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Abstract: PIM-1 kinase is a serine-threonine phosphorylating enzyme with implications in multiple
types of malignancies, including prostate, breast, and blood cancers. Developing better search
methodologies for PIM-1 kinase inhibitors may be a good strategy to speed up the discovery of an
oncological drug approved for targeting this specific kinase. Computer-aided screening methods are
promising approaches for the discovery of novel therapeutics, although certain limitations should
be addressed. A frequent omission that is encountered in molecular docking is the lack of proper
implementation of scoring functions and algorithms on the post-docking results, which usually
alters the outcome of the virtual screening. The current study suggests a method for post-processing
docking results, expressed either as binding affinity or score, that considers different binding modes
of known inhibitors to the studied targets while making use of in vitro data, where available. The
docking protocol successfully discriminated between known PIM-1 kinase inhibitors and decoy
molecules, although binding energies alone were not sufficient to ensure a successful prediction.
Logistic regression models were trained to predict the probability of PIM-1 kinase inhibitory activity
based on binding energies and the presence of interactions with identified key amino acid residues.
The selected model showed 80.9% true positive and 81.4% true negative rates. The discussed
approach can be further applied in large-scale molecular docking campaigns to increase hit discovery
success rates.

Keywords: PIM-1 kinase; PIM-1 inhibitors; protein kinase inhibitors; virtual screening; predictive

score; amino acid interactions; logistic regression; data clustering

1. Introduction

Oncological targets are nowadays one of the most studied topics in health sciences,
in hope of better identifying and responding to most types of cancerous diseases existing
worldwide [1]. One of the most studied classes of oncological targets is represented by
protein kinases, as these enzymes regulate crucial processes in the tumoral cell cycle, prolif-
eration, and drug-resistance mechanisms [2]. Such an interesting intracellular signaling
enzyme emerging as a suitable drug target in recent years is PIM-1, a serine-threonine
kinase encoded by the oncogene with the same name. Originally discovered as a proviral
integration site for the Moloney murine leukemia virus, hence its name, PIM kinase has
multiple implications in tumoral formation and growth, regulating processes such as cell
survival and proliferation, cell cycle, and chemoresistance [3]. Its implications in several
types of cancers, such as prostate cancer, breast cancer, and colorectal cancer, as well as acute
myeloid leukemia and other hematologic malignancies, make it a promising oncologic drug
target if its activity could be inhibited by small-molecule drugs [4]. Unfortunately, currently
there are as yet no approved PIM-1 inhibitors as a therapy for these malignancies, even
though various compounds have been commercialized as in vitro inhibitors for research
use, many being implicated in preclinical studies [5].
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The traditional path of drug discovery for such a target involves starting with com-
putational studies, often leading to large virtual screening experiments on hundreds or
thousands of compounds, many of which will most probably not succeed as approved
drugs [6]. However, many biologists, chemists, or biochemists tend to not rely on the pre-
dictive power of virtual screening studies, keeping in mind that in silico studies only point
the direction for subsequent, more expensive in vitro and in cellulo experiments. Although
docking studies are an empirically validated method for the prediction of pharmacological
activity, frequently being able to show a molecule’s potential to exhibit inhibitory activity
over a certain drug target, they cannot explain with sufficient consistency the “real” in-
hibitory activity displayed later in enzymatic assays or cell culture experiments [7]. Usually,
the proportionality between the predicted score or binding energy and in vitro ICsy or
ECs is not very strong. This aspect is, most of the time, related to the complex cellular
mechanisms such as cell signaling and drug metabolism, which may in turn even affect
the drug candidate’s bioavailability at the site of action, so they should be identified and
taken into account when corroborating computational studies’ results with those of in vitro
experiments [8].

However, one other impactful source of error may come from the docking study
algorithm, as these types of experiments usually follow a general docking method used for
most drug targets, which is then applied as such for screening different kinds of molecules
against one specific target. Depending on the complexity of the docking method and
software used, simulation results, frequently expressed as binding energy, binding affinity,
or docking score can be more or less correlated with in vitro results such as ICs5p or ECs,
although molecular docking usually identifies several key interactions between a drug
candidate and the targeted protein.

Our approach to virtual screening studies follows the principle that proteins with
different structures require different methods of transformation and interpretation of the
docking results, based on certain features, such as specific amino acids or protein regions.

Following the same principle, several cheminformatics descriptors, known as inter-
action fingerprints, were introduced as early as 2004, when Deng et al. described the use
of structural interaction fingerprints (SIFt) for clustering and characterization of kinase
inhibitor complexes [9]. Since then, various methods have been developed and effectively
utilized to convert interactions observed in 3D structural data into binary fingerprints for a
wide range of applications [10]. These interaction fingerprints are usually binary vectors,
or strings, coding in various ways interactions between the ligand and the amino acid
residues of the targeted protein, estimated from the docking study [11].

