediterranean Field Conditions. Ann. Bot. 2003, 92, 385–391. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez González, Á.; Da Silva, F.; Gutiérrez, S.; Casquero, P. Lippia spp. Essential Oil as a Control Agent against Acanthoscelides obtectus, an Insect Pest in Phaseolus vulgaris Beans. In Proceedings of the 1st International Electronic Conference on Plant Science, Sciforum.net, 1–15 December 2020; MDPI: Basel, Switzerland, 2020; p. 8767. [Google Scholar]
- Abidi, A.; Aissani, N.; Sebai, H.; Serairi, R.; Kourda, N.; Khamsa, S. Protective Effect of Pistacia lentiscus Oil Against Bleomycin-Induced Lung Fibrosis and Oxidative Stress in Rat. Nutr. Cancer 2017, 69, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Gündoğdu, M.; Akdeniz, F.; Öztürkkan, F.; Demirci, S.; Adiguzel, V. A Promising Method for Recovery of Oil and Potent Antioxidant Extracts from Pistacia khinjuk Stocks Seeds. Ind. Crop. Prod. 2016, 83, 515–521. [Google Scholar] [CrossRef]
- Naouar, M.; Zouiten-Mekki, L.; Charfi, L.; Boubaker, J.; Filali, A. Preventive and Curative Effect of Pistacia lentiscus Oil in Experimental Colitis. Biomed. Pharmacother. 2016, 83, 577–583. [Google Scholar] [CrossRef]
- Andreadou, I.; Paraschos, S.; Efentakis, P.; Magiatis, P.; Kaklamanis, L.; Halabalaki, M.; Skaltsounis, L.; Iliodromitis, E. “Pistacia lentiscus L.” Reduces the Infarct Size in Normal Fed Anesthetized Rabbits and Possess Antiatheromatic and Hypolipidemic Activity in Cholesterol Fed Rabbits. Phytomedicine 2016, 23, 1220–1226. [Google Scholar] [CrossRef]
- Beghlal, D.; El Bairi, K.; Marmouzi, I.; Haddar, L.; Mohammed, B. Phytochemical, Organoleptic and Ferric Reducing Properties of Essential Oil and Ethanolic Extract from Pistacia lentiscus (L.). Asian Pac. J. Trop. Dis. 2016, 6, 305–310. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.; Karathanos, V. Nutritional Evaluation and Health Promoting Ac-tivities of Nuts and Seeds Cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Gazioğlu, I.; Koseoglu Yilmaz, P.; Haşimi, N.; Kilinc, E.; Tolan, V.; Kolak, U. In vitro Biological Activities and Fatty Acid Profiles of Pistacia terebinthus Fruits and Pistacia khinjuk Seeds. Nat. Prod. Res. 2014, 29, 444–446. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Goulas, V.; Gekas, V. Health-Promoting Effects of Pistacia Resins: Recent Advances, Challenges, and Potential Applications in the Food Industry. Food Rev. Int. 2014, 31, 1–12. [Google Scholar] [CrossRef]
- Yemmen, M.; Landoulsi, A.; Hamida, J.; Mégraud, F.; Trabelsi Ayadi, M. Antioxidant Activities, Anticancer Activity and Polyphenolics Profile, of Leaf, Fruit and Stem Extracts of Pistacia lentiscus from Tunisia. Cell. Mol. Biol. 2017, 63, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Iauk, L.; Ragusa, S.; Rapisarda, A.; Franco, S.; Nicolosi, V.M. In vitro Antimicrobial Activity of Pistacia lentiscus L. Extracts: Preliminary Report. J. Chemother. 1996, 8, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Ljubuncic, P.; Song, H.; Cogan, U.; Azaizeh, H.; Bomzon, A. The Effects of Aqueous Extracts Prepared from the Leaves of Pistacia lentiscus in Experimental Liver Disease. J. Ethnopharmacol. 2005, 100, 198–204. [Google Scholar] [CrossRef]
- Gardeli, A.; Papageorgiou, V.; Mallouchos, A.; Kibouris, T.; Komaitis, M. Essential Oil Composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of Antioxidant Capacity of Methanolic Extracts. Food Chem. 2008, 107, 1120–1130. [Google Scholar] [CrossRef]
