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Abstract: Cuproptosis and associated immune-related genes (IRG) have been implicated in tumorige-
nesis and tumor progression. However, their effects on lung adenocarcinoma (LUAD) have not been
elucidated. Therefore, we investigated the impact of cuproptosis-associated IRGs on the immunotherapy
response and prognosis of LUAD using a bioinformatical approach and in vitro experiments analyzing
clinical samples. Using the cuproptosis-associated IRG signature, we classified LUAD into two subtypes,
cluster 1 and cluster 2, and identified three key cuproptosis-associated IRGs, NRAS, TRAV38-2DV8,
and SORT1. These three genes were employed to establish a risk model and nomogram, and to classify
the LUAD cohort into low- and high-risk subgroups. Biofunctional annotation revealed that cluster
2, remarkably downregulating epigenetic, stemness, and proliferation pathways activity, had a higher
overall survival (OS) and immunoinfiltration abundance compared to cluster 1. Real-time quantitative
PCR (RT-qPCR) validated the differential expression of these three genes in both subgroups. scRNA-seq
demonstrated elevated expression of NRAS and SORT1 in macrophages. Immunity and oncogenic and
stromal activation pathways were dramatically enriched in the low-risk subgroup, and patients in this
subgroup responded better to immunotherapy. Our data suggest that the cuproptosis-associated IRG
signature can be used to effectively predict the immunotherapy response and prognosis in LUAD. Our
work provides enlightenment for immunotherapy response assessment, prognosis prediction, and the
development of potential prognostic biomarkers for LUAD patients.

Keywords: cuproptosis; lung adenocarcinoma; IRGs; prognosis; tumor microenvironment

1. Introduction

Lung adenocarcinoma (LUAD), the primary histological type of lung cancer, is one of
the most common malignancies and the leading cause of cancer morbidity and mortality
in humans [1]. Nearly 70% of lung cancer patients have locally advanced or metastatic
disease at diagnosis [2]. With advances in cancer genomics, a group of genes has been
identified as drivers of LUAD, including mutations in the epidermal growth factor receptor
(EGFR), c-MET, KRAS, and anaplastic lymphoma kinase (ALK) [3]. In patients with
stage IV LUAD who do not have driver gene status changes, if there are no obvious
contraindications, the use of immune checkpoint inhibitors (ICIs) is strongly recommended
in clinical practice [4]. At the same time, LUAD is generally suitable for ICIs therapy due
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to its high tumor mutational burden (TMB) and strong immunogenicity [5]. Patients with
metastatic lung cancer who are eligible for targeted therapy or immunotherapy live longer,
with 5-year survival rates ranging from 15% to 50% [6]. Although a subset of lung cancer
patients experience long-term clinical benefit with ICIs, most patients experience disease
progression during or after treatment [7]. Immune checkpoint therapy has become an
indispensable treatment modality today, and programmed death ligand-1 (PD-L1) and
tumor mutational burden have been widely used as biomarkers to assess the suitability
of patients for immunotherapy; however, biomarkers of ICIs therapy in NSCLC remain
elusive [8,9].

Copper is an important metal element in the human body and is involved in many bi-
ological processes, including mitochondrial respiration, iron absorption, antioxidation and
detoxification, wound healing, angiogenesis, neurotransmitter synthesis, and regulation of
normal cell and tumor growth [10–12]. Previous studies have found that copper can pro-
mote tumor progression by stimulating endothelial cell proliferation and migration [13,14],
promoting angiogenesis [15], and regulating PD-L1 expression [16]. Additionally, copper
can induce multiple forms of cell death, including apoptosis and autophagy, through
various mechanisms, including reactive oxygen species (ROS) accumulation, proteasome
inhibition, and anti-angiogenesis [17]. A novel pattern of cell death, named cuproptosis,
was recently reported, and it was elucidated that copper can interact with lipoylated compo-
nents of the tricarboxylic acid (TCA) cycle in mitochondria, triggering the polymerization
of lipid acylated mitochondrial proteins and the loss of iron sulfide (Fe-S) cluster proteins,
ultimately leading to proteotoxic stress and cell necrosis [18]. Meanwhile, the authors found
that the susceptibility of lung cancer cells to cuproptosis was increased by glutathione
depletion, suggesting that cuproptosis is associated with lung cancer.

Several previous studies have shown that certain immune-related genes (IRGs) can
serve as prognostic biomarkers in multiple cancers, including LUAD [3,19–21]. Unfortu-
nately, few studies have analyzed the combined roles of IRGs and cuproptosis in LUAD
classification and prognosis prediction, and current tools to help predict prognosis in LUAD
are imprecise [22]. Hence, it is vitally important to reidentify the subtypes of LUAD and
filter for genetic signatures with prognostic value. In this paper, we reclassified LUAD into
two subtypes based on cuproptosis-associated IRGs, with significant prognostic differences
between them. In addition, a predictive model based on three cuproptosis-associated IRGs
was constructed and evaluated, with individual risk levels being quantified based on risk
scores. We also investigated the patient’s susceptibility to immunotherapy utilizing The
Cancer Immunome Atlas (TCIA). In vitro experiments were performed to validate the
expression profile of the key genes identified. Our findings demonstrate that the risk model
based on cuproptosis-related IRGs can be used to predict prognosis and response to ICIs in
LUAD patients.

2. Materials and Methods
2.1. Data Source and Preprocessing

The data, mainly derived from The Cancer Genome Atlas (TCGA), the Immunology
Database and Analysis Portal (ImmPort) [23], and The Cancer Imaging Archive (TCIA) [24],
were used for integrative analysis. The gene expression data and clinical information of LUAD
patients were downloaded from TCGA. Transcriptome data of 19 cuproptosis-associated genes
were obtained from the TCGA-LUAD dataset [18]. A list of IRGs (n = 2848) was obtained
from ImmPort. Sensitivity data for immunotherapy corresponding to the TCGA-LUAD
cohort were extracted from TCIA. Single-cell RNA-seq (scRNA-seq) data were derived from
the GSE203360, GSE149655, and GSE131907 of the Gene Expression Omnibus (GEO). And
scRNA-seq profiles of one malignant pleural effusions sample were obtained from The First
Affiliated Hospital of Guangdong Pharmaceutical University (TFAHGPU).
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2.2. Unsupervised Clustering for Cuproptosis-Related IRGs

First, IRGs and cuproptosis-related gene expression matrices were extracted from the
TCGA-LUAD gene expression matrix of 516 tumor samples, and 64 cuproptosis-related
IRGs were screened by coexpression analysis (Supplementary Materials Table S1). Then,
univariate Cox regression analysis was applied to filter 17 cuproptosis-related IRGs that
were significantly associated with LUAD prognosis (p < 0.05). Moreover, consensus classifi-
cation of the 17 cuproptosis-related IRGs was conducted by using the R package “Consen-
susClusterPlus” [25], and the parameters clusterAlg, distance, reps, pltem, and pFeature
were set to pam, euclidean, 100, 0.8, and 1, respectively. Next, according to the optimal
cluster number, survival analysis was employed to clarify the survival differences between
the two clusters. Finally, based on the clustering results, data downscaling was performed
using principal component analysis (PCA), principal coordinate analysis (PCoA), and
t-distributed stochastic neighbor embedding (tSNE).

2.3. Cell Infiltration and Biological Characteristics of Both Subtypes

Gene set variation analysis (GSVA) was performed on two subtypes using
“c2.cp.kegg.v7.5.1.symbols.gmt” derived from MSigDB and a list of formerly published and
biologically concerned gene signatures as the annotated gene set (Supplementary Materials
Table S2). Single-sample gene set enrichment analysis (ssGSEA) was accessed to infer the
abundance of 28 immunoinfiltrating cells in the TCGA-LUAD cohort [26]. Moreover, five other
algorithms, namely, MCP-counter [27], xCell [28], TIMER2.0 (https://cistrome.shinyapps.io/
timer/, accessed on 1 May 2023), CIBERSORT [29], and ESTIMATE [30], were implemented
to examine the accuracy and robustness of the ssGSEA results.