The current study focuses on exploring different interactions and binding modes ob-
served through molecular docking studies between a set of known, in vitro-tested inhibitors
and the target enzyme, PIM-1 kinase.

For this purpose, we considered analyzing binding modalities of different known PIM-
1 kinase inhibitors, comparing them to a decoy set of compounds not specifically targeting
the protein kinase, by looking at each interaction between our sets of molecules and all of
the residues involved in every docking simulation for those compounds. Our hypothesis
suggested that some of the analyzed compounds would better fit into a predictive pattern
than others, based on their chemical structure. As such, adjusting the docking result,
expressed as binding energy, by a certain correction factor would yield a better prediction
when estimating potential inhibitory activity than the actual binding energy displayed by
the docking software.

2. Materials and Methods
2.1. Creating the Compounds Dataset

The selection of compounds to be studied started from a dataset downloaded from
the ChEMBL database [12,13], consisting of 3067 ICs activities testing inhibition of the
human PIM-1 kinase target. Downloaded data were managed with Microsoft Excel 2019
and OSIRIS DataWarrior 5.5.0 software [14]. Data preparation consisted of filtering for
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duplicates, inexact ICsg values, and selection of ICs results expressed only in pM units (or
conversion where possible), excluding inorganic combinations and compounds containing
metal atoms. The cleaned dataset resulted in 2551 compounds, representing the final
inhibitor test set. The chemical structures and data regarding tested inhibitors are available
in Supplementary Materials, Table S1.

Another set of randomly selected compounds, termed the “decoy” set, was generated
for comparison of binding interactions. The ChEMBL database was downloaded as a 6-part
.sdf file, then each subset was filtered for certain chemical descriptor values matching the
inhibitor set for physicochemical similarity (filter properties used are detailed in Table 1).
Starting from approximately 2.4 million compounds, a set of approximately 16,000 com-
pounds was selected. After cleaning the set for compounds with no metal atoms, an equal
number of compounds was randomly selected from each subset using the Diverse Cluster
function of Data Warrior software (Version 5.5.0), in order to obtain structural diversity in
the decoy set. The final decoy set had a 1:1 ratio to the PIM-1 kinase inhibitors set.

Table 1. Chemical descriptors used as filter values for decoy set selection (representing range values
of the inhibitor set).

Chemical Descriptor Minimum Value Maximum Value
Molecular Weight (MW) 162.14 700.11
Total Surface Area (TSA) 178.380 354.020
logP -1.7191 7.1457
No. of Hydrogen Bond Acceptors (HBA) 2 13
No. of Hydrogen Bond Donors (HBD) 0 8

2.2. Molecular Docking

Molecular docking simulations were performed to predict the binding affinities and
molecular interactions for both PIM-1 kinase inhibitor and decoy sets. Crystal structure of
human PIM-1 kinase in complex with a [1,2,4]triazolo [4,3-b]pyridazine-based inhibitor
was retrieved from the RCSB PDB database (PDB ID: 3 bgq, 2.00 A resolution [15]). The
target structure was prepared for docking with YASARA Structure [16] by adding missing
hydrogens according to the physiological pH (7.4), optimizing the hydrogen bond net-
work, correcting structural errors, and energy minimization of the protein-ligand complex
using the NOVA2 forcefield. Moreover, all water molecules were removed, except for
one structural water that forms a hydrogen bond network between the ligand and Glu89
within the «C-helix. The co-crystallized ligand was removed and re-docked in the bind-
ing pocket for validating the docking protocol. The predicted pose of the experimental
ligand was superposed on the original conformation to calculate the root mean square
deviation (RMSD).

Ligand virtual libraries containing structures of PIM-1 inhibitors and decoys were
prepared with DataWarrior by generating the 3D structures, energy minimization using the
MMFF94s+ forcefield, and protonation according to the physiological pH. AutoDock Vina
v.1.1.2 [17] and AutoDock4 (Lamarckian Genetic Algorithm) [18] algorithms were used
within YASARA for the docking experiments, with a search space of 25 x 25 x 25 A that
was centered around the co-crystallized ligand within the active site. A total of 20 docking
runs were executed for each ligand. The two experiments were performed in order to
establish which algorithm is more suitable for predicting the affinity and binding pose of
PIM-1 inhibitors.