- Andrikopoulos, N.; Kaliora, A.; Assimopoulou, A.; Papapeorgiou, V. Biological Activity of Some Naturally Occurring Resins, Gums, and Pigments Against In Vitro LDL Oxidation. Phytother. Res. PTR 2003, 17, 501–507. [Google Scholar] [CrossRef]
- Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P.; Angioni, A. Characterization of the Volatile Constituents in the Essential Oil of Pistacia lentiscus L. from Different Origins and Its Antifungal and Antioxidant Activity. J. Agric. Food Chem. 2007, 55, 7093–7098. [Google Scholar] [CrossRef]
- Belyagoubi-Benhammou, N.; Bekkara, F.; Kadifkova Panovska, T. Antioxidant and Antimicrobial Activities of the Pistacia lentiscus and Pistacia atlantica Extracts. Afr. J. Pharm. Pharmacol. 2008, 2, 022–028. [Google Scholar]
- D’Auria, M.; Racioppi, R. Characterization of the Volatile Fraction of Mastic Oil and Mastic Gum. Nat. Prod. Res. 2020, 36, 3460–3463. [Google Scholar] [CrossRef]
- Rauha, J.-P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial Effects of Finnish Plant Extracts Containing Flavonoids and Other Phenolic Compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Balan, K.; Prince, J.; Han, Z.; Dimas, K.; Hadzopoulou-Cladaras, M.; Wyche, J.H.; Sitaras, N.M.; Pantazis, P. Antiproliferative Activity and Induction of Apoptosis in Human Colon Cancer Cells Treated in vitro with Constituents of a Product Derived from Pistacia lentiscus L. Var. Chia. Phytomedicine 2007, 14, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Loukili, E.H.; Bouchal, B.; Bouhrim, M.; Abrigach, F.; Genva, M.; Kahina, Z.; Bnouham, M.; Bellaoui, M.; Hammouti, B.; Addi, M.; et al. Chemical Composition, Antibacterial, Antifungal and Antidiabetic Activities of Ethanolic Extracts of Opuntia dillenii Fruits Collected from Morocco. J. Food Qual. 2022, 2022, 9471239. [Google Scholar] [CrossRef]
- CLSI. M27-A3: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Agour, A.; Mssillou, I.; Mechchate, H.; Es-safi, I.; Allali, A.; El Barnossi, A.; Kamaly, O.; Alshawwa, S.; Moussaoui, A.; Bari, A.; et al. Brocchia cinerea (Delile) Vis. Essential Oil Antimicrobial Activity and Crop Protection against Cowpea Weevil Callosobruchus maculatus (Fab.). Plants 2022, 11, 583. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Hamamouch, N.; Badiaa, L.; Derwich, E. Chemical Composition and In vitro Antioxidant and Antimicrobial Activities of Marrubium vulgare L. Sci. World J. 2021, 2021, 7011493. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Kandsi, F.; Lafdil, F.Z.; Elbouzidi, A.; Bouknana, S.; Miry, A.; Addi, M.; Conte, R.; Hano, C.; Gseyra, N. Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers. Toxins 2022, 14, 475. [Google Scholar] [CrossRef]
- Alam, A.; Jawaid, T.; Alam, P. In vitro Antioxidant and Anti-Inflammatory Activities of Green Cardamom Essential Oil and Silico Molecular Docking of Its Major Bioactives. J. Taibah Univ. Sci. 2021, 15, 757–768. [Google Scholar] [CrossRef]
- Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tešević, V.; Glamočlija, J.; Soković, M.; Colauto, N.B. Antifungal and Antibacterial Activities of Petroselinum Crispum Essential Oil. Genet. Mol. Res. 2016, 15, 3. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the PASS Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual Screening with AutoDock: Theory and Practice. Expert Opin. Drug Discov. 2010, 5, 597–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priyadarshi, A.; Kim, E.E.; Hwang, K.Y. Structural Insights into Staphylococcus Aureus Enoyl-ACP Reductase (FabI), in Complex with NADP and Triclosan. Proteins Struct. Funct. Bioinform. 2010, 78, 480–486. [Google Scholar] [CrossRef]
