Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studies
2.2. Data Collection
2.2.1. General Measurements
2.2.2. Carotid Intima-Media Thickness (CIMT)
2.2.3. Cardio–Ankle Vascular Index (CAVI)
2.2.4. Measurement of Circulating CD34-Positive Cell Count
2.2.5. Genotyping of the Single-Nucleotide Polymorphisms (SNPs)
2.2.6. Detection of Human T-Cell Leukemia Virus 1 (HTLV-1) Infection
3. Results
3.1. CIMT and CAVI in Relation to Circulating CD34-Positive Cell Count (Figure 1)
3.2. Gamma-Glutamyl Transpeptidase (γ-GTP), Structural Atherosclerosis, and Hypertension in Relation to Circulating CD34-Positive Cell Count
3.3. Vascular Endothelial Growth Factor (VEGF) Polymorphisms and Structural Atherosclerosis among Hypertensive Elderly Individuals
3.4. Platelets, Circulating CD34-Positive Cells, and CIMT by Hypertension Status (Figure 2)
3.5. Platelets and Hypertension by Levels of Circulating CD34-Positive Cell Count
3.6. HTLV-1, Structural Atherosclerosis, and Hypertension (Figure 3)
3.7. Reticulocytes, Hypertension, and Structural Atherosclerosis (Figure 4)
3.8. Hemoglobin and Hypertension
3.9. Hemoglobin and Hypertension by Platelet Count (Figure 5)
3.10. BRAP rs3782886 and Platelet Count in Relation to Hypertension (Figure 6)
3.11. Potential Mechanism Underlying the Association between SNP (BRAP and ALDH2) and Hypertension (Figure 7)
3.12. Structural Atherosclerosis, Functional Atherosclerosis, and LDL Cholesterol (LDLc)
4. Discussion
4.1. Aggressive Endothelial Repair and Insufficient Endothelial Repair
4.2. Circulating CD34-Positive Cell Counts and the Beneficial Effect of Preventing Hypertension, Which Is Related to the Development of Structural Atherosclerosis
4.3. VEGF Polymorphisms and Structural Atherosclerosis among Elderly Individuals with Hypertension
4.4. Platelet Count as a Marker of Endothelial Repair Activity
4.5. Platelets and Hypertension by Circulating CD34-Positive Cell Count
4.6. Human T-Cell Leukemia Virus Type 1 (HTLV-1), Structural Atherosclerosis, and Hypertension
4.7. Potential Biological Reactions to Hypoxia and Oxidative Stress
4.8. Hemoglobin and Hypertension by Platelet Levels (Figure 5)
4.9. BRAP rs3782886 and Platelet Count in Relation to Hypertension
4.10. BRAP rs3782886, ALDH2 rs671, Platelets, and Hypertension
4.11. Structural Atherosclerosis, Functional Atherosclerosis, and LDL Cholesterol
4.12. Strengths of the Present Study
5. Perspectives
6. Limitations
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carpenter, M.; Sinclair, H.; Kunadian, V. Carotid intima media thickness and its utility as a predictor of cardiovascular disease: A review of evidence. Cardiol. Rev. 2016, 24, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Centurión, O.A. Carotid intima-media thickness as a cardiovascular risk factor and imaging pathway of atherosclerosis. Crit. Pathw. Cardiol. 2016, 15, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.W.; Polak, J.F.; Kavousi, M.; Mathiesen, E.B.; Völzke, H.; Tuomainen, T.P.; Sander, D.; Plichart, M.; Catapano, A.L.; Robertson, C.M.; et al. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet 2012, 379, 2053–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedding, D.G.; Boyle, E.C.; Demandt, J.A.F.; Sluimer, J.C.; Dutzmann, J.; Haverich, A.; Bauersachs, J. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 2018, 9, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- le Noble, F.A.C.; Mourad, J.J.; Levy, B.I.; Struijker-Boudier, H.A.J. VEGF (Vascular Endothelial Growth Factor) inhibition and hypertension: Does microvascular rarefaction play a role? Hypertension 2023, 80, 901–911. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Gamma-glutamyl transpeptidase (γ-GTP) has an ambivalent association with hypertension and atherosclerosis among elderly Japanese men: A cross-sectional study. Environ. Health Prev. Med. 2019, 24, 69. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, R.; González, J.; Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 2011, 34, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Kattoor, A.J.; Pothineni, N.V.K.; Palagiri, D.; Mehta, J.L. Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 2017, 19, 42. [Google Scholar] [CrossRef]