The docking results were retrieved as binding energies (AG, kcal/mol) and interacting
residues for the best binding pose of each ligand. The docking poses and predicted
molecular interactions between the target protein and ligands were analyzed using BIOVIA
Discovery Studio Visualizer (BIOVIA, Discovery Studio Visualizer, Version 17.2.0, Dassault
Systemes, 2016, San Diego, CA, USA).
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2.3. Ligand Interactions Analysis

Docking results for both inhibitor and decoy sets were exported and interpreted in
Microsoft Excel and SPSS Statistics 26.0 software [19]. Bulk results, expressed in .txt format,
consisted of binding energy (in kcal/mol) and the name of every interacting amino acid
residue for each ligand. For further analysis, interactions of each docked ligand with every
participating amino acid residue were coded as a binary result for each of the interacting
residues of the protein, with 1 marking the presence, and 0 representing an absence of
interaction with that residue, respectively.

2.4. Logistic Regression

The binary logistic regression method was used in SPSS to optimize the results gener-
ated after molecular docking. A set of new variables was introduced as an indicator of a
strong or weak inhibitor of PIM-1 kinase. The threshold for separating the two classes was
represented by the negative log of the ICsy value expressed in molar units (pICs), based
on the following formula:

Class N = 0 if pICsp <N,

Class N =1if pIC5p > N,

where N € (4, 7).
The binary logistic regression was performed using as a dependent variable each

class N variable. The model was constructed by selecting the covariates using the forward
Wald method.

2.5. Data Clustering by Residue Interaction

In order to obtain more information about the different binding modalities of the
ligands with the target protein, we performed a classification analysis based on a two-
step clustering method, suitable for datasets such as the current one with a large number
of binary data. The clustering analysis was perfomed in order to identify groups of
compounds that bind similarly to the protein based on their interactions with amino
acid residues. This approach helps uncover similarities and differences in the binding
profiles of certain ligands and can aid in understanding structure—-activity relationships
and identifying compounds with similar interaction patterns.

Using SPSS 26.0.0.0 software, we conducted a two-step clustering analysis of the
interaction results on the dataset of 5080 cases (inhibitor and decoy molecules) with the
50 binary asymmetrical ordinal variables (presence vs. absence of interaction with every
amino acid residue). After randomly arranging the cases in the data table for minimization
of order effects, clustering classification analysis was performed using Schwartz’s Bayesian
information criterion (BIC) and log-likelihood method for measuring the distance between
cases. The 50 variables representing interacting residues were set as categorical variables
and the maximum number of clusters possible was determined automatically and set to 15.

In other words, for this analysis, every case (compound) was treated like a binary
vector coding interactions with every participating amino acid residue of the protein. First,
distances between each case were calculated based on similarity and dissimilarity between
vectors, pairwise. Here, the log-likelihood method was used to measure the dissimilarity
between cases, as it is known to be suitable for categorical binary variables such as the
presence or absence of interactions with a residue. Afterward, the hierarchical clustering
algorithm selected for this analysis started from individual clusters and iteratively merged
two of the closest clusters. At each step, it identified the two closest clusters based on
the log-likelihood distances. The choice for merging the linkage criteria was calculated
using Ward’s method, which minimizes the increase in variance when merging cases. Then,
the dissimilarity matrix was recalculated for the newly-formed cluster and the remaining
clusters based on the same log-likelihood distances. These steps were repeated until all cases
were merged into the number of clusters calculated. In this case, the Bayesian information
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criterion, a statistical criterion for clustering analysis that balances the goodness of fit of
the clustering model with its complexity, established the optimum number of clusters at 2.
More information about the difference between clustering analysis methods can be found
in dedicated statistical works [10].

2.6. Control Docking Study

As a final analysis, we performed a second screening study on the two groups of
2546 inhibitors and 2534 decoys in order to check the accuracy of the docking algorithm
used. Therefore, using Yasara v.22.5.22 software, we performed the docking study again,
with exactly the same settings as before, except for the docking algorithm used, which
was this time selected as Autodock [18], instead of VINA, the only other computational
approach available in Yasara docking software for calculating binding energy. Ligands
and molecules were used as prepared for the first study, with the gridbox and all other
preparative operations kept identical. We then performed correlation and regression
analysis on the results, for comparison with docking energy values calculated by VINA.

3. Results
3.1. Datasets Generation
3.1.1. PIM-1 Kinase Inhibitors
From our initial refined database of 2551, 5 compounds could not be properly docked
due to unknown structural properties; therefore, the inhibitor set finally consisted of

2546 compounds tested for PIM-1 kinase activity. Descriptive statistics of the chemical
descriptors for this set are displayed in Table 2.

Table 2. Descriptive statistics of chemical descriptors for the inhibitor set (n = 2546).