- Trevisan, D.A.C.; da Silva, P.V.; Farias, A.B.P.; Campanerut-Sá, P.A.Z.; Ribeiro, T.; Faria, D.R.; de Mendonça, P.S.B.; de Mello, J.C.P.; Seixas, F.A.V.; Mikcha, J.M.G. Antibacterial Activity of Barbatimão (Stryphnodendron adstringens) against Staphylococcus Aureus: In vitro and Silico Studies. Lett. Appl. Microbiol. 2020, 71, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimipour, S.Y.; Sheikhshoaie, I.; Simpson, J.; Ebrahimnejad, H.; Dusek, M.; Kharazmi, N.; Eigner, V. Antimicrobial Activity of Aroylhydrazone-Based Oxido Vanadium (v) Complexes: In vitro and in silico Studies. New J. Chem. 2016, 40, 2401–2412. [Google Scholar] [CrossRef]
- Tittal, R.K.; Yadav, P.; Lal, K.; Kumar, A. Synthesis, Molecular Docking and DFT Studies on Biologically Active 1, 4-Disubstituted-1, 2, 3-Triazole-Semicarbazone Hybrid Molecules. New J. Chem. 2019, 43, 8052–8058. [Google Scholar]
- Salaria, D.; Rolta, R.; Patel, C.N.; Dev, K.; Sourirajan, A.; Kumar, V. In vitro and Silico Analysis of Thymus Serpyllum Essential Oil as Bioactivity Enhancer of Antibacterial and Antifungal Agents. J. Biomol. Struct. Dyn. 2021, 40, 10383–10402. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Rolta, R.; Salaria, D.; Kumar, V.; Patel, C.N.; Sourirajan, A.; Baumler, D.J.; Dev, K. Molecular Docking Studies of Phytocompounds of Rheum Emodi Wall with Proteins Responsible for Antibiotic Resistance in Bacterial and Fungal Pathogens: In silico Approach to Enhance the Bio-Availability of Antibiotics. J. Biomol. Struct. Dyn. 2022, 40, 3789–3803. [Google Scholar] [CrossRef]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical Composition, in vitro and in silico Antioxidant Potential of Melissa officinalis subsp. officinalis Essential Oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef]
- Asma, T.; Bariza, Z.; Noui, Y. Algerian Prickly Pear (Opuntia ficusindica L.) Physicochemical Characteristics. Int. J. Sci. Res. 2017, 5, 14–17. [Google Scholar]
- Rym, H.; Belhadj, S.; Celia, O.; Fairouz, S. Antioxidant activity of Pistacia lentiscus methanolic extracts. Rev. Agrobiol. 2018, 8, 845–852. [Google Scholar]
- Lipinski, C.A. Lead-and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of Activity Spectra for Biologically Active Substances. Bioinformatics 2000, 16, 747–748. [Google Scholar] [CrossRef] [Green Version]
- Baskin, I.I. Machine Learning Methods in Computational Toxicology. Comput. Toxicol. Methods Protoc. 2018, 1800, 119–139. [Google Scholar]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking, and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [Green Version]
- López-Vallejo, F.; Caulfield, T.; Martínez-Mayorga, K.; A Giulianotti, M.; Nefzi, A.; A Houghten, R.; L Medina-Franco, J. Integrating Virtual Screening and Combinatorial Chemistry for Accelerated Drug Discovery. Comb. Chem. High Throughput Screen. 2011, 14, 475–487. [Google Scholar] [CrossRef]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and Antioxidant Activity of Dysphania ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef]
