Membranous and Membraneless Interfaces—Origins of Artificial Cellular Complexity
1. Introduction
2. A Brief Description of the Collected Articles
3. General Remarks and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Stano, P. Is Research on “Synthetic Cells” Moving to the Next Level? Life 2019, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Stano, P. Exploring Information and Communication Theories for Synthetic Cell Research. Front. Bioeng. Biotechnol. 2022, 10, 927156. [Google Scholar] [CrossRef] [PubMed]
- Gentili, P.L.; Stano, P. Monitoring the Advancements in the Technology of Artificial Cells by Determining Their Complexity Degree: Hints from Complex Systems Descriptors. Front. Bioeng. Biotechnol. 2023, 11, 1132546. [Google Scholar] [CrossRef] [PubMed]
- Friston, K. Life as We Know It. J. R. Soc. Interface 2013, 10, 20130475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanczyc, M.M. The Early History of Protocells—The Search for the Recipe of Life. In Protocells: Bridging Nonliving and Living Matter; Rasmussen, S., Bedau, M.A., Chen, L., Deamer, D., Krakauer, D.C., Packard, N.H., Stadler, P.F., Eds.; MIT Press: Cambridge, MA, USA, 2009; pp. 3–18. ISBN 978-0-262-18268-3. [Google Scholar]
- Helfrich, M.R.; Mangeney-Slavin, L.K.; Long, M.S.; Djoko, K.Y.; Keating, C.D. Aqueous Phase Separation in Giant Vesicles. J. Am. Chem. Soc. 2002, 124, 13374–13375. [Google Scholar] [CrossRef] [PubMed]
- Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew. Chem. Int. Edit. 2010, 49, 5846–5868. [Google Scholar] [CrossRef] [PubMed]
- van Swaay, D.; Tang, T.-Y.D.; Mann, S.; de Mello, A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew. Chem. Int. Ed. Engl. 2015, 54, 8398–8401. [Google Scholar] [CrossRef]
- Serrano-Luginbuhl, S.; Ruiz-Mirazo, K.; Ostaszewski, R.; Gallou, F.; Walde, P. Soft and Dispersed Interface-Rich Aqueous Systems That Promote and Guide Chemical Reactions. Nat. Rev. Chem. 2018, 2, 306–327. [Google Scholar] [CrossRef]
- Dreher, Y.; Jahnke, K.; Bobkova, E.; Spatz, J.P.; Göpfrich, K. Division and Regrowth of Phase-Separated Giant Unilamellar Vesicles. Angew. Chem. Int. Ed. 2021, 60, 10661–10669. [Google Scholar] [CrossRef]
- Kato, S.; Garenne, D.; Noireaux, V.; Maeda, Y.T. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021, 22, 3451–3459. [Google Scholar] [CrossRef]
- Cho, E.; Lu, Y. Compartmentalizing Cell-Free Systems: Toward Creating Life-Like Artificial Cells and Beyond. ACS Synth. Biol. 2020, 9, 2881–2901. [Google Scholar] [CrossRef] [PubMed]
- Gaut, N.J.; Adamala, K.P. Reconstituting Natural Cell Elements in Synthetic Cells. Adv. Biol. 2021, 5, e2000188. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Allegri, G.; Huskens, J. Vesicle-Based Artificial Cells: Materials, Construction Methods and Applications. Mater. Horiz. 2022, 9, 892–907. [Google Scholar] [CrossRef] [PubMed]
- Boeynaems, S.; Alberti, S.; Fawzi, N.L.; Mittag, T.; Polymenidou, M.; Rousseau, F.; Schymkowitz, J.; Shorter, J.; Wolozin, B.; van den Bosch, L.; et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol. 2018, 28, 420–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraccia, T.P.; Zanchetta, G. Liquid–Liquid Crystalline Phase Separation in Biomolecular Solutions. Curr. Opin. Colloid Interface Sci. 2021, 56, 101500. [Google Scholar] [CrossRef]
- Tsumoto, K.; Arai, M.; Nakatani, N.; Watanabe, S.N.; Yoshikawa, K. Does DNA Exert an Active Role in Generating Cell-Sized Spheres in an Aqueous Solution with a Crowding Binary Polymer? Life 2015, 5, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Sakuta, H.; Fujita, F.; Hamada, T.; Hayashi, M.; Takiguchi, K.; Tsumoto, K.; Yoshikawa, K. Self-Emergent Protocells Generated in an Aqueous Solution with Binary Macromolecules through Liquid-Liquid Phase Separation. ChemBioChem 2020, 21, 3323–3328. [Google Scholar] [CrossRef]