- Stellos, K.; Langer, H.; Daub, K.; Schoenberger, T.; Gauss, A.; Geisler, T.; Bigalke, B.; Mueller, I.; Schumm, M.; Schaefer, I.; et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 2008, 117, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, J.; Yan, F.; Leung, H.H.L.; Chong, B.H. Megakaryocyte differentiation and platelet formation from human cord blood-derived CD34+ cells. J. Vis. Exp. 2017, 130, 56420. [Google Scholar] [CrossRef]
- Stellos, K.; Seizer, P.; Bigalke, B.; Daub, K.; Geisler, T.; Gawaz, M. Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin. Thromb. Hemost. 2010, 36, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y. Mechanism underlying vascular remodeling in relation to circulating CD34-positive cells among older Japanese men. Sci. Rep. 2022, 12, 21823. [Google Scholar] [CrossRef] [PubMed]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Al-Habboubi, H.H.; Sater, M.S.; Almawi, A.W.; Al-Khateeb, G.M.; Almawi, W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur. Cytokine Netw. 2011, 22, 154–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Yamanashi, H.; Kawashiri, S.Y.; Nobusue, K.; Nonaka, F.; Aoyagi, K.; Nagata, Y.; Maeda, T. Vascular endothelial growth factor (VEGF) polymorphism rs3025039 and atherosclerosis among older with hypertension. Sci. Rep. 2022, 12, 5564. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Watanabe, T. Human T lymphotropic virus type-I and adult T-cell leukemia in Japan. Int. J. Hematol. 2002, 76 (Suppl. S2), 240–245. [Google Scholar] [CrossRef]
- Harhaj, E.W.; Giam, C.Z. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018, 285, 3324–3336. [Google Scholar] [CrossRef] [Green Version]
- Schattner, M. Role of NF-κB pathway on platelet activation. Circ. Res. 2013, 113, e92. [Google Scholar] [CrossRef]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Kawashiri, S.Y.; Yamanashi, H.; Tamai, M.; Nagata, Y.; Maeda, T. Possible mechanisms underlying the association between human T-cell leukemia virus type 1 (HTLV-1) and hypertension in elderly Japanese population. Environ. Health Prev. Med. 2021, 26, 17. [Google Scholar] [CrossRef]
- Fox, E.S.; Cantrell, C.H.; Leingang, K.A. Inhibition of the Kupffer cell inflammatory response by acute ethanol: NF-kappa B activation and subsequent cytokine production. Biochem. Biophys. Res. Commun. 1996, 225, 134–140. [Google Scholar] [CrossRef]
- Stach, K.; Kälsch, A.I.; Weiß, C.; Elmas, E.; Borggrefe, M.; Kälsch, T. Effects of ethanol on the properties of platelets and endothelial cells in model experiments. World J. Cardiol. 2012, 4, 201–205. [Google Scholar] [CrossRef]
- Wall, T.L.; Ehlers, C.L. Genetic influences affecting alcohol use among Asians. Alcohol. Health Res. World 1995, 19, 184–189. [Google Scholar] [PubMed]
- Shimizu, Y.; Arima, K.; Noguchi, Y.; Kawashiri, S.Y.; Yamanashi, H.; Tamai, M.; Nagata, Y.; Maeda, T. Potential mechanisms underlying the association between single nucleotide polymorphism (BRAP and ALDH2) and hypertension among elderly Japanese population. Sci. Rep. 2020, 10, 14148. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators Developing the Japanese Equation for Estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Takamura, N.; Akashi, S.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, Y.; Kusano, Y.; Aoyagi, K. Evaluation of clinical markers of atherosclerosis in young and elderly Japanese adults. Clin. Chem. Lab. Med. 2006, 44, 824–829. [Google Scholar] [CrossRef]