Descriptor Minimum Maximum Mean Std. Deviation Variance

Total_Molweight 162.14 700.11 401.34 74.81 5597.09
cLogP —1.719 7.146 2.830 1.124 1.263
H_Acceptors 2 13 6.36 1.54 2.36
H_Donors 0 6 2.15 0.91 0.83

Total_Surface_Area 121.65 481.58 290.52 50.35 2534.95
Relative_PSA 0.063 0.639 0.265 0.066 0.004
Molecular_Flexibility 0 0.617 0.323 0.080 0.006
Molecular_Complexity 0.594 1.130 0.885 0.050 0.003
Non_CH_Atoms 3 14 7.79 191 3.66
Rotatable_Bonds 0 12 4.03 1.74 3.03

3.1.2. Decoy Set

After reuniting the 6 selected subsets of ChREMBL compounds and cleaning the dataset,
the decoy set finally consisted of 2534 structurally diverse compounds. Descriptive statistics
of the chemical descriptors for this set are displayed in Table 3.

Table 3. Descriptive statistics of chemical descriptors for the decoy set (n = 2534).

Descriptor Minimum Maximum Mean Std. Deviation Variance

Total_Molweight 162.14 698.84 260.50 87.64 7680.76
cLogP -1.714 7.091 2.102 1.770 3.135
H_Acceptors 2 13 3.24 1.62 2.62
H_Donors 0 7 0.93 1.11 1.23

Total_Surface_Area 43.46 590.54 192.76 69.67 4853.85
Relative_PSA —0.053 1.000 0.233 0.143 0.020
Molecular_Flexibility 0 0.913 0.449 0.219 0.048
Molecular_Complexity 0 1.079 0.648 0.172 0.029
Non_C_H_Atoms 2 16 4.00 2.01 4.04
Rotatable_Bonds 0 37 4.05 4.69 21.97
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3.2. Physicochemical Descriptor Analysis

As the two sets compared consisted of different types of molecules, the distributions
of their chemical descriptors did not match exactly. However, by filtering the decoy set
only for values between the range values of descriptors in Table 1, it was ensured that the
untested molecules were similar in regard to physicochemical properties to those of the
inhibitor set. For comparison, distribution graphs of these chemical descriptor values for
the two sets are presented below, in Figures 1-5.

Distribution of compounds from decoy (0) and inhibitor (1) sets

0 1
800 800
w600 600
£ 5
2 2
= g
S 2
3
g o 400 5
2 Es
200 200
250 200 150 100 50 0 50 100 150 200 250
Figure 1. Comparison between the distribution of molecular weight values of the decoy (blue) and
inhibitor (red) sets.
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Figure 2. Comparison between the distribution of clogP values of the decoy (blue) and inhibitor
(red) sets.
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Figure 3. Comparison between the distribution of total surface area descriptor values of the decoy
(blue) and inhibitor (red) sets.
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Figure 4. Comparison between the distribution of the number of H acceptors descriptor values of the
decoy (blue) and inhibitor (red) sets.
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Distribution of compounds from decoy (0) and inhibitor (1) sets
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Figure 5. Comparison between the distribution of the number of H donors descriptor values of the
decoy (blue) and inhibitor (red) sets.

Regarding the molecular weight descriptor, it can be observed that the inhibitor
displays a slightly higher mean (401.34) compared with the decoy set (260.50), suggesting
that the compounds in the inhibitor set tend to have larger molecular weights on average,
as they were designed specifically to fill the binding pocket of the targeted protein.

In terms of octanol/water partition coefficient, the inhibitor set has a slightly higher
mean cLogP value (2.831) compared with the decoy set (2.102), indicating that the com-
pounds in the inhibitor set may have slightly higher hydrophobicity.

The inhibitor set has a higher mean surface area (290.523) compared with the decoy
set (192.756), suggesting that the PIM-1 inhibitors set may have larger and more complex
molecular structures.

In regard to hydrogen bond formation capability, the inhibitor set has a higher mean
for both descriptors, HBA and HBD, compared with the decoy set, indicating a higher
potential for hydrogen bonding interactions in the inhibitor set compounds.

As observable from the comparative analyses, the two sets do not share similar
distributions of the previously mentioned physicochemical descriptor values. However,
this aspect is to be expected, bearing in mind the more diverse chemical space represented
by the decoy group, compared with the more specific, pocket-targeted molecules of the
inhibitors group.