- Semidalas, C.; Semidalas, E.; Matsoukas, M.T.; Nixarlidis, C.; Zoumpoulakis, P. In silico Studies Reveal the Mechanisms behind the Antioxidant and Anti-Inflammatory Activities of Hydroxytyrosol. Med. Chem. Res. 2016, 25, 2498–2511. [Google Scholar] [CrossRef]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C.; et al. LC–MS/MS Phytochemical Profiling, Antioxidant Activity, and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef] [PubMed]
- Payne, D.J.; Miller, W.H.; Berry, V.; Brosky, J.; Burgess, W.J.; Chen, E.; DeWolf, W.E.; Fosberry, A.P.; Greenwood, R.; Head, M.S.; et al. Discovery of a Novel and Potent Class of FabI-Directed Antibacterial Agents. Antimicrob. Agents Chemother. 2002, 46, 3118–3124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafi, S.; Novichenok, P.; Kolappan, S.; Zhang, X.; Stratton, C.F.; Rawat, R.; Kisker, C.; Simmerling, C.; Tonge, P.J. Structure of Acyl Carrier Protein Bound to FabI, the FASII Enoyl Reductase from Escherichia Coli. J. Biol. Chem. 2006, 281, 39285–39293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, R.J.; Rock, C.O. Enoyl-Acyl Carrier Protein Reductase (FabI) Plays a Determinant Role in Completing Cycles of Fatty Acid Elongation in Escherichia Coli (∗). J. Biol. Chem. 1995, 270, 26538–26542. [Google Scholar] [CrossRef] [Green Version]
- Trzaskos, J.M.; Fischer, R.T.; Favata, M.F. Mechanistic Studies of Lanosterol C-32 Demethylation. Conditions Which Promote Oxysterol Intermediate Accumulation during the Demethylation Process. J. Biol. Chem. 1986, 261, 16937–16942. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.H.; Heal, W.P.; Mann, D.J.; Tate, E.W. Protein Myristoylation in Health and Disease. J. Chem. Biol. 2010, 3, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Raju, R.V.S.; Datla, R.S.S.; Moyana, T.N.; Kakkar, R.; Carlsen, S.A.; Sharma, R.K. N-Myristoyltransferase. Mol. Cell. Biochem. 2000, 204, 135–155. [Google Scholar] [CrossRef]
- Kaneria, M.; Chanda, S. Evaluation of Antioxidant and Antimicrobial Properties of Manilkara zapota L. (Chiku) Leaves by Sequential Soxhlet Extraction Method. Asian Pac. J. Trop. Biomed. 2012, 2, S1526–S1533. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Q.; Ke, L.; Jiang, J.; Ying, T. Antioxidant Activities of Various Extracts of Lotus (Nelumbo Nuficera Gaertn) Rhizome. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 158–163. [Google Scholar] [PubMed]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of Different Extraction Methods of Pistacia lentiscus Var. Chia Leaves: Yield, Antioxidant Activity and Essential Oil Chemical Composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Vázquez, E.; Garcia-Risco, M.; Jaime, L.; Reglero, G.; Fornari, T. Simultaneous Extraction of Rosemary and Spinach Leaves and Its Effect on the Antioxidant Activity of Products. J. Supercrit. Fluids 2013, 82, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Manoko, M.L.K.; van Weerden, G.M.; van Berg, R.G.; Mariani, C. A New Tetraploid Species of Solanum L. Sect. Solanum (Solanaceae) from Tanzania. PhytoKeys 2012, 16, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letawe, C.; Boone, M.; Pierard, G. Digital Image Analysis of the Effect of Topically Applied Linoleic Acid on Acne microcomedones. Clin. Exp. Dermatol. 1998, 23, 56–58. [Google Scholar] [CrossRef]