- Yanase, T.; Nasu, S.; Mukuta, Y.; Shimizu, Y.; Nishihara, T.; Okabe, T.; Nomura, M.; Inoguchi, T.; Nawata, H. Evaluation of a new carotid intima-media thickness measurement by B-mode ultrasonography using an innovative measurement software, intimascope. Am. J. Hypertens. 2006, 19, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Koji, Y.; Yambe, M.; Motobe, H.; Glunizia, Z.; Yamamoto, Y.; Hori, S. Nomogram of the relation of branchial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003, 26, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, D.R.; Anderson, L.; Keeney, M.; Nayar, R.; Chin-Yee, I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J. Hematother. 1996, 5, 213–226. [Google Scholar] [CrossRef]
- Yamanashi, H.; Koyamatsu, J.; Nagayoshi, M.; Shimizu, Y.; Kawashiri, S.Y.; Kondo, H.; Fukui, S.; Tamai, M.; Sato, S.; Yanagihara, K.; et al. Human T-cell leukemia virus-1 infection is associated with atherosclerosis as measured by carotid intima-media thickness in Japanese community-dwelling older people. Clin. Infect. Dis. 2018, 67, 291–294. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.Y.; Kondo, H.; et al. Cardio-ankle vascular index and circulating CD34-positive cell levels as indicators of endothelial repair activity in older Japanese men. Geriatr. Gerontol. Int. 2019, 19, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Maeda, T. Platelets as an indicator of vascular repair in elderly Japanese men. Oncotarget 2016, 7, 44919–44926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Kawashiri, S.Y.; Inoue, K.; Nagata, Y.; Maeda, T. Platelets and circulating CD34-positive cells as an indicator of the activity of the vicious cycle between hypertension and endothelial dysfunction in elderly Japanese men. Atherosclerosis 2017, 259, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kawashiri, S.Y.; Yamanashi, H.; Koyamatsu, J.; Fukui, S.; Kondo, H.; Tamai, M.; Nakamichi, S.; Maeda, T. Reticulocyte levels have an ambivalent association with hypertension and atherosclerosis in the elderly: A cross-sectional study. Clin. Interv. Aging 2019, 14, 49–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Arima, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association between the hemoglobin levels and hypertension in relation to the BMI status in a rural Japanese population: The Nagasaki Islands Study. Intern. Med. 2014, 53, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Kawashiri, S.Y.; Maeda, T. Possible mechanism underlying the association between higher hemoglobin level and hypertension in older Japanese men. Geriatr. Gerontol. Int. 2017, 17, 2586–2592. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.Y.; Arima, K.; et al. Short stature-related single-nucleotide polymorphism (SNP) activates endothelial repair activity in elderly Japanese. Environ. Health Prev. Med. 2019, 24, 26. [Google Scholar] [CrossRef]
- Kamatani, Y.; Matsuda, K.; Okada, Y.; Kubo, M.; Hosono, N.; Daigo, Y.; Nakamura, Y.; Kamatani, N. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nat. Genet. 2010, 42, 210–215. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Honda, Y.; Nonaka, F.; Miyata, J.; Kawashiri, S.Y.; Noguchi, Y.; Nakamichi, S.; Nagata, Y.; Maeda, T. Low-density lipoprotein cholesterol, structural atherosclerosis, and functional atherosclerosis in older Japanese. Nutrients 2022, 15, 183. [Google Scholar] [CrossRef]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Löwenberg, E.C.; Meijers, J.C.; Levi, M. Platelet-vessel wall interaction in health and disease. Neth. J. Med. 2010, 68, 242–251. [Google Scholar] [PubMed]