3.3. Molecular Docking

The molecular docking protocols were first validated by superposing the predicted
conformation of the co-crystallized ligand onto the experimentally determined pose. The
calculated RMSD value after superposition was 0.2197 A for AutoDock Vina, indicating
good accuracy in predicting the correct binding pose (Figure 6A). On the other hand,
the RMSD value after docking with AutoDock4 was 2.0193 A, showing a less reliable
binding pose prediction. In the case of AutoDock4, there was a high variation in the
orientation of the cyclohexyl substructure, which engaged in two more interactions with
pocket residues (Leu44 and Leul74), the predicted pose having also a higher torsion.
Therefore, we considered that, in this specific case, AutoDock Vina was more suitable for
correctly predicting the ligand conformation and interactions.
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Figure 6. (A)—superposition of the predicted binding poses (AutoDock Vina—blue,

AutoDock4—orange) of the co-crystallized triazolo-pyridazine inhibitor on the experimental confor-
mation (green); (B)—superposition of the binding site conformation of the inhibitor-bound PIM-1
(blue) on the AMP-PNP-bound enzyme (green); (C)—2D diagram of molecular interactions between
the co-crystallized inhibitor and PIM-1 kinase; (D)—2D diagram of molecular interactions between
AMP-PNP and PIM-1 kinase.

We further superposed the binding pocket of PIM-1 in complex with an inhibitor
on the pocket conformation of the same kinase in complex with AMP-PNP (adenylyl-
imidodiphosphate), a nonhydrolyzable ATP analog, after preparation in identical condi-
tions (PDB ID: 1yxt [20]), to highlight the differences in amino acid residues orientation
and the similarities between the two ligands regarding the interactions with the active
site (Figure 6B). Interestingly, both PIM-1 structures have the «Cj, architecture (a salt
bridge can be formed between the charged Lys67 within the 33-strand and Glu89 within
the aC-helix) and are in active DFG;j,, conformation, since Phel87 is packed under the
aC-helix. The major difference between the two binding site conformations is the fact that
in the AMP-PNP-bound protein, Phe49, is displaced from the cavity by the y-phosphate
moiety of AMP-PNP. In the protein-inhibitor complex, Phe49 adopts an orientation similar
to that observed in the apo structure of PIM-1. The triazolo-pyridazine scaffold of the
co-crystallized inhibitor binds to the active site in a similar manner to both the «-phosphate
and adenine moieties of AMP-PNP, by forming electrostatic interactions with Lys67 (hy-
drogen bond vs. salt bridge), a water hydrogen bond with a conserved structural water
molecule, and nonpolar pi-sigma interactions with a conserved valine (Val52) and Ile185.
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Sensitivity

The trifluoromethyl-phenyl substructure also mimics some of the hydrophobic interactions
between the adenine moiety and the enzyme (e.g., interactions with Ala65, Arg122, Leul74).
Moreover, the cyclohexyl moiety occupies relatively the same space in the binding site as
the ribose moiety and engages only in weak van der Waals interaction with the enzyme
(Figure 6C,D).

A second validation of the docking protocol consisted in evaluating the capacity of the
docking algorithms to discriminate between PIM-1 inhibitors and decoys by building ROC
(receiver operating characteristic) curves and calculating the ROC AUC (area under receiver
operating characteristic curve) values using the predicted binding energies (Figure 7). A
ROC AUC value of 0.932 was obtained for AutoDock Vina, and 0.936 for AutoDock4,
indicating a good separation between positive (PIM-1 inhibitors) and negative (decoys)
ligands based on the molecular docking experiments.

0.8

o
@
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0.49

B o

0.8

(165

Sensitivity

0.4

T T 0.0+ T T T
0.4 06 08 1.0 0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity 1 - Specficity

Figure 7. (A) ROC curve for classifying PIM-1 inhibitor vs. decoy compounds based on predicted
binding energies after docking with AutoDock Vina; (B) ROC curve for classifying PIM-1 inhibitors
vs. decoy compounds based on predicted binding energies after docking with AutoDock4. Dotted
line represents the line of no discrimination (as generated by a random classifier).

After the virtual screening study using AutoDock vina, the docking results displayed
as binding energy values varied overall from —12.77 kcal/mol for the strongest binding
inhibitor to —2.77 kcal/mol for the weakest binding decoy compound. Comparative
descriptive statistics for binding energy values between the two docked sets can be found
in Table 4.

Table 4. Descriptive statistics of docking results expressed as binding energy values (—kcal /mol)
for the two sets after docking with AutoDock Vina. For easier interpretation, energies have been
converted to absolute values.