2.4. Derivation of the Cuproptosis Prognostic Signature

First, the clinical data of 476 cases in the TCGA-LUAD cohort and the expression matrix
of cuproptosis-related IRGs were merged by sample name and split into a training cohort
(70%) and testing cohort (30%). The cuproptosis-associated IRGs were then filtered by
univariate Cox analysis with p-values less than 0.05 in the training set. The genes required
for modeling were further selected by least absolute shrinkage and selection operator
(LASSO) regression analysis using the R package “glmnet” [31]. Stepwise regression was
employed to construct an optimal multivariate Cox regression model for the cuproptosis-
related IRGs screened by LASSO, and then the risk scores of each sample in the training
and testing sets were calculated as follows:

Risk score =
n

∑
i=1

expi× βi (1)

β and exp represent the regression coefficient and expression of each cuproptosis-
associated IRG, respectively. i represents the number of each gene. To prevent bias and
guarantee the robustness of the model, the testing set and whole cohort were divided into
low- and high-risk groups based on the median risk scores of the training set.

2.5. Real-Time Quantitative PCR (RT-qPCR)

The tumor specimens used in this study were approved (Approval No. 69, 2022) by
the Human Ethics Committee of the First Affiliated Hospital of Guangdong Pharmaceutical
University. Lung cancer specimens and associated clinical data including survival data
from 12 patients with LUAD were collected for the study. RT-qPCR was performed to
examine the expression levels of three key genes in these 12 samples. Primer sequences
of NRAS (F GTGGAGCTTGAGGTTCTTGC; R CTGGATTGTCAGTGCGCTTT), TRAV38-
2DV8 (F CCTGTCTTGAATTTAGCATGGCTC; R GCGAATAACGAGAATCATCTGCC),
and SORT1 (F GACCTTGGGGCTCTGGAATTATG; R CCCTTGATCTGTTGAAACGTGGA)
were designed based on the gene sequences on NCBI and detected by RT-qPCR using cDNA
as a template. NAnodrop2000c was used to detect the RNA concentration in the samples.

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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The samples were heated at 70 ◦C for 5 min to disrupt the RNA secondary structure. The
reagents were then sequentially added using the First Strand cDNA Synthesis Kit, and the
samples were kept at 50 ◦C for 30 min, followed by heating at 85 ◦C for 5 min and cooling
on ice to prepare the cDNA. The qPCR was performed using the Ipure SYBR Green qPCR
Master Mix kit, and the gene expression levels were normalized to GAPDH levels. The
prognostic risk score of patients was then calculated based on the results of RT-qPCR using
Equation (1), and the median value of the risk score of the training set was applied to split
the 12 patients into low- and high-risk groups.

2.6. Establishment and Assessment of the Nomogram

We first executed a univariate Cox regression analysis on risk scores and clinical
signatures in the TCGA-LUAD cohort, followed by a multivariate Cox regression analysis.
The nomogram was then plotted by the “regplot” R package [32]. The area under the curve
(AUC) and C-index were computed by the R package “timeROC” to assess whether the
predicted values of the model were aligned with the actual values [33]. The calibration and
decision curves were plotted with the R packages “rms” and “ggDCA”, respectively.

2.7. Single-Cell RNA Sequencing (scRNA-Seq) Data Analysis

Quality control of the 10× scRNA-seq data was executed using the R package “Seu-
rat” [34]. The low-quality cells were filtered according to the following conditions: (1) total
UMI counts >1000; (2) mitochondrial gene expression <20%; (3) gene numbers >500; and
(4) erythrocyte gene expression <3%. Single-cell data integration was performed using the
Harmony algorithm. We used NormalizeData, FindVariableFeatures with nfeatures = 2000,
ScaleData, RunPCA, and FindNeighbors with the first 16 PCs and FindClusters with reso-
lution = 0.5 to further process the data, and all other parameters remained the same. We
combined references and known classical markers to label the obtained cell clusters as con-
ventional dendritic cells (cDCs) (CD207, CD1A, CD1C, FCER1A); plasmacytoid DCs (pDCs)
(CLEC4C, LILRB4, NRP1); T cells (TRAC, CD3G, CD3E, CD3D) [35]; B cells (CD19, CD79A,
MS4A1) [36]; monocytes (VCAN, CD14, CD36); macrophages (CD163, MSR1, C1QA, FCGR3A,
CD68, CCL18, CXCL10); endothelial cells (EGFL7, PECAM1); epithelial cells (CDH1, KRT18,
KRT19, EPCAM); fibroblasts (COL1A2, COL1A1, DCN, THY1, FGF7); plasma cells (MZB1,
JCHAIN, SDC1, XBP1); neutrophils (FCGR3B, CXCR2, CSF3R, G0S2) [37]; and mast cells
(KIT, GATA2, TPSAB1, CPA3, MS4A2, TPSB2) [36,38]. In addition, we used SingleR for cell
subpopulations annotation [39]. The nuclear density maps of marker genes expression in each
cell type were developed by “Nebulosa” software (Version 1.4.0).

2.8. Biological Features Analyses

To further identify the prognostic differences between the two subgroups, we conducted
gene set enrichment analysis (GSEA) [40] on the samples using “c2.cp.kegg.v7.5.1.symbols.gmt”
and gene sets compiled from references (Supplementary Materials Table S3) as the annotated
gene sets. The statistically significant p-value was less than 0.05. Gene Ontology (GO) analysis
was conducted using the “clusterProfile” software (Version 4.2.2).

2.9. Gene Mutation and Immunotherapy Response Analysis

Mutation data of LUAD were extracted from the official TCGA website, and TMB was
calculated separately for the two subgroups. The “maftools” [41] software (version 2.10.05)
was employed to display the top 10 gene mutation maps for tow subgroups. Furthermore,
we assessed statistical significance in immune checkpoint-related genes’ expression and
immunotherapy sensitivity in both subgroups.

2.10. Statistical Analysis

In this study, the Wilcoxon test was performed to analyze statistical differences be-
tween the two groups that were not normally distributed. Correlation between two vari-
ables with non-normal distribution was assessed by Spearman’s rank correlation test. The



Life 2023, 13, 1583 5 of 19

results of the RT-qPCR were compared between two groups using an unpaired t-test. Dif-
ference in survival curves was evaluated by a log-rank test. The value 0.05 was determined
to be the significance threshold for p-value. Data analysis and visualization of the results
were implemented with R 4.1.3 software.

3. Results
3.1. Confirmation of Novel Subtypes of Cuproptosis-Associated IRGs in LUAD

The flow chart of our study is shown in Figure 1. Through coexpression analysis
of cuproptosis-associated genes and IRGs, 64 cuproptosis-associated IRGs were filtered.
Then, 17 cuproptosis-associated IRGs with prognostic value were screened by one-way Cox
regression analysis in 476 patients with LUAD (Figure 2A). To explore the classification
of cuproptosis subtypes in TCGA-LUAD, an expression matrix of 17 cuproptosis-related
IRGs was analyzed using unsupervised clustering. A total of 9 clusters were applied to
consensus clustering analysis (Figures 2B and S1A–G), and the optimal number of clusters
identified by the delta area plot and cumulative distribution plot of consensus scores was 2
(Figures 2D and S1H). We further analyzed the distribution of clinical features of LUAD
patients in the new LUAD classification (2C). To better elucidate the clinical significance of
the LUAD classification, we split the TCGA-LUAD cohort into two groups according to
the LUAD classification for survival analysis, and the results indicated that cluster 1 had a
worse prognosis compared with cluster 2. (Figure 2E). Meanwhile, PCA was performed
on the TCGA-LUAD expression matrix, and the results further confirmed the significant
differences between the two subtypes (Figure 2F), which was in accordance with the results
of PCoA (Figure S1I) and tSNE (Figure S1J) analyses. Additionally, we found that 6 out of
17 cuproptosis-related IRGs were differentially expressed in the subtypes (Figure S1K).
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Figure 1. The flowchart of our study. A total of 516 lung adenocarcinoma (LUAD) samples from
TCGA were included, and cuproptosis-related IRGs were identified. Tumor samples from TCGA-
LUAD were then classified into two subtypes. Clinical prognostic features were constructed based on
cuproptosis-related IRGs, and immunotherapy sensitivity analysis was performed.
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Figure 2. Gene coexpression and consensus clustering. (A) Forest plot of 17 cuproptosis-related IRGs.
(B) Consensus matrix heatmap of TCGA-LUAD samples with k = 2. (C) Alluvial diagram showing
changes in two clusters and clinical features. (D) CDF plot showing the consensus distribution for
each cluster. (E) Overall survival curves of the two clusters. (F) Principal component analysis of
17 cuproptosis-related IRGs classified the cohort into two subtypes.