- Tabas, I.; Bornfeldt, K.E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 2016, 118, 653–667. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.M.; Pearce, S.W.A.; Xiao, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol. 2019, 112, 54–71. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Koyamatsu, J.; Fukui, S.; Tamai, M.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Circulating CD34+ cells and active arterial wall thickening among elderly men: A prospective study. Sci. Rep. 2020, 10, 4656. [Google Scholar] [CrossRef] [Green Version]
- Liochev, S.I. Reflections on the theories of aging, of oxidative stress, and of science in general. Is it time to abandon the free radical (oxidative stress) theory of aging? Antioxid. Redox Signal. 2015, 23, 187–207. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Brusnahan, S.K.; McGuire, T.R.; Jackson, J.D.; Lane, J.T.; Garvin, K.L.; O’kane, B.J.; Berger, A.M.; Tuljapurkar, S.R.; Kessinger, M.A.; Sharp, J.G. Human blood and marrow side population stem cell and Stro-1 positive bone marrow stromal cell numbers decline with age, with an increase in quality of surviving stem cells: Correlation with cytokines. Mech. Ageing Dev. 2010, 131, 718–722. [Google Scholar] [CrossRef] [Green Version]
- Garvin, K.; Feschuk, C.; Sharp, J.G.; Berger, A. Dose the number or quality of pluripotent bone marrow stem cells decrease with age? Clin. Orthop. Relat. Res. 2007, 465, 202–207. [Google Scholar] [CrossRef]
- Shimizu, Y. Comment on “Does body height affect vascular function?”. Hypertens. Res. 2022, 45, 1091–1092. [Google Scholar] [CrossRef]
- Marvasti, T.B.; Alibhai, F.J.; Weisel, R.D.; Li, R.K. CD34+ stem cells: Promising roles in cardiac repair and regeneration. Can. J. Cardiol. 2019, 35, 1311–1321. [Google Scholar] [CrossRef]
- Tei, K.; Matsumoto, T.; Mifune, Y.; Ishida, K.; Sasaki, K.; Shoji, T.; Kubo, S.; Kawamoto, A.; Asahara, T.; Kurosaka, M.; et al. Administrations of peripheral blood CD34-positive cells contribute to medial collateral ligament healing via vasculogenesis. Stem Cells 2008, 26, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Cho, A.R.; Kwon, Y.J.; Lim, H.J.; Lee, H.S.; Kim, S.; Shim, J.Y.; Lee, H.R.; Lee, Y.J. Oxidative balance score and serum γ-glutamyltransferase level among Korean adults: A nationwide population-based study. Eur. J. Nutr. 2018, 57, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Uçar, H.; Gür, M.; Gözükara, M.Y.; Kalkan, G.Y.; Baykan, A.O.; Türkoğlu, C.; Kaypakl, O.; Şeker, T.; Şen, Ö.; Selek, Ş.; et al. Gamma glutamyl transferase activity is independently associated with oxidative stress rather than SYNTAX score. Scand. J. Clin. Lab. Investig. 2015, 75, 7–12. [Google Scholar] [CrossRef]
- Gascoyne, R.D. HTLV-1: A significant retrovirus. Can. Fam. Physician 1988, 34, 2513–2517. [Google Scholar] [PubMed]
- Shoeibi, A.; Rafatpanah, H.; Azarpazhooh, A.; Mokhber, N.; Hedayati-Moghaddam, M.R.; Amiri, A.; Hashemi, P.; Foroghipour, M.; Hoseini, R.F.; Bazarbachi, A.; et al. Clinical features of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in northeast Iran. Acta Neurol. Belg. 2013, 113, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.L.; Hanchard, B.; Figueroa, J.P.; Gibbs, W.N.; Lofters, W.S.; Campbell, M.; Goedert, J.J.; Blattner, W.A. Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int. J. Cancer 1989, 43, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.E.; Osame, M.; Kubota, H.; Igata, A.; Nishitani, H.; Maeda, Y.; Khabbaz, R.F.; Janssen, R.S. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J. Acquir. Immune Defic. Syndr. 1990, 3, 1096–1101. [Google Scholar]