Count

Mean Median Min. Max. Range Std. Variance

Deviation

Decoy set

Inhibitor set

2534
2546

—6.8369 —6.8385 —12.0690 —2.7770 9.2920 1.7462 3.0492
—9.8245 —9.9535 —12.7760 —5.6140 7.1620 0.9527 0.9076

As expected, calculated binding affinities were on average lower for the compounds in
the decoy set. However, the distribution of the data suggests that some of the compounds
in the decoy set are seen as potent inhibitors by the docking algorithm, prompting further
investigation and the necessity of docking score correction. The distribution of docking
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scores expressed as absolute values of the binding energy results for both compared sets is
displayed in Figure 8.
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Figure 8. Comparison between the distribution of binding energy, expressed as absolute values, for
the decoy (blue) and inhibitor (red) sets, as calculated by Vina algorithm.

3.4. Interaction Analysis

After transforming the presence and absence of interactions with all 50 participating
amino acid residues of the protein in the docking process, interactions were observed as a
fingerprint for each compound, which the current research analyzed to identify patterns
that could orient a medicinal chemist to design a compound that interacts with the most
efficient residues for potent inhibition activity against the target protein.

Table 5 presents the frequency of interactions between the target protein and ligands
from the decoy and inhibitor sets, respectively. Amino acid residues are listed along
with the number and percentage of interactions observed in each set. Residues under-
lined in the table indicate those that predominantly interact with compounds from the
decoy set rather than the inhibitor set, representing residues to be avoided in an efficient
inhibitor interaction.

The results highlight several key findings. For instance, I1e185 and Val52 exhibited
interactions in both the decoy and inhibitor sets, with nearly 100% prevalence in the
inhibitor set, as opposed to residues such as Gly47 and Gly48, which had a significantly
higher frequency of interactions with compounds from the decoy set compared with the
inhibitor set.

Other residues such as Leul74, Phe49, and Asp186 showed a relatively high occurrence
of interactions in both sets, suggesting their involvement in binding interactions regardless
of the compound type. On the other hand, residues like Pro123 demonstrated a relatively
higher proportion of interactions with compounds from the decoy set, indicating their
potential specificity towards this set.

These findings provide valuable insights into the differential interactions between the
target protein and ligands from the decoy and inhibitor sets. The observed variations in
interaction frequencies across residues highlight their potential importance in distinguish-
ing between different types of compounds and can aid in understanding the underlying
binding mechanisms.
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Table 5. Frequency of interactions between the target protein and ligands from the decoy and the

inhibitor set, respectively. Underlined residues indicate residues that interact predominantly with

compounds from the decoy set rather than the inhibitor set.

Residue Decoy Set Inhibitor Set Residue Decoy Set Inhibitor Set
(n = 2534) (n = 2546) (n = 2534) (n = 2546)
Ile185 2460 (97.08%) 2546 (100.00%) Gly47 59 (2.33%) 68 (2.67%)
Val52 2457 (96.96%) 2544 (99.92%) Gly48 112 (4.42%) 68 (2.67%)
Leul74 2369 (93.49%) 2538 (99.69%) Asp167 100 (3.95%) 54 (2.12%)
Phe49 2385 (94.12%) 2536 (99.61%) Ser54 14 (0.55%) 40 (1.57%)
Asp186 2438 (96.21%) 2523 (99.10%) Ser189 82 (3.24%) 22 (0.86%)
Ala65 2126 (83.90%) 2488 (97.72%) Pro125 9 (0.36%) 21 (0.82%)
Lys67 2344 (92.50%) 2484 (97.56%) Glu124 9 (0.36%) 20 (0.79%)
HOH334 2200 (86.82%) 2475 (97.21%) Asp202 70 (2.76%) 18 (0.71%)
Leu44 1659 (65.47%) 2433 (95.56%) Thr204 57 (2.25%) 17 (0.67%)
Leul20 2113 (83.39%) 2321 (91.16%) Glul35 3(0.12%) 11 (0.43%)
Argl22 1370 (54.06%) 2275 (89.36%) Gly203 54 (2.13%) 10 (0.39%)
Val126 1030 (40.65%) 2211 (86.84%) Leul77 3 (0.12%) 7 (0.27%)
Glul71 1490 (58.80%) 2167 (85.11%) Gly188 56 (2.21%) 7 (0.27%)
Asp128 1165 (45.97%) 2101 (82.52%) Ser75 24 (0.95%) 5 (0.20%)
Gly45 1100 (43.41%) 2012 (79.03%) Arg73 0 (0.00%) 2 (0.08%)
lle104 1868 (73.72%) 1680 (65.99%) Pro42 0 (0.00%) 1 (0.04%)
Asn172 1539 (60.73%) 1642 (64.49%) Leu43 0 (0.00%) 1 (0.04%)
Glul21 1304 (51.46%) 1586 (62.29%) Val69 0 (0.00%) 1 (0.04%)
Pro123 776 (30.62%) 1417 (55.66%) Ile74 0 (0.00%) 1 (0.04%)
GIn127 358 (14.13%) 1068 (41.95%) Pro87 0 (0.00%) 1 (0.04%)
Asp131 196 (7.73%) 965 (37.90%) Arg205 4(0.16%) 1 (0.04%)
Lys169 628 (24.78%) 836 (32.84%) Tle66 1(0.04%) 0 (0.00%)
Phe130 266 (10.50%) 572 (22.47%) Tle173 1(0.04%) 0 (0.00%)
Glus9 442 (17.44%) 463 (18.19%) Lys183 1(0.04%) 0 (0.00%)
Ser46 190 (7.50%) 430 (16.89%) Phel87 2 (0.08%) 0 (0.00%)
3.5. Binary Logistic Regression Analysis
The binary regression analysis returned several models depending on the classification
cutoff value. For each model, the true positive and true negative rates are presented in
Table 6 as indicators of the regression performance.
Table 6. The performance of models as a function of the cutoff value.
Depefndent Cox and Snell R Square True Positive Rate True Negative Rate Overall
Variable
89.1% 85.9% o
Class 4 0.543 (2264/2542) (2180/2538) 87.5%
80.9% 81.4% o
Class 5 0.406 (1724/2132) (2400/2948) 81.2%
73.6 % 82.2% o
Class 6 0.364 (1343/1824) (2678,/3256) 79.2%
56.4% 87.5% o
Class 7 0.305 (771/1366) (3248/3714) 79.1%