3.2. Differences in TME of Cuproptosis-Associated Subtypes

To better understand the survival differences in both subtypes, we next investigated
the differences in the biological signatures and tumor microenvironment (TME) of the
two clusters. The GSVA algorithm performed on the two subtypes demonstrated that
immune activation-associated pathways activity was upregulated in cluster 2, such as
antigen processing and presentation, T-cell and B-cell receptor-signaling pathways, and
natural killer cell-mediated cytotoxicity (Figure 3A). At the same time, pathways activity
of tumor-associated biological processes, such as DNA damage repair, proliferation (cell
cycle progression and tumor proliferation rate), and stemness (RAMALHO stemness UP
and 2019 PNAS stemness), were upregulated in cluster 1, while cluster 2 had a significantly
higher enrichment score of interstitial activation pathways (endothelium, cancer-associated
fibroblasts, and pan-fibroblast TGF-β response signature (pan-F-TBRS)) than cluster 1
(Figure 3B,C). ssGSEA was performed on two clusters to elucidate the characteristics
of TME. The two subtypes demonstrated significant differences in the abundance of im-
munoinfiltrating cells, with cluster 2 having a dramatically higher infiltration abundance
than cluster 1 (Figures 3D and S2A). The 17 cuproptosis-related IRGs were also significantly
associated with the abundance of these 28 immunoinfiltrating cells (Figure S2B). To ensure
that the results of the ssGSEA were not biased and to demonstrate that the above results are
robust and accurate, five other algorithms, namely, ESTIMATE, TIMER2.0, MCP-counter,
CIBERSORT, and xCell, were used (Figures 3E and S2C–G).
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Figure 3. Biological signatures and immune landscape of the two clusters. (A) GSVA performed on both
subtypes with an annotated gene set from MSigDB. (B) Heatmap showing enrichment of signatures in
both subtypes. (C) Boxplot showing quantification of enrichment of indicated signatures among two
subtypes. (D) The abundance of 28 tumor-infiltrating lymphocytes in both subtypes was calculated by
ssGSEA. The dot denotes the median value. Error bar indicates confidence interval. (E) The ESTIMATE
calculated the immune scores between the two subtypes. “**”: p < 0.01; “***”: p < 0.001; “****”: p < 0.0001.

3.3. Creation of the Cuproptosis-Associated Prognostic Signature

First, to obtain cuproptosis-associated signatures that could be employed to predict
LUAD prognosis, 70% of TCGA-LUAD patients served as a training cohort and 30% as a test
cohort (Table 1). Univariate Cox regression analysis and LASSO analysis were conducted to
identify seven key genes in the training cohort (Figure 4A,B). Then, the best prognostic risk
model was screened using stepwise regression, and three prognostic genes were selected,
including NRAS, T-cell receptor alpha variable 38-2/delta variable 8 (TRAV38-2DV8), and
SORT1. A prognostic risk model for LUAD was developed using these three critical genes,
and cuproptosis-related risk scores were calculated using the following equation:

Risk score = −(0.30914682 × Exp SORT1) − (0.68345148 × Exp TRAV38-2DV8) + (0.40691588 × Exp NRAS). (2)
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Figure 4. Building of a risk model using three IRGs associated with cuproptosis. (A) The LASSO
analysis selected seven features by optimal λ. (B) Distribution of the coefficients and log (λ) of the
LASSO regression. Survival curves of two risk subgroups in the (C) training cohort and (D) testing
cohort. (E) Kaplan–Meier curves of progression-free survival for two subgroups in the whole cohort.
The risk factor linkage plots in the (F) training cohort and (G) testing cohort demonstrate the status of
patient survival and expression levels of signature genes in response to risk scores. (H) Histogram of
SORT1, NRAS, and TRAV38-2DV expression levels detected by real-time quantitative PCR (RT-qPCR).
“ns”: no statistical significance; “**”: p < 0.01; “****”: p < 0.0001.

The median risk score (cutoff value: 1.00009) was applied to classify the training
cohort, the test cohort, and the whole cohort into two groups.

In the TCGA-LUAD training cohort, the probability of OS was remarkably higher in
the low-risk subgroup, and the prognosis was clearly worse for the high-risk subgroup
(Figure 4C,F). Likewise, the same results were found in the testing set (Figure 4D,G). In the
entire TCGA-LUAD cohort, progression-free survival was compared in both subgroups,
demonstrating superior performance in the low-risk subgroup (Figure 4E). The risk scores
also accurately predicted the probability of OS for the entire cohort (Figure S3A,B). Fur-
thermore, we performed the Spearman’s test to examine whether the three prognostic
genes’ expression levels had a strong relevance to the risk score. The findings revealed that
TRAV38-2DV8 and SORT1 had a negative correlation, while NRAS expression level was
increased with rising risk scores (Figure S3C–E).
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Table 1. Clinical information of the TCGA-LUAD cohort.

Clinical Features
Number of Patients

p-Value
Overall Testing Set Training Set

All patients 476 136 340
OS State 0.9169

Alive 294 (61.76) 85 (62.50) 209 (61.47)
Dead 182 (38.24) 51 (37.50) 131 (38.53)
Age 66.5 (59, 72) 66 (59, 73) 67 (59, 72) 0.7982

Gender 0.3447
FEMALE 256 (53.78) 68 (50.00) 188 (55.29)

MALE 220 (46.22) 68 (50.00) 152 (44.71)
Stage 0.5346

Stage I 253 (54.06) 69 (51.88) 184 (54.93)
Stage II 114 (24.36) 37 (27.82) 77 (22.99)
Stage III 75 (16.03) 22 (16.54) 53 (15.82)
Stage IV 26 (5.56) 5 (3.76) 21 (6.27)

No staging information 8 (1.68) 3 (2.21) 5 (1.47)

Furthermore, we discovered that patients with different clinical stages and genders
had considerably different risk scores (Figure S3F–G). The stratified analyses illustrated
that three cuproptosis-associated IRGs’ signatures, regardless of clinical stage and gender,
were utilized to reliably detect prognostic differences for patients in the high-risk subgroup
(Figure S3H–K). This demonstrated that the cuproptosis-related signature distinguished
prognostic differences based on clinical characteristics. The results of the multivariate
Cox regression analyses supported those of the univariate Cox regression analyses in
that the prognostic influence of age, gender, stage, and TMB in patients declined risk
stratification. However, risk stratification resulted in fluctuating prognostic implications
for risk scores, indicating that risk stratification was linked to the prognostic value of this
feature (Table S4). We performed RT-qPCR on tumor samples from 12 LUAD patients,
and the results suggested significant differences in the expression of TRAV38-2DV8 and
SORT1 in the low- and high-risk groups and were consistent with the trend in the TCGA
cohort, while NRAS expression was not significantly different in the two risk subgroups
(Figure 4H). The possible reason for this biased result was the small sample size.