- Villa, B.; Calabresi, L.; Chiesa, G.; Risè, P.; Galli, C.; Sirtori, C. Omega-3 Fatty Acid Ethyl Esters Increase Heart Rate Variability in Patients with Coronary Disease. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2002, 45, 475. [Google Scholar] [CrossRef]
- Vafeiadou, K.; Weech, M.; Altowaijri, H.; Mihaylova, R.; Todd, S.; Yaqoob, P.; Jackson, K.; Lovegrove, J. The Effects of Substitution of Dietary Saturated Fatty Acids with Either Monounsaturated Fatty Acids or N-6 Polyun-saturated Fatty Acids on Measures of Endothelial Function, Arterial Stiffness, and Blood Pressure: Results from the DIVAS Study. Proc. Nutr. Soc. 2014, 73, E12. [Google Scholar] [CrossRef] [Green Version]
- Bernatoniene, J.; Kopustinskiene, D. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant Activity and Phenolic Compounds of 112 Traditional Chinese Medicinal Plants Associated with Anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef]
- Taibi, M.; Elbouzidi, A.; OU-yahia, D.; Dalli, M.; Bellaouchi, R.; Tikent, A.; Roubi, M.; Gseyra, N.; Asehraou, A.; Hano, C.; et al. Assessment of the Antioxidant and Antimicrobial Potential of Ptychotis Verticillata Duby Essential Oil from Eastern Morocco: An In vitro and Silico Analysis. Antibiotics 2023, 12, 655. [Google Scholar] [CrossRef]
- Milia, E.; Bullitt, S.; Mastandrea, G.; Szotakova, B.; Schoubben, A.; Langhansova, L.; Quartu, M.; Bortone, A.; Eick, S. Pistacia lentiscus: From Phytopharmacology to Scientific Explanations on Its Anti-Inflammatory and An-Timicrobial Capacity. Antibiotics 2021, 10, 425. [Google Scholar] [CrossRef] [PubMed]
- Céliz, G.; Daz, M.; Audisio, M.C. Antibacterial Activity of Naringin Derivatives against Pathogenic Strains. J. Appl. Microbiol. 2011, 111, 731–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gachkar, L.; Yadegari, D.; Rezaei, M.B.; Taghizadeh, M.; Astaneh, S.A.; Rasooli, I. Chemical and Biological Characteristics of Cuminum cyminum and Rosmarinus officinalis Essential Oils. Food Chem. 2007, 102, 898–904. [Google Scholar] [CrossRef]
- Giordani, R.; Kaloustian, J. Action Anticandidosique Des Huiles Essentielles: Leur Utilisation Concomitante Avec Des Médicaments Antifongiques. Phytothérapie 2006, 4, 121–124. [Google Scholar] [CrossRef]
- Slimani, I.; Nassiri, L.; Boukil, A.; Bouiamrine, E.H.; Bachiri, L.; Bammou, M.; Ibijbijen, J. Inventaire Des Plantes Aromatiques et Médicinales Du Site d’intérêt Biologique et Écologique de Jbel Zerhoun, Région Meknès Tafilalet. Afr. Sci. 2016, 12, 393–409. [Google Scholar]
- Selick, H.E.; Beresford, A.P.; Tarbit, M.H. The Emerging Importance of Predictive ADME Simulation in Drug Discovery. Drug Discov. Today 2002, 7, 109–116. [Google Scholar] [CrossRef]
Molecules | MW * (g/mol) | TPSA (Å2) | H-Bonds | Rotatable Bonds | Lipinski’s Rule of Five (Violations) | Ghose Filter (Violations) | Veber Filter (Violations) | |
---|---|---|---|---|---|---|---|---|
Acceptors | Donors | |||||||
Catechin | 290.27 | 110.38 | 6 | 5 | 1 | Yes | Yes | Yes |
4-Hydroxybenzoic acid | 138.12 | 57.53 | 3 | 1 | 1 | Yes | No (3 violations: MR < 40, MW < 160, number of atoms < 20) | Yes |
p-Coumaric acid | 164.16 | 57.53 | 3 | 1 | 2 | Yes | Yes | Yes |
Naringin | 580.53 | 225.06 | 14 | 8 | 6 | No (3 violations: MW > 500, N or O > 10, NH or OH > 5.) | No (4 violations: MW > 480, WLOGP < −0.4, MR > 130, number of atoms > 70) | No (1 violation: TPSA > 140) |
Quercetin | 302.24 | 131.36 | 7 | 5 | 1 | Yes | Yes | Yes |
o-coumaric acid | 164.16 | 57.53 | 3 | 1 | 2 | Yes | Yes | Yes |