When the regression was performed using the Class 5 variable, the obtained equa-
tion contained the binding energy resulting from the docking study and a correction for
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three amino acids and the water molecule HOH334. The probability of a compound having
a pICsg value over 5 is described by the following formula:

1
Pilasss = m ’

where X5 is

X5 =0.9228 x BindingEnergy + 0.5394 x Gly45 + 0.3830 x Prol23 + 0.761 x Asp131 + 0.7555 x HOH — 9.8659

The equation indicates that the calculated binding energy was overestimated and the
interactions with Gly45, Pro123, and Asp131 were under-evaluated. If a compound has no
contact with any of these three amino acids and the water molecule, the binding energy has
to be over 10.691 in order to have a pICsg value over 5. If the docking study indicated that a
ligand interacted with all four residues, the threshold of the binding energy was 8.048. The
sensitivity of the model is 0.809, but it can be increased to 0.90 if the cutoff of the calculated
Pclass5 value is lowered to 0.33.

When the regression was performed using the Class 6 variable, the obtained equa-
tion contained the binding energy resulting from the docking study and a correction for
seven amino acids and the water molecule. This equation is similar to the equation for
the Pas5 value with the addition of the interactions with Ala65, Val126, Glul71, and
Asnl172. The probability of a compound having a pICs value over 6 is described by the
following formula:

1

Pllasse = 1+e X6’

where X6 is

X6 =0.7696 x BindingEnergy + 0.6171 x Gly45 + 0.575 x Ala65 + 0.1787 x

Pro123 + 0.322 x Val126 + 0.7831 x Asp131 + 0.4953 x Glul71 — 0.2939 x Asn172 + 0.8788 x HOH — 9.9739

This model slightly reduced the number of false positive hits but also reduced the
sensitivity to 0.736. The sensitivity can be elevated to 0.90 if the cutoff for the P, Value
is lowered to 0.29 with a corresponding specificity of 0.72. Considering that the use of
docking studies is mainly for the discovery of new potential inhibitors of PIM-1, the Class
5 cutoff seems to be a better choice to reduce the risk of losing potent inhibitors.

3.6. Clustering Analysis of Interaction Data

Based on the interaction patterns of each compound with the target protein, the two-
step clustering analysis classified the 5080 compounds into two clusters, with the first
comprised of 2504 cases (49.3%) and the second of 2576 (50.7%). This corresponds roughly
to the two subsets analyzed, decoy compounds and inhibitors, respectively, suggesting the
clustering analysis can discriminate well between the two groups. The silhouette measure
for the obtained clusters had a value of 0.2392, which suggests that the clustering solution
has a moderate level of cohesion and separation, indicating that the cases are somewhat
well-matched to their respective cluster and have a reasonable degree of separation from
cases in the other cluster. Results are graphically represented in Figure 9A,B. Detailed
information about the predictive importance of all 50 interacting residues can be found in
Supplementary Materials, Table S1.
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Figure 9. (A) Model summary for the two-step clustering analysis of the interactions between the
inhibitors and decoy ligands with the participating amino acid residues of the docked protein PIM-1
kinase. Silhouette measure of cohesion and separation indicates a fair classification into the two
clusters; (B) Importance of top 15 variables in separating cases into the two clusters. The presence of
an interaction with residues with greater importance (upper rows) has a higher impact on deciding
in which cluster a compound belongs than those with lower importance.