3.4. Gene Expression Pattern Analysis

The result of the single-cell data integration is shown in Figure 5A. We performed
dimension reduction and clustering in lung adenocarcinoma tissue samples (Figure 5B) and
malignant pleural effusion samples (Figure 5C), respectively, and then manually annotated
the cell clusters of these two groups of samples according to marker genes. Cell types of lung
adenocarcinoma tissue samples include immune cells (DCs, macrophages, mast cells, and
T cells), endothelial cells, epithelial cells, and fibroblasts; B, DCs, epithelial cells, fibroblasts,
Mono/Mac, neutrophils, plasma cells, and T cells are present in malignant pleural effusion
samples (Figure S4). The expression of SORT1 and NRAS was also observed to be higher in
macrophages; however, only pDCs from samples of malignant pleural effusion showed
considerable expression of TRAV38-2DV8 (Figure 5D–F). Immunohistochemistry from The
Human Protein Atlas (THPA) also confirmed that NRAS and SORT1 expression levels were
upregulated in LUAD tissues (Figure 5G,H).
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3.5. Establishment of a Cuproptosis-Associated IRG Prognostic Risk Model

Univariate and multivariate Cox regression analyses of clinical characteristics and the
risk score of LUAD patients (Figure 6A,B) indicated that risk score had an independent
influence on patient prognosis. A nomogram was set up using all the above features
(Figure 6C). The nomogram shows the predicted probability of survival for patient number
10. The total score was determined based on the score for each item calculated using the
nomogram. The AUC, which were, respectively, 0.729, 0.687, and 0.632 on the ROC curve,
measured how well the model predicted the OS probability of LUAD patients at 1, 3, and
5 years (Figure 6D). The C-index of all features in the model for 5-year prognosis prediction
of LUAD patients was calculated separately, indicating that the risk score had sufficient
predictive power for the patients’ prognosis (Figure 6E). Decision curve analysis (DCA)
demonstrated that the nomogram exhibited excellent predictive power with high clinical
benefit (Figure 6F). The calibration curves confirmed that the model was highly accurate in
projecting the odds for LUAD patients’ 1-, 3-, and 5-year OS (Figure 6G).
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3.6. Biological Characteristics Analysis of the Prognostic Model

Genes that had differential expression between the two subgroups were capitalized on for
GO enrichment analysis, and the top 10 terms were retrieved for visualization
(Figure 7A). A powerful connection between immune activation and prognostic risk models
are suggested by the fact that GO terms were primarily enriched in molecular mechanisms of
immune activation, such as pathways related to leukocyte, B cell, and lymphocyte-mediated
immunity; MHC class II protein complexes; and pathways related to receptor activity. DNA
replication, folate biosynthesis, and systemic lupus erythematosus (SLE) were among the
pathways that were upregulated in the high-risk subgroup according to GSEA results for
the KEGG pathway (Figure 7B), whereas immune enterocolitis, asthma, allograft rejection,
and immunodeficiency-related pathways were dramatically downregulated. (Figure 7C).
Furthermore, we performed GSEA using 14 pathways selected from pathway databases
and publications and indicated that the high-risk subgroup presented elevated activities of
DNA damage repair and cell cycle pathways, while the low-risk subgroup highly expressed
immune, stromal, and partial carcinogenesis-related pathways (Figure 7D,E). We further
investigated the relevance between enrichment levels of these 14 pathways and risk scores,
and the results confirmed this finding, which largely illuminated the reason for the worse
prognosis of patients in the high-risk subgroup (Figure S5A,B).
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3.7. Gene Mutation Landscape and Immunotherapy Susceptibility

We analyzed the difference in gene mutation distribution between the two subgroups
in the TCGA-LUAD cohort, which demonstrated that tumor mutation burden (TMB) was
higher in the high-risk population (Figure 8A–C). In addition, our study found that immune
checkpoint-related genes had higher expression in the low-risk population (Figure 8D). Lower
clinical efficacy scores for ICIs indicated that patients are less sensitive to immunotherapy.
Comparison of efficacy scores in two subgroups of the four treatment groups, either with
anti-PD-1 and anti-CTLA4 alone or in combination, revealed higher immunotherapy scores in
the low-risk subgroup, indicating that this subgroup was better suited for immunotherapy
(Figure 8E–H).
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4. Discussion

The majority of patients who die from malignancies are patients with lung cancer, and
LUAD has the highest proportion of lung cancer occurrence [42]. Analysis of exon copy
number profiling, mutation, rearrangements, and DNA methylation in LUAD samples, as
well as further assessment of mRNA, miRNA, and protein expression, have demonstrated
that LUAD lesions are dramatically heterogeneous [43,44]. Although deep learning and
machine learning have been extensively employed for tumor classification and prognostic
assessment in recent years [45], markers with accuracy of predicting patient prognosis are
still limited. Therefore, an accurate identification of the molecular subtypes of LUAD is
crucial for guiding antitumor therapy.
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The process of tumor proliferation, invasiveness, metastasis, and migration is strongly
linked to TME, and immunoinfiltrating cells play an obviously crucial role in tumor escape
and antitumor therapy. It has been ascertained that both innate and adaptive immune cells
are present in TME [46]. TME is closely associated with lung cancer heterogeneity and has
a major impact on lung carcinogenesis and development. Its dynamic changes depend on
infiltrating lymphocytes, cellular regulatory factors, immune-related genes, and protein
expression profiles [47]. Todd Golub’s team first proposed the concept and mechanism of
cuproptosis, and many studies have found that cuproptosis-related genes are inextricably
interconnected with different types of immune cell infiltration, such as LIAS and FDX1 [48,49].
LIPT1 is one of the genes associated with cuproptosis, and Lv H et al. found that in the
TME of melanoma patients, the abundance of resting CD4 memory T cells had a positive
correlation with the expression of this gene, whereas the abundance of effector T cells and
natural killer (NK) cells was inversely correlated. [50]. Furthermore, cuproptosis also has a
crucial influence on tumors in other ways, such as increasing glycolysis by downregulating
PDHA1 expression and thus promoting gastric cancer development [51].

IRGs are closely bound up with the prognostic evaluation and treatment of tumors.
Currently, multiple immune-associated characteristics are applied to identify different
subgroups of prognostic patients with LUAD and to predict their prognosis. [3,52–54]. Ma
KY et al. explored the heterogeneity of IRGs expression in tumors using scRNA-seq data
and demonstrated that it has paramount implications for immunotherapy efficacy [55].
However, the impact of cuproptosis-associated IRGs on oncogenesis, invasion and metasta-
sis, prognosis, and treatment of LUAD is currently unclear. Therefore, our study attempted
to investigate the comprehensive effects of cuproptosis-associated IRGs in LUAD. We
also designated specific cuproptosis-associated IRGs that could be employed to identify
subtypes and estimate the prognosis of LUAD.

In this study, we first screened for cuproptosis-related IRGs and separated the TCGA-
LUAD cohort into two clusters by consensus clustering. Survival analysis elucidated a
considerable difference in prognosis in both subtypes, with the cluster 2 cohort enjoying a
lopsided survival advantage. To explore the reasons for the difference, GSVA enrichment
analysis found that immune activation-related pathways were upregulated in cluster 2,
such as NK cell-mediated cytotoxicity, antigen processing and presentation, T- and B-cell
receptor signaling, and cell adhesion molecules. At the same time, various algorithms were
conducted to estimate the immune composition of LUAD. The results illuminated that
NK cells, CD8+ T cells, natural killer T (NKT) cells, M1 macrophages, and γδ T cells were
more abundantly infiltrating in cluster 2. Studies have shown that M1 macrophages, NKT
cells, NK cells, and γδ T cells contribute to the inhibition of tumor development [56–58].
We also found that compared with cluster 1, 6 of 17 cuproptosis-related IRGs used to
construct cuproptosis subtypes, namely, CCL13, TLR7, HLA-DRA, TRAV38-2DV8, HLA-
DMB, and TRBV25-1, were upregulated in cluster 2. Zhao W et al. found that CCL13
can be utilized to indicate the intratumoral heterogeneity of immunoinfiltration in lung
carcinoma and its association with OS [59]. TLR7 stimulation leads to decreased expression
of CD200R in immunoinfiltrating cells (CD45+), resulting in anti-tumor effects in multiple
tumors [60,61]. Jie Mei et al. found that human leukocyte antigen-DR alpha (HLA-DRA)
expression levels were reduced in NSCLC tissues, related to TME inflammation, and
predictive of the response of NSCLC to ICIs. This study also found that HLA-DRA was
expressed in tumor and immune cells [62]. Fling SP et al. showed that HLA-DMB, encoding
a component required for the assembly of MHC class II intramolecular peptides, is a gene
that functionally maps between HLA-DP and HLA-DQ, and is involved in class II antigen
presentation [63].