Luteolin | 286.24 | 111.13 | 6 | 3 | 1 | No (3 violations: MW > 500, N or O > 10, NH or OH > 5.) | No (4 violations: MW > 480, WLOGP < −0.4, MR > 130, number of atoms > 70) | No (1 violation: TPSA > 140) |
Proteins/PDB IDs | Native Ligand | Grid Box Size (x, y, z)/Center (x, y, z) | Reference |
---|---|---|---|
DNA Gyrase Topoisomerase II (E. coli)/1KZN | Clorobiocin | (40, 40, 40)/(19.528, 19.500, 43.031) | [38] |
Enoyl-Acyl Carrier Reductase Protein/3GNS | Triclosan | (40, 40, 40)/(−14.280, 0.562, −21.462) | [35,36] |
Cytochrome P450 14 Alpha-Sterol Demethylase/1EA1 | Fluconazole | (40, 40, 40)/(17.702, −3.978, 67.221) | [39,41] |
N-Myristoyl Transferase/1IYL | Fluconazole | (40, 40, 40)/(−11.256, 49.991, 1.040) | [39,41] |
Lipoxygenase/1N8Q | Protocatechuic Acid | (40, 40, 40)/(22.455, 1.293, 20.362) | [42] |
CYP2C9/1OG5 | Warfarin | (12.387, 11.653, 11.654)/(−19.823, 86.686, 38.275) | [42] |
Extracts | Yield (%) | |
---|---|---|
This Work | Literature | |
HEPL 1 | 6.37 ± 0.13 | 2.00 ± 0.10 |
MEPL 2 | 17.5 ± 0.05 | 13.10 ± 0.91 |
Compounds | TR (min) | HEPL (%) |
---|---|---|
D-Limonene | 9.870 | 3.57 ± 0.12 |
Myristic Acid (C14:0) | 20.392 | 6.39 ± 0.15 |
Palmitic Acid (C16:0) | 22.608 | 22.84 ± 0.20 |
Oleic Acid (C18:1) | 24.433 | 23.70 ± 0.13 |
Linoleic Acid (C18:2) | 24.600 | 40.97 ± 0.11 |
10-methyl-Heptadecanoic acid | 24.625 | 1.29 ± 0.01 |
UFA a | 64.670 | |
SFA b | 30.516 | |
UFA/SFA c | 2.120 |
Compounds | TR (min) | MEPL (%) |
---|---|---|
Catechin | 6.077 | 37.045 ± 0.15 |
4-hydroxybenzoic acid | 8.527 | 17.763 ± 0.21 |
p-Coumaric acid | 10.418 | 7.107 ± 0.10 |
Naringin | 11.965 | 8.914 ± 0.09 |
Quercetin | 14.539 | 6.739 ± 0.06 |
Coumaric Acid | 15.473 | 17.589 ± 0.11 |
Luteolin | 16.978 | 4.839 ± 0.02 |
Antioxidant Activity | DPPH | β-Carotene |
---|---|---|
Inhibitory Concentration 50 (μg/mL) | ||
HEPL | 0.58 ± 0.73 | 0.64 ± 0.5 |
MEPL | 0.26 ± 0.13 | 0.19 ± 0.26 |
Ascorbic Acid | 0.15 ± 0.11 | |
BHA | 0.09 ± 0.15 |
Bacterial Strains | Inhibition Zone (mm) | P. lentiscus Extract | |||
---|---|---|---|---|---|
P. lentiscus Extract | Gentamicin (1 mg/mL) | MIC (%) | MBC (%) | MBC/MIC | |
S. aureus | 20.00 | 19.50 | 2 | 4 | 2 |
L. innocua | 15.00 | 21.50 | 4 | 8 | 2 |
E. coli | 07.00 | 20.50 | >16 | >16 | - |
Fungi Strains | Inhibition Zone (mm) | P. lentiscus Extract | |||
---|---|---|---|---|---|
P. lentiscus Extract |
Cycloheximide (1 mg/mL) | MIC (%) | MFC (%) | MFC/MIC | |
G. candidum | 12.00 | 23.00 | 8 | 16 | 2 |
R. glutinis | 22.00 | 21.00 | >16 | >16 | - |
Prediction | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
ADME Prediction Absorption Parameters | |||||||
Bioavailability score | 0.55 | 0.85 | 0.55 | 0.17 | 0.55 | 0.85 | 0.55 |
Water Solubility (log mol/L) | −3.117 | −1.877 | −2.378 | −2.919 | −3.221 | −1.56 | −3.294 |
Caco-2 Permeability | −0.283 | 1.151 | 1.21 | −0.658 | −0.057 | 1.158 | 0.286 |
Intestinal Absorption (%) | 68.82 | 83.96 | 93.49 | 25.79 | 75.34 | 91.11 | 82.17 |
Distribution | |||||||
Class of solubility | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble | Soluble |
Log Kp (cm/s) | −7.82 | −6.02 | −6.26 | −10.15 | −7.05 | −5.86 | −6.25 |
VDss (log L/kg) | 1.027 | −1.557 | −1.151 | 0.619 | −0.03 | −0.406 | −0.173 |
BBB Permeability | No | Yes | Yes | No | No | Yes | No |
Metabolism | |||||||
CYP2D6, and CYP3A4 Substrate | No | No | No | No | No | No | No |