- Fochi, S.; Mutascio, S.; Bertazzoni, U.; Zipeto, D.; Romanelli, M.G. HTLV deregulation of the NF-κB pathway: An update on tax and antisense proteins role. Front. Microbiol. 2018, 9, 285. [Google Scholar] [CrossRef] [Green Version]
- Hanon, E.; Asquith, R.E.; Taylor, G.P.; Tanaka, Y.; Weber, J.N.; Bangham, C.R. High frequency of viral protein expression in human T cell lymphotropic virus type 1-infected peripheral blood mononuclear cells. AIDS Res. Hum. Retroviruses 2000, 16, 1711–1715. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Miyata, J.; Takada, M.; Noguchi, Y.; Honda, Y.; Nonaka, F.; Nakamichi, S.; Nagata, Y.; Maeda, T. VEGF polymorphism rs3025039 and human T-cell leukemia virus 1 (HTLV-1) infection among older Japanese individuals: A cross-sectional study. Bioengineering 2022, 9, 527. [Google Scholar] [CrossRef]
- Wu, Q.; Wu, W.; Kuca, K. From hypoxia and hypoxia-inducible factors (HIF) to oxidative stress: A new understanding on the toxic mechanism of mycotoxins. Food Chem. Toxicol. 2020, 135, 110968. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.; Sato, H.; Inoue, K.; Tsunoda, T.; Sakata, Y.; Mizuno, H.; Lin, T.H.; Miyamoto, Y.; Aoki, A.; Onouchi, Y.; et al. SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat. Genet. 2009, 41, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.C.; Wang, Y.S.; Guo, Y.C.; Ozaki, K.; Tanaka, T.; Lin, H.F.; Chang, M.H.; Chen, K.C.; Yu, M.L.; Sheu, S.H.; et al. BRAP activates inflammatory cascades and increases the risk for carotid atherosclerosis. Mol. Med. 2011, 17, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Karin, M.; Delhase, M. The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin. Immunol. 2000, 12, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.P.; Xu, L.W.; Sun, T.; Wu, Y.Y.; Zhu, X.W.; Zhang, B.; Cheng, Z.; Cai, X.; Liu, Y.C.; Zhao, T.T.; et al. Relationship between alcohol use, blood pressure and hypertension: An association study and a Mendelian randomisation study. J. Epidemiol. Community Health 2019, 73, 796–801. [Google Scholar] [CrossRef]
- Fernández-Friera, L.; Fuster, V.; López-Melgar, B.; Oliva, B.; García-Ruiz, J.M.; Mendiguren, J.; Bueno, H.; Pocock, S.; Ibáñez, B.; Fernández-Ortiz, A.; et al. Normal LDL-cholesterol levels are associated with subclinical atherosclerosis in the absence of risk factors. J. Am. Coll. Cardiol. 2017, 70, 2979–2991. [Google Scholar] [CrossRef]
- Jukema, R.A.; Ahmed, T.A.N.; Tardif, J.C. Does low-density lipoprotein cholesterol induce inflammation? If so, does it matter? Current insights and future perspectives for novel therapies. BMC Med. 2019, 17, 197. [Google Scholar] [CrossRef] [Green Version]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic insights into the oxidized low-density lipoprotein-induced atherosclerosis. Oxid. Med. Cell Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef]
- Cimato, T.R.; Palka, B.A.; Lang, J.K.; Young, R.F. LDL cholesterol modulates human CD34+ HPCs through effects on proliferation and the IL-17 G-CSF axis. PLoS ONE 2013, 8, e73861. [Google Scholar] [CrossRef]
- Kitamura, A.; Yamagishi, K.; Imano, H.; Kiyama, M.; Cui, R.; Ohira, T.; Umesawa, M.; Muraki, I.; Sankai, T.; Saito, I.; et al. Impact of hypertension and subclinical organ damage on the incidence of cardiovascular disease among Japanese residents at the population and individual levels—The Circulatory Risk in Communities Study (CIRCS). Circ. J. 2017, 81, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Mitsuyama, Y.; Thompson, L.R.; Hayashi, T.; Lee, K.K.; Keehn, R.J.; Resch, J.A.; Steer, A. Autopsy study of cerebrovascular disease in Japanese men who lived in Hiroshima, Japan, and Honolulu, Hawaii. Stroke 1979, 10, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Shi, H.; Qi, X.B.; Xiao, C.J.; Zhong, H.; Ma, R.L.; Su, B. The ADH1B