Next, Cox regression analysis and LASSO analysis were executed to screen for three
cuproptosis-associated IRGs (NRAS, TRAV38-2DV8, and SORT1) and to construct a prog-
nostic risk model. Validation with internal and external data ascertained that the model can
precisely distinguish risk subgroups of LUAD patients and provide a clinical reference to
facilitate quantitative risk management of LUAD patients. In addition, we performed RT-
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qPCR using tumor samples from 12 patients and initially verified that TRAV38-2DV8 and
SORT1 expression was remarkably elevated in the low-risk group. Due to the small sample
size, NRAS expression had no significant differences in the two subgroups. According to a
recent study, NRAS has a responsibility in immune cell infiltration in the TME and has an
independent effect on the prognosis of LUAD patients. Its expression is strongly inversely
correlated to the prognosis of LUAD [64]. Mutated or overexpressed NRAS promotes tumor
lung colonization by regulating the expression of IL-8-related chemokines and initiating
interactions between tumor cells, pulmonary blood vessels, and myeloid cells [65]. Several
studies have demonstrated that SORT1 expression is elevated in several types of tumors,
which is correlated with a poor prognosis, such as liver [66], gastric [67], prostate [68], and
colorectal cancers [69]. We demonstrated that the expression levels of SORT1 and NRAS
were obviously elevated in macrophages in LUAD samples by scRNA-seq data analysis. To
date, the prominence of TRAV38-2DV8 and SORT1 for prognostic prediction and clinical
therapeutic efficacy assessment of LUAD have not yet been thoroughly investigated in
relevant studies, and more research is required to evaluate the effect of SORT1 and NRAS
expression levels in macrophages on the occurrence and progression of LUAD. Nomograms
can calculate event probabilities based on features in prognostic models to assess patient
prognostic risk levels and are widely applied in prognostic prediction in cancer [70]. In
this study, a nomogram was established to predict OS of patients at 1, 3, and 5 years. The
calibration curve and the DCA curve revealed that the nomogram has a great clinical
predictive value.

Moreover, GO analysis and GSEA were carried out in two subgroups in order to clarify
the molecular mechanisms of the prognostic model. Cell cycle and DNA damage-repair-
related pathways were strongly expressed in the high-risk subgroup with a poor prognosis,
whereas immunological-, stromal-, and certain oncogenic-associated pathways were highly
expressed in the low-risk subgroup with improved prognosis. We also found that the
low-risk subgroup was more responsive to immunotherapy and had a lower frequency of
mutations. This largely explained why the low-risk subgroup had a better prognosis.

This research has several restrictions. First, the statistical study used data from
open databases, and more research is required to determine the function of cuproptosis-
associated IRGs, including NRAS, TRAV38-2DV8, and SORT1, in the TME of LUAD.
Furthermore, we have not yet assessed the risk model using a clinical cohort due to the
tiny clinical sample that was gathered.

5. Conclusions

In conclusion, using the cuproptosis-associated IRG signature, we identified three
key cuproptosis-associated IRGs, NRAS, TRAV38-2DV8, and SORT1, and meaningfully
categorized LUAD into two subgroups with prominent differences in prognosis, molecular
features, and immunoinfiltration abundance. More importantly, we successfully estab-
lished a prognostic prediction model based on the three IRGs connected to cuproptosis,
and the model has superior performance in predicting the immunotherapy response and
prognosis of LUAD. These three key genes expression profile in clinical samples from
patients with LUAD is validated. Furthermore, we elucidated how cuproptosis-associated
IRGs functioned through multiple biological pathways. Our findings provide meaningful
insights into issues related to immunotherapy response assessment, prognosis prediction,
and development of potential prognostic biomarkers in patients with LUAD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13071583/s1. Figure S1. Consensus clustering results and
differences of gene expression levels. (A–G) Consensus clustering mapping for k from 3 to 9. (H)
Delta plot of the relative change in k and k-1 areas under the CDF curve. Visualization of (I)
PCoA and (J) tSNE for 17 cuproptosis-associated IRGs. (K) Volcano map of genes differentially
expressed in both subtypes. Figure S2. Atlas of immunoinfiltrating cells. (A) Heatmap revealing
the abundance of immunoinfiltrating cells of both subtypes calculated by ssGSEA. (B) Correlation
of 17 cuproptosis-related IRGs with 28 immune cells. (C,D) xCell calculating abundance of 64 tumor-
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infiltrating lymphocytes (TILs), immune and stromal scores. Abundance of TILs calculated by the (E)
CIBERSORT, (F) MCP-counter, (G) TIMER2.0. Error bar indicates confidence interval and point indicates
median value. “ns”: not significant; “*”: p < 0.05; “**”: p < 0.01; “***”: p < 0.001; “****”: p < 0.0001.
Figure S3. Assessment of the robustness and stability of the risk model. (A) Kaplan–Meier curves
of both subgroups in the whole cohort. (B) Risk factor linkage plots in whole cohort demonstrate
the status of patient survival and expression levels of signature genes in response to risk scores.
Correlation between expression of (C) NRAS, (D) TRAV38-2DV8, and (E) SORT1, and risk scores.
(F,G) Difference in risk scores by clinical stage and gender. (H–K) Kaplan–Meier curves for the two
subgroups according to clinical stage and gender. Figure S4. Bubble map of marker genes for cell
types. Red indicates upregulated expression and blue indicates downregulated expression. The
size of the circles indicates the proportion of cells expressing the gene in each cell type. Figure S5.
Correlation of risk scores and biological processes. (A) Scatter plot of correlation between risk scores
and 14 pathways. (B) Heatmap of the correlation between risk scores and 14 pathways. Table S1.
Results of coexpression analysis of cuproptosis-related genes and IRGs. Table S2. List of gene sets
enriched in GSVA. Table S3. List of gene sets including 14 biological processes. Table S4. Univariate
and multivariate Cox regression analyses for risk stratification.

Author Contributions: Conceptualization, Z.S., S.C. and Y.L.; methodology, Z.S., S.C. and Y.L., software,
Z.S.; formal analysis, Z.S., S.C., Y.L., X.C., X.H. and Y.W.; investigation, Z.S., S.C., Y.L., X.C., X.H., L.S.,
S.Z. and Z.Z.; resources, Y.L. and S.C.; data curation, Z.S., X.C., X.H., Y.W., L.S., S.Z., Z.Z, Y.L. and
S.C.; writing—original draft preparation, Z.S., Y.L. and S.C.; writing—review and editing, Z.S., Y.L. and
S.C.; visualization, Z.S., Y.L. and S.C.; supervision, Y.L. and S.C.; project administration, S.C.; funding
acquisition, S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Guangdong Science and Technology Department
(2020A0505100058), Department of Education of Guangdong Province (2019KZDXM024), and Guang-
dong Province Medical Products Administration (2022TDZ19).