CYP2D6, and CYP3A4 Inhibitors | No | No | No | No | No | No | Yes |
Excretion | |||||||
Total Clearance log (mL/min/kg) | 0.183 | 0.593 | 0.662 | 0.318 | 0.484 | 0.746 | 0.568 |
Renal OCT2 Substrate | No | No | No | No | No | No | No |
Predicted LD50 (mg/kg) | Class | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | Cytotoxicity | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predi. * | Prob. | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | |||
1 | 10,000 | VI | In. | 0.72 | In. | 0.51 | In. | 0.96 | In. | 0.55 | In. | 0.84 |
2 | 2200 | V | In. | 0.52 | In. | 0.51 | In. | 0.99 | In. | 0.99 | In. | 0.86 |
3 | 2850 | V | In. | 0.52 | Ac. | 0.50 | In. | 0.91 | In. | 0.93 | In. | 0.81 |
4 | 2300 | V | In. | 0.81 | In. | 0.80 | Ac. | 0.99 | In. | 0.73 | In. | 0.66 |
5 | 159 | III | In. | 0.69 | Ac. | 0.68 | In. | 0.87 | Ac. | 0.51 | In. | 0.99 |
6 | 2850 | V | In. | 0.52 | Ac. | 0.50 | In. | 0.91 | In. | 0.93 | In. | 0.81 |
7 | 3919 | V | In. | 0.69 | Ac. | 0.68 | In. | 0.97 | Ac. | 0.51 | In. | 0.99 |
Prediction | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
PASS Prediction (P act/P ina) | |||||||
Antioxidant | 0.810/0.003 | 0.320/0.020 | 0.553/0.005 | 0.851/0.003 | 0.872/0.003 | 0.553/0.005 | 0.775/0.004 |
Antibacterial | 0.320/0.053 | 0.384/0.034 | 0.343/0.045 | 0.669/0.005 | 0.387/0.033 | 0.343/0.045 | 0.388/0.033 |
Antifungal | 0.552/0.023 | 0.384/0.053 | 0.451/0.039 | 0.816/0.004 | 0.490/0.032 | 0.451/0.039 | 0.520/0.027 |
N° | Compounds | Antibacterial Proteins | Antifungal Proteins | Antioxidant Proteins | |||
---|---|---|---|---|---|---|---|
1KZN | 3GNS | 1EA1 | 1IYL | 1N8Q | 1OG5 | ||
Docking Scores (Kcal/mol) * | |||||||
- | Native Ligand | −9.6 | −6.2 | −5.8 | −5.8 | −6 | −6.6 |
1 | Catechin | −8.3 | −7.1 | −6.6 | −7 | −6.3 | −8.3 |
2 | 4-Hydroxybenzoic acid | −5.6 | −5.5 | −4.5 | −4.7 | −5.4 | −5.3 |
3 | p-coumaric acid | −5.8 | −5.3 | −4.6 | −5.4 | −5.7 | −6.2 |
4 | Naringin | −9.3 | −8.1 | −9.1 | −7.7 | −5.6 | −7.8 |
5 | Quercetin | −8.3 | −7 | −7.1 | −7.1 | −8.3 | −8.8 |
6 | o-coumaric acid | −6.1 | −5.7 | −4.7 | −5.6 | −6.3 | −5.9 |
7 | Luteolin | −8.9 | −7.2 | −7.3 | −7.2 | −6.3 | −8.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouahabi, S.; Loukili, E.H.; Elbouzidi, A.; Taibi, M.; Bouslamti, M.; Nafidi, H.-A.; Salamatullah, A.M.; Saidi, N.; Bellaouchi, R.; Addi, M.; et al. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life 2023, 13, 1393. https://doi.org/10.3390/life13061393
Ouahabi S, Loukili EH, Elbouzidi A, Taibi M, Bouslamti M, Nafidi H-A, Salamatullah AM, Saidi N, Bellaouchi R, Addi M, et al. Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life. 2023; 13(6):1393. https://doi.org/10.3390/life13061393
Chicago/Turabian StyleOuahabi, Safae, El Hassania Loukili, Amine Elbouzidi, Mohamed Taibi, Mohammed Bouslamti, Hiba-Allah Nafidi, Ahmad Mohammad Salamatullah, Nezha Saidi, Reda Bellaouchi, Mohamed Addi, and et al. 2023. "Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays" Life 13, no. 6: 1393. https://doi.org/10.3390/life13061393
APA StyleOuahabi, S., Loukili, E. H., Elbouzidi, A., Taibi, M., Bouslamti, M., Nafidi, H. -A., Salamatullah, A. M., Saidi, N., Bellaouchi, R., Addi, M., Ramdani, M., Bourhia, M., & Hammouti, B. (2023). Pharmacological Properties of Chemically Characterized Extracts from Mastic Tree: In Vitro and In Silico Assays. Life, 13(6), 1393. https://doi.org/10.3390/life13061393