Arg47His polymorphism in east Asian population and expansion of rice domestication in history. BMC Evol. Biol. 2010, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association of arterial stiffness and diabetes with triglycerides-to-HDL cholesterol ratio for Japanese men: The Nagasaki Islands Study. Atherosclerosis 2013, 228, 491–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Miyata, J.; Nonaka, F.; Nakamichi, S.; Saito, T.; Nagata, Y.; Maeda, T. Tooth loss and carotid intima-media thickness in relation to functional atherosclerosis: A cross-sectional study. J. Clin. Med. 2022, 11, 3993. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Miyata, J.; Nonaka, F.; Nakamichi, S.; Saito, T.; Nagata, Y.; Maeda, T. Association between periodontitis and chronic kidney disease by functional atherosclerosis status among older Japanese individuals: A cross-sectional study. J. Clin. Periodontol. 2023, 50, 430–439. [Google Scholar] [CrossRef]
- Shimizu, Y.; Maeda, T. Influence of height on endothelial maintenance activity: A narrative review. Environ. Health Prev. Med. 2021, 26, 19. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Nobusue, K.; Nonaka, F.; Tamai, M.; Honda, Y.; Yamanashi, H.; Nakamichi, S.; Kiyama, M.; Hayashida, N.; et al. Association between circulating CD34-positive cell count and height loss among older men. Sci. Rep. 2022, 12, 7175. [Google Scholar] [CrossRef]
- Shimizu, Y.; Hayakawa, H.; Sasaki, N.; Takada, M.; Okada, T.; Kiyama, M. Association between height and hypertension: A retrospective study. BioMed 2022, 2, 303–309. [Google Scholar] [CrossRef]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Arima, K.; Yamasaki, H.; Goto, H.; Shirahama, S.; Takamura, N.; Aoyagi, K.; et al. Relationship between adult height and body weight and risk of carotid atherosclerosis assessed in terms of carotid intima-media thickness: The Nagasaki Islands study. J. Physiol. Anthropol. 2013, 32, 19. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Kawashiri, S.Y.; Noguchi, Y.; Nakamichi, S.; Nagata, Y.; Maeda, T.; Hayashida, N. Height and active arterial wall thickening in relation to thyroid cysts status among elderly Japanese: A prospective study. Biology 2022, 11, 1756. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Noguchi, Y.; Nagata, Y.; Maeda, T.; Hayashida, N. Association between thyroid cysts and hypertension by atherosclerosis status: A cross-sectional study. Sci. Rep. 2021, 11, 13922. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Kawashiri, S.Y.; Noguchi, Y.; Nagata, Y.; Maeda, T.; Hayashida, N. Anti-thyroid peroxidase antibody and subclinical hypothyroidism in relation to hypertension and thyroid cysts. PLoS ONE 2020, 15, e0240198. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Nabeshima-Kimura, Y.; Kawashiri, S.Y.; Noguchi, Y.; Nagata, Y.; Maeda, T.; Hayashida, N. Associations between thyroid-stimulating hormone and hypertension according to thyroid cyst status in the general population: A cross-sectional study. Environ. Health Prev. Med. 2020, 25, 69. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y. Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population. Life 2023, 13, 1588. https://doi.org/10.3390/life13071588
Shimizu Y. Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population. Life. 2023; 13(7):1588. https://doi.org/10.3390/life13071588
Chicago/Turabian StyleShimizu, Yuji. 2023. "Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population" Life 13, no. 7: 1588. https://doi.org/10.3390/life13071588
APA StyleShimizu, Y. (2023). Progression of Carotid Intima-Media Thickness Partly Indicates the Prevention of Hypertension among Older Individuals in the General Population. Life, 13(7), 1588. https://doi.org/10.3390/life13071588