Institutional Review Board Statement: The study was conducted in accordance with the Declara-
tion of Helsinki and approved by the Ethics Committee of First Affiliated Hospital of Guangdong
Pharmaceutical University (Approval No. 69, 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data and R scripts used in this study can be requested from the
corresponding author with due cause. TCGA (https://portal.gdc.cancer.gov, accessed on 1 May 2023),
ImmPort (https://www.immport.org/home, accessed 1 May 2023), TCIA (https://tcia.at, accessed
1 May 2023), and GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed 2 May 2023) furnished the
public data used in this study. R software (version 4.1.3, available at https://www.r-project.org,
accessed 3 March 2023) was utilized in this work to analyze the data in terms of bioinformatics and to
visualize the outcomes.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of this study.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-small cell lung cancer: Epidemiology, risk factors, treatment, and
survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [CrossRef] [PubMed]

3. Yi, M.; Li, A.; Zhou, L.; Chu, Q.; Luo, S.; Wu, K. Immune signature-based risk stratification and prediction of immune checkpoint
inhibitor’s efficacy for lung adenocarcinoma. Cancer Immunol. Immunother. 2021, 70, 1705–1719. [CrossRef] [PubMed]

4. Hanna, N.H.; Schneider, B.J.; Temin, S.; Baker, S., Jr.; Brahmer, J.; Ellis, P.M.; Gaspar, L.E.; Haddad, R.Y.; Hesketh, P.J.; Jain, D.; et al.
Therapy for Stage IV Non-Small-Cell Lung Cancer Without Driver Alterations: ASCO and OH (CCO) Joint Guideline Update. J.
Clin. Oncol. 2020, 38, 1608–1632. [CrossRef]

5. Yi, M.; Qin, S.; Zhao, W.; Yu, S.; Chu, Q.; Wu, K. The role of neoantigen in immune checkpoint blockade therapy. Exp. Hematol.
Oncol. 2018, 7, 28. [CrossRef]

6. Ettinger, D.S.; Wood, D.E.; Aisner, D.L.; Akerley, W.; Bauman, J.R.; Bharat, A.; Bruno, D.S.; Chang, J.Y.; Chirieac, L.R.; D’Amico,
T.A.; et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer
Netw. 2022, 20, 497–530. [CrossRef] [PubMed]

https://portal.gdc.cancer.gov
https://www.immport.org/home
https://tcia.at
https://www.ncbi.nlm.nih.gov/geo/
https://www.r-project.org
https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1016/S0025-6196(11)60735-0
https://www.ncbi.nlm.nih.gov/pubmed/18452692
https://doi.org/10.1007/s00262-020-02817-z
https://www.ncbi.nlm.nih.gov/pubmed/33386920
https://doi.org/10.1200/JCO.19.03022
https://doi.org/10.1186/s40164-018-0120-y
https://doi.org/10.6004/jnccn.2022.0025
https://www.ncbi.nlm.nih.gov/pubmed/35545176


Life 2023, 13, 1583 17 of 19

7. Passaro, A.; Brahmer, J.; Antonia, S.; Mok, T.; Peters, S. Managing Resistance to Immune Checkpoint Inhibitors in Lung Cancer:
Treatment and Novel Strategies. J. Clin. Oncol. 2022, 40, 598–610. [CrossRef] [PubMed]

8. Yang, S.R.; Schultheis, A.M.; Yu, H.; Mandelker, D.; Ladanyi, M.; Büttner, R. Precision medicine in non-small cell lung cancer:
Current applications and future directions. Semin. Cancer Biol. 2022, 84, 184–198. [CrossRef]

9. Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol.
2016, 17, e542–e551. [CrossRef]

10. Saporito-Magriñá, C.; Musacco-Sebio, R.; Acosta, J.M.; Bajicoff, S.; Paredes-Fleitas, P.; Reynoso, S.; Boveris, A.; Repetto, M.G.
Copper(II) and iron(III) ions inhibit respiration and increase free radical-mediated phospholipid peroxidation in rat liver
mitochondria: Effect of antioxidants. J. Inorg. Biochem. 2017, 172, 94–99. [CrossRef]

11. Sha, S.; Si, L.; Wu, X.; Chen, Y.; Xiong, H.; Xu, Y.; Liu, W.; Mei, H.; Wang, T.; Li, M. Prognostic analysis of cuproptosis-related gene
in triple-negative breast cancer. Front. Immunol. 2022, 13, 922780. [CrossRef] [PubMed]

12. Kaplan, J.H.; Maryon, E.B. How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal. Biophys. J. 2016, 110,
7–13. [CrossRef]

13. Hu, G.F. Copper stimulates proliferation of human endothelial cells under culture. J. Cell. Biochem. 1998, 69, 326–335. [CrossRef]
14. McAuslan, B.R.; Reilly, W. Endothelial cell phagokinesis in response to specific metal ions. Exp. Cell Res. 1980, 130, 147–157.

[CrossRef] [PubMed]
15. Pan, Q.; Kleer, C.G.; van Golen, K.L.; Irani, J.; Bottema, K.M.; Bias, C.; De Carvalho, M.; Mesri, E.A.; Robins, D.M.; Dick, R.D.; et al.

Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 2002, 62, 4854–4859.
16. Voli, F.; Valli, E.; Lerra, L.; Kimpton, K.; Saletta, F.; Giorgi, F.M.; Mercatelli, D.; Rouaen, J.R.C.; Shen, S.; Murray, J.E.; et al.

Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Res. 2020, 80, 4129–4144.
[CrossRef]

17. Jiang, Y.; Huo, Z.; Qi, X.; Zuo, T.; Wu, Z. Copper-induced tumor cell death mechanisms and antitumor theragnostic applications
of copper complexes. Nanomedicine 2022, 17, 303–324. [CrossRef]

18. Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler,
R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [CrossRef]

19. Wu, J.; Zhao, Y.; Zhang, J.; Wu, Q.; Wang, W. Development and validation of an immune-related gene pairs signature in colorectal
cancer. Oncoimmunology 2019, 8, 1596715. [CrossRef]

20. Shen, S.; Wang, G.; Zhang, R.; Zhao, Y.; Yu, H.; Wei, Y.; Chen, F. Development and validation of an immune gene-set based
Prognostic signature in ovarian cancer. EBioMedicine 2019, 40, 318–326. [CrossRef]

21. Dai, Y.; Qiang, W.; Lin, K.; Gui, Y.; Lan, X.; Wang, D. An immune-related gene signature for predicting survival and immunother-
apy efficacy in hepatocellular carcinoma. Cancer Immunol. Immunother. 2021, 70, 967–979. [CrossRef]

22. Kalinke, L.; Janes, S.M. Two phenotypes that predict prognosis in lung adenocarcinoma. Eur. Respir. J. 2022, 60, 2200569.
[CrossRef]

23. Bhattacharya, S.; Dunn, P.; Thomas, C.G.; Smith, B.; Schaefer, H.; Chen, J.; Hu, Z.; Zalocusky, K.A.; Shankar, R.D.; Shen-Orr, S.S.;
et al. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data
2018, 5, 180015. [CrossRef] [PubMed]

24. Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer Im-
munogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.
Cell Rep. 2017, 18, 248–262. [CrossRef] [PubMed]

25. Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking.
Bioinformatics 2010, 26, 1572–1573. [CrossRef]

26. Hänzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform.
2013, 14, 7. [CrossRef]

27. Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.;
Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene
expression. Genome Biol. 2016, 17, 218. [CrossRef]

28. Aran, D.; Hu, Z.; Butte, A.J. xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017, 18, 220.
[CrossRef]

29. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration
of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [CrossRef]

30. Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine,
D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612.
[CrossRef] [PubMed]

31. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw.
2010, 33, 1–22. [CrossRef] [PubMed]

32. Zhang, Z.; Cortese, G.; Combescure, C.; Marshall, R.; Lee, M.; Lim, H.J.; Haller, B. Overview of model validation for survival
regression model with competing risks using melanoma study data. Ann. Transl. Med. 2018, 6, 325. [CrossRef] [PubMed]