- Tsumoto, K.; Sakuta, H.; Takiguchi, K.; Yoshikawa, K. Nonspecific Characteristics of Macromolecules Create Specific Effects in Living Cells. Biophys. Rev. 2020, 12, 425–434. [Google Scholar] [CrossRef]
- Booth, R.; Qiao, Y.; Li, M.; Mann, S. Spatial Positioning and Chemical Coupling in Coacervate-in-Proteinosome Protocells. Angew. Chem. Int. Ed. 2019, 58, 9120–9124. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Li, M.; Patil, A.J.; Drinkwater, B.W.; Mann, S. Artificial Morphogen-Mediated Differentiation in Synthetic Protocells. Nat. Commun. 2019, 10, 3321. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, P.; Tian, L. Spatiotemporal Organization of Coacervate Microdroplets. Curr. Opin. Colloid Interface Sci. 2021, 52, 101420. [Google Scholar] [CrossRef]
- Stano, P. Minimal Cells: Relevance and Interplay of Physical and Biochemical Factors. Biotechnol. J. 2011, 6, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Altamura, E.; Carrara, P.; D’Angelo, F.; Mavelli, F.; Stano, P. Extrinsic Stochastic Factors (Solute Partition) in Gene Expression inside Lipid Vesicles and Lipid-Stabilized Water-in-Oil Droplets: A Review. Synth. Biol. 2018, 3, ysy011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimokawa, N.; Hamada, T. Physical Concept to Explain the Regulation of Lipid Membrane Phase Separation under Isothermal Conditions. Life 2023, 13, 1105. [Google Scholar] [CrossRef] [PubMed]
- Miele, Y.; Holló, G.; Lagzi, I.; Rossi, F. Shape Deformation, Budding and Division of Giant Vesicles and Artificial Cells: A Review. Life 2022, 12, 841. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, M.; Toyota, T.; Suzuki, K.; Sugawara, T. Evolution of Proliferative Model Protocells Highly Responsive to the Environment. Life 2022, 12, 1635. [Google Scholar] [CrossRef]
- Hirata, Y.; Matsuo, M.; Kurihara, K.; Suzuki, K.; Nonaka, S.; Sugawara, T. Colocalization Analysis of Lipo-Deoxyribozyme Consisting of DNA and Protic Catalysts in a Vesicle-Based Protocellular Membrane Investigated by Confocal Microscopy. Life 2021, 11, 1364. [Google Scholar] [CrossRef]
- Watanabe, C.; Yanagisawa, M. Evaporation Patterns of Dextran–Poly(Ethylene Glycol) Droplets with Changes in Wettability and Compatibility. Life 2022, 12, 373. [Google Scholar] [CrossRef]
- Lira, R.B.; Willersinn, J.; Schmidt, B.V.K.J.; Dimova, R. Selective Partitioning of (Biomacro)Molecules in the Crowded Environment of Double-Hydrophilic Block Copolymers. Macromolecules 2020, 53, 10179–10188. [Google Scholar] [CrossRef]
- Rowland, A.T.; Keating, C.D. Formation and Properties of Liposome-Stabilized All-Aqueous Emulsions Based on PEG/Dextran, PEG/Ficoll, and PEG/Sulfate Aqueous Biphasic Systems. Soft Matter 2021, 17, 3688–3699. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stano, P.; Tsumoto, K. Membranous and Membraneless Interfaces—Origins of Artificial Cellular Complexity. Life 2023, 13, 1594. https://doi.org/10.3390/life13071594
Stano P, Tsumoto K. Membranous and Membraneless Interfaces—Origins of Artificial Cellular Complexity. Life. 2023; 13(7):1594. https://doi.org/10.3390/life13071594
Chicago/Turabian StyleStano, Pasquale, and Kanta Tsumoto. 2023. "Membranous and Membraneless Interfaces—Origins of Artificial Cellular Complexity" Life 13, no. 7: 1594. https://doi.org/10.3390/life13071594
APA StyleStano, P., & Tsumoto, K. (2023). Membranous and Membraneless Interfaces—Origins of Artificial Cellular Complexity. Life, 13(7), 1594. https://doi.org/10.3390/life13071594