33. Blanche, P.; Dartigues, J.F.; Jacqmin-Gadda, H. Estimating and comparing time-dependent areas under receiver operating
characteristic curves for censored event times with competing risks. Stat. Med. 2013, 32, 5381–5397. [CrossRef] [PubMed]

https://doi.org/10.1200/JCO.21.01845
https://www.ncbi.nlm.nih.gov/pubmed/34985992
https://doi.org/10.1016/j.semcancer.2020.07.009
https://doi.org/10.1016/S1470-2045(16)30406-5
https://doi.org/10.1016/j.jinorgbio.2017.04.012
https://doi.org/10.3389/fimmu.2022.922780
https://www.ncbi.nlm.nih.gov/pubmed/35979353
https://doi.org/10.1016/j.bpj.2015.11.025
https://doi.org/10.1002/(SICI)1097-4644(19980601)69:3&lt;326::AID-JCB10&gt;3.0.CO;2-A
https://doi.org/10.1016/0014-4827(80)90051-8
https://www.ncbi.nlm.nih.gov/pubmed/6161014
https://doi.org/10.1158/0008-5472.CAN-20-0471
https://doi.org/10.2217/nnm-2021-0374
https://doi.org/10.1126/science.abf0529
https://doi.org/10.1080/2162402X.2019.1596715
https://doi.org/10.1016/j.ebiom.2018.12.054
https://doi.org/10.1007/s00262-020-02743-0
https://doi.org/10.1183/13993003.00569-2022
https://doi.org/10.1038/sdata.2018.15
https://www.ncbi.nlm.nih.gov/pubmed/29485622
https://doi.org/10.1016/j.celrep.2016.12.019
https://www.ncbi.nlm.nih.gov/pubmed/28052254
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/ncomms3612
https://www.ncbi.nlm.nih.gov/pubmed/24113773
https://doi.org/10.18637/jss.v033.i01
https://www.ncbi.nlm.nih.gov/pubmed/20808728
https://doi.org/10.21037/atm.2018.07.38
https://www.ncbi.nlm.nih.gov/pubmed/30364028
https://doi.org/10.1002/sim.5958
https://www.ncbi.nlm.nih.gov/pubmed/24027076


Life 2023, 13, 1583 18 of 19

34. Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.;
et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell 2015, 161, 1202–1214.
[CrossRef] [PubMed]

35. Huang, Z.Y.; Shao, M.M.; Zhang, J.C.; Yi, F.S.; Du, J.; Zhou, Q.; Wu, F.Y.; Li, S.; Li, W.; Huang, X.Z.; et al. Single-cell analysis of
diverse immune phenotypes in malignant pleural effusion. Nat. Commun. 2021, 12, 6690. [CrossRef]

36. Wu, F.; Fan, J.; He, Y.; Xiong, A.; Yu, J.; Li, Y.; Zhang, Y.; Zhao, W.; Zhou, F.; Li, W.; et al. Single-cell profiling of tumor heterogeneity
and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 2021, 12, 2540. [CrossRef]

37. Salcher, S.; Sturm, G.; Horvath, L.; Untergasser, G.; Kuempers, C.; Fotakis, G.; Panizzolo, E.; Martowicz, A.; Trebo, M.; Pall, G.;
et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer.
Cancer Cell 2022, 40, 1503–1520.e1508. [CrossRef]

38. He, D.; Wang, D.; Lu, P.; Yang, N.; Xue, Z.; Zhu, X.; Zhang, P.; Fan, G. Single-cell RNA sequencing reveals heterogeneous tumor
and immune cell populations in early-stage lung adenocarcinomas harboring EGFR mutations. Oncogene 2021, 40, 355–368.
[CrossRef]

39. Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based
analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [CrossRef]

40. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

41. Mayakonda, A.; Lin, D.C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants
in cancer. Genome Res. 2018, 28, 1747–1756. [CrossRef]

42. Inamura, K. Clinicopathological Characteristics and Mutations Driving Development of Early Lung Adenocarcinoma: Tumor
Initiation and Progression. Int. J. Mol. Sci. 2018, 19, 1259. [CrossRef] [PubMed]

43. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014, 511, 543–550. [CrossRef] [PubMed]
44. Campbell, J.D.; Alexandrov, A.; Kim, J.; Wala, J.; Berger, A.H.; Pedamallu, C.S.; Shukla, S.A.; Guo, G.; Brooks, A.N.; Murray, B.A.;

et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016,
48, 607–616. [CrossRef]

45. She, Y.; Jin, Z.; Wu, J.; Deng, J.; Zhang, L.; Su, H.; Jiang, G.; Liu, H.; Xie, D.; Cao, N.; et al. Development and Validation of a Deep
Learning Model for Non-Small Cell Lung Cancer Survival. JAMA Netw. Open 2020, 3, e205842. [CrossRef]

46. Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79,
4557–4566. [CrossRef]

47. Wang, L.; Zhu, B.; Zhang, M.; Wang, X. Roles of immune microenvironment heterogeneity in therapy-associated biomarkers in
lung cancer. Semin. Cell Dev. Biol. 2017, 64, 90–97. [CrossRef]

48. Zhang, C.; Zeng, Y.; Guo, X.; Shen, H.; Zhang, J.; Wang, K.; Ji, M.; Huang, S. Pan-cancer analyses confirmed the cuproptosis-related
gene FDX1 as an immunotherapy predictor and prognostic biomarker. Front. Genet. 2022, 13, 923737. [CrossRef]

49. Cai, Y.; He, Q.; Liu, W.; Liang, Q.; Peng, B.; Li, J.; Zhang, W.; Kang, F.; Hong, Q.; Yan, Y.; et al. Comprehensive analysis of the
potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers. Front. Oncol. 2022, 12,
952129. [CrossRef]

50. Lv, H.; Liu, X.; Zeng, X.; Liu, Y.; Zhang, C.; Zhang, Q.; Xu, J. Comprehensive Analysis of Cuproptosis-Related Genes in Immune
Infiltration and Prognosis in Melanoma. Front. Pharmacol. 2022, 13, 930041. [CrossRef] [PubMed]

51. Liu, Z.; Yu, M.; Fei, B.; Fang, X.; Ma, T.; Wang, D. miR-21-5p targets PDHA1 to regulate glycolysis and cancer progression in
gastric cancer. Oncol. Rep. 2018, 40, 2955–2963. [CrossRef] [PubMed]

52. Sun, S.; Guo, W.; Wang, Z.; Wang, X.; Zhang, G.; Zhang, H.; Li, R.; Gao, Y.; Qiu, B.; Tan, F.; et al. Development and validation of an
immune-related prognostic signature in lung adenocarcinoma. Cancer Med. 2020, 9, 5960–5975. [CrossRef] [PubMed]

53. Wu, C.; Hu, Q.; Ma, D. Development of an immune-related gene pairs signature for predicting clinical outcome in lung
adenocarcinoma. Sci. Rep. 2021, 11, 3611. [CrossRef] [PubMed]

54. Shi, X.; Li, R.; Dong, X.; Chen, A.M.; Liu, X.; Lu, D.; Feng, S.; Wang, H.; Cai, K. IRGS: An immune-related gene classifier for lung
adenocarcinoma prognosis. J. Transl. Med. 2020, 18, 55. [CrossRef] [PubMed]

55. Ma, K.Y.; Schonnesen, A.A.; Brock, A.; Van Den Berg, C.; Eckhardt, S.G.; Liu, Z.; Jiang, N. Single-cell RNA sequencing of lung
adenocarcinoma reveals heterogeneity of immune response-related genes. JCI Insight 2019, 4, e121387. [CrossRef]

56. Wu, K.; Lin, K.; Li, X.; Yuan, X.; Xu, P.; Ni, P.; Xu, D. Redefining Tumor-Associated Macrophage Subpopulations and Functions in
the Tumor Microenvironment. Front. Immunol. 2020, 11, 1731. [CrossRef]

57. Smyth, M.J.; Crowe, N.Y.; Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced
fibrosarcoma. Int. Immunol. 2001, 13, 459–463. [CrossRef]

58. Girardi, M.; Oppenheim, D.E.; Steele, C.R.; Lewis, J.M.; Glusac, E.; Filler, R.; Hobby, P.; Sutton, B.; Tigelaar, R.E.; Hayday, A.C.
Pillars Article: Regulation of Cutaneous Malignancy by γδ T Cells. Science. 2001. 294: 605–609. J. Immunol. 2018, 200, 3031–3035.

59. Zhao, W.; Zhu, B.; Hutchinson, A.; Pesatori, A.C.; Consonni, D.; Caporaso, N.E.; Zhang, T.; Wang, D.; Shi, J.; Landi, M.T. Clinical
Implications of Inter- and Intratumor Heterogeneity of Immune Cell Markers in Lung Cancer. J. Natl. Cancer Inst. 2022, 114,
280–289. [CrossRef]

https://doi.org/10.1016/j.cell.2015.05.002
https://www.ncbi.nlm.nih.gov/pubmed/26000488
https://doi.org/10.1038/s41467-021-27026-9
https://doi.org/10.1038/s41467-021-22801-0
https://doi.org/10.1016/j.ccell.2022.10.008
https://doi.org/10.1038/s41388-020-01528-0
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.3390/ijms19041259
https://www.ncbi.nlm.nih.gov/pubmed/29690599
https://doi.org/10.1038/nature13385
https://www.ncbi.nlm.nih.gov/pubmed/25079552
https://doi.org/10.1038/ng.3564
https://doi.org/10.1001/jamanetworkopen.2020.5842
https://doi.org/10.1158/0008-5472.CAN-18-3962
https://doi.org/10.1016/j.semcdb.2016.09.008
https://doi.org/10.3389/fgene.2022.923737
https://doi.org/10.3389/fonc.2022.952129
https://doi.org/10.3389/fphar.2022.930041
https://www.ncbi.nlm.nih.gov/pubmed/35837286
https://doi.org/10.3892/or.2018.6695
https://www.ncbi.nlm.nih.gov/pubmed/30226598
https://doi.org/10.1002/cam4.3240
https://www.ncbi.nlm.nih.gov/pubmed/32592319
https://doi.org/10.1038/s41598-021-83120-4
https://www.ncbi.nlm.nih.gov/pubmed/33574499
https://doi.org/10.1186/s12967-020-02233-y
https://www.ncbi.nlm.nih.gov/pubmed/32019546
https://doi.org/10.1172/jci.insight.121387
https://doi.org/10.3389/fimmu.2020.01731
https://doi.org/10.1093/intimm/13.4.459
https://doi.org/10.1093/jnci/djab157


Life 2023, 13, 1583 19 of 19

60. Pilch, Z.; Tonecka, K.; Braniewska, A.; Sas, Z.; Skorzynski, M.; Boon, L.; Golab, J.; Meyaard, L.; Rygiel, T.P. Antitumor Activity of
TLR7 Is Potentiated by CD200R Antibody Leading to Changes in the Tumor Microenvironment. Cancer Immunol. Res. 2018, 6,
930–940. [CrossRef]

61. Dajon, M.; Iribarren, K.; Cremer, I. Dual roles of TLR7 in the lung cancer microenvironment. Oncoimmunology 2015, 4, e991615.
[CrossRef]

62. Mei, J.; Jiang, G.; Chen, Y.; Xu, Y.; Wan, Y.; Chen, R.; Liu, F.; Mao, W.; Zheng, M.; Xu, J. HLA class II molecule HLA-DRA identifies
immuno-hot tumors and predicts the therapeutic response to anti-PD-1 immunotherapy in NSCLC. BMC Cancer 2022, 22, 738.
[CrossRef] [PubMed]

63. Fling, S.P.; Arp, B.; Pious, D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in
antigen-presenting cells. Nature 1994, 368, 554–558. [CrossRef]

64. Yan, Y.; Gao, Z.; Han, H.; Zhao, Y.; Zhang, Y.; Ma, X.; Chen, H. NRAS expression is associated with prognosis and tumor immune
microenvironment in lung adenocarcinoma. J. Cancer Res. Clin. Oncol. 2022, 148, 565–575. [CrossRef] [PubMed]

65. Giannou, A.D.; Marazioti, A.; Kanellakis, N.I.; Giopanou, I.; Lilis, I.; Zazara, D.E.; Ntaliarda, G.; Kati, D.; Armenis, V.; Giotopoulou,
G.A.; et al. NRAS destines tumor cells to the lungs. EMBO Mol. Med. 2017, 9, 672–686. [CrossRef] [PubMed]

66. Gao, Y.; Li, Y.; Song, Z.; Jin, Z.; Li, X.; Yuan, C. Sortilin 1 Promotes Hepatocellular Carcinoma Cell Proliferation and Migration by
Regulating Immune Cell Infiltration. J. Oncol. 2022, 2022, 6509028. [CrossRef] [PubMed]

67. Liang, M.; Yao, W.; Shi, B.; Zhu, X.; Cai, R.; Yu, Z.; Guo, W.; Wang, H.; Dong, Z.; Lin, M.; et al. Circular RNA hsa_circ_0110389
promotes gastric cancer progression through upregulating SORT1 via sponging miR-127-5p and miR-136-5p. Cell Death Dis. 2021,
12, 639. [CrossRef]

68. Johnson, I.R.; Parkinson-Lawrence, E.J.; Keegan, H.; Spillane, C.D.; Barry-O’Crowley, J.; Watson, W.R.; Selemidis, S.; Butler, L.M.;
O’Leary, J.J.; Brooks, D.A. Endosomal gene expression: A new indicator for prostate cancer patient prognosis? Oncotarget 2015, 6,
37919–37929. [CrossRef]

69. Blondy, S.; Talbot, H.; Saada, S.; Christou, N.; Battu, S.; Pannequin, J.; Jauberteau, M.O.; Lalloué, F.; Verdier, M.; Mathonnet, M.;
et al. Overexpression of sortilin is associated with 5-FU resistance and poor prognosis in colorectal cancer. J. Cell. Mol. Med. 2021,
25, 47–60. [CrossRef]

70. Iasonos, A.; Schrag, D.; Raj, G.V.; Panageas, K.S. How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol.
2008, 26, 1364–1370. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/2326-6066.CIR-17-0454
https://doi.org/10.4161/2162402X.2014.991615
https://doi.org/10.1186/s12885-022-09840-6
https://www.ncbi.nlm.nih.gov/pubmed/35794593
https://doi.org/10.1038/368554a0
https://doi.org/10.1007/s00432-021-03842-w
https://www.ncbi.nlm.nih.gov/pubmed/34746975
https://doi.org/10.15252/emmm.201606978
https://www.ncbi.nlm.nih.gov/pubmed/28341702
https://doi.org/10.1155/2022/6509028
https://www.ncbi.nlm.nih.gov/pubmed/35847356
https://doi.org/10.1038/s41419-021-03903-5
https://doi.org/10.18632/oncotarget.6114
https://doi.org/10.1111/jcmm.15752
https://doi.org/10.1200/JCO.2007.12.9791

	Introduction 
	Materials and Methods 
	Data Source and Preprocessing 
	Unsupervised Clustering for Cuproptosis-Related IRGs 
	Cell Infiltration and Biological Characteristics of Both Subtypes 
	Derivation of the Cuproptosis Prognostic Signature 
	Real-Time Quantitative PCR (RT-qPCR) 
	Establishment and Assessment of the Nomogram 
	Single-Cell RNA Sequencing (scRNA-Seq) Data Analysis 
	Biological Features Analyses 
	Gene Mutation and Immunotherapy Response Analysis 
	Statistical Analysis 

	Results 
	Confirmation of Novel Subtypes of Cuproptosis-Associated IRGs in LUAD 
	Differences in TME of Cuproptosis-Associated Subtypes 
	Creation of the Cuproptosis-Associated Prognostic Signature 
	Gene Expression Pattern Analysis 
	Establishment of a Cuproptosis-Associated IRG Prognostic Risk Model 
	Biological Characteristics Analysis of the Prognostic Model 
	Gene Mutation Landscape and Immunotherapy Susceptibility 

	Discussion 
	Conclusions 
	References