From these results we can conclude that residues with higher importance values,
such as Ile104, Glu121, Argl122, and Pro123, are key contributors to the clustering solution,
having an important role in inhibiting the activity of PIM-1 kinase. Other residues with
relatively high importance values, such as Val126, Leu120, Leu44, and Ala65, also exhibit
significant relevance to the efficient binding of the protein. A further detailed diagram of
the clustering analysis is available in the Supplementary Materials, Figure S1.

3.7. Case Study of Predicted Binding Interactions for True Positive, False Positive, False Negative,
and True Negative Ligands

We further chose to discuss the predicted interactions for a set of four selected ligands
(Table 7) in order to investigate the binding characteristics that yielded both true and
false predictions based on the Class 5 regression model. Firstly, we analyzed the binding
mode of a true positive (TP, CHEMBL1952126), which is structurally similar to the co-
crystallized inhibitor: the [1,2,4]triazolo[4,3-b]pyridazine scaffold in the co-crystallized
inhibitor is replaced by a [1,2,3]triazolo[4,5-b]pyridine scaffold, the cyclohexyl substructure
is replaced by an N-(7-azaspiro[3.5]nonan-2-yl)methyl moiety, while the trifluoromethyl-
phenyl fragment is replaced by trifluoromethoxy-phenyl. As expected, the true positive
ligand interacted with PIM-1 kinase in a similar fashion to the co-crystallized ligand, by
forming a hydrogen bond with Lys67, a water hydrogen bond with HOH334, and pi-sigma
interactions with Val52 and Ile185. The replacement of the cyclohexane fragment with
the N-methylated and positively charged azaspiro[3.5]nonane moiety yielded interactions
based on attractive charges with Asp128 and Asp131, while the trifluoromethoxy-phenyl
moiety engaged in nonpolar pi-alkyl interactions with Ala65 and Leul74. The TP ligand
also made van der Waals contacts with Gly45 and Pro123 (Figures 10A and 11A). Therefore,
the TP ligand satisfied the interactions with the three residues and water molecule identified
as good predictors via the logistic regression.
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Table 7. ChEMBL IDs, experimental potencies, and predicted variables for the selected ligands.

Binding Energy Contacts at All
Category ChEMBL ID pICs0 (M) (kcal/mol) P (Class 5) Four Sites
TP CHEMBL1952126 8.398 —10.751 0.9237 yes
FP CHEMBL4111268 4.357 —10.879 0.9316 yes
FN CHEMBL1782530 9.000 —7.825 0.1313 no
™N CHEMBL4086292 1.261 —8.362 0.2985 no

TP—true positive; FP—false positive; FN—false negative; TN—true negative; P—probability of being active.

Figure 10. Predicted conformations of selected ligands after docking into PIM-1 active site. (A) Pre-
dicted conformation of the TP ligand; (B) predicted conformation of the FP ligand; (C) predicted
conformation of the FN ligand; (D) predicted conformation of the TN ligand.

Next, another relatively similar compound to the co-crystallized ligand was chosen
as an example of a false positive (FP) prediction. The FP ligand (N-[4-[(3S,5R)-3-amino-5-
fluoropiperidin-1-yl]pyridin-3-yl]-2-(3-fluoropyridin-2-yl)imidazo[1,5-b]pyridazin-7-amine,
CHEMBL4111268) is based on an imidazo[1,5-b]pyridazine scaffold which did not engage in
polar interactions with either Lys67 or HOH334, forming only a van der Waals contact with
HOH334 and pi-alkyl interactions with Lys67. However, the protonated fluoropyridine—
amine moiety formed a salt bridge with Asp131, while the fluoropyridine substructure
engaged in pi-alkyl interactions with Ala65 and Leul74. Nonetheless, the same ligand
made van der Waals contacts with Gly45 and Pro123 (Figures 10B and 11B). The archi-
tecture of this specific compound prevents a favorable orientation into the binding site,
thus hindering the formation of polar interactions with Lys67 and the conserved water
molecule. However, the high predicted binding affinity (—10.879 kcal/mol) and presence
of any form of interactions with the three residues (Gly45, Pro123, Asp131) and HOH334
led to its incorrect classification as a potent PIM-1 inhibitor.
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Figure 11. Predicted molecular interactions between selected ligands and PIM-1 kinase. (A) Predicted
interactions for the TP ligand; (B) predicted interactions for the FP ligand; (C) predicted interactions
for the FN ligand; (D) predicted interactions for the TN ligand.

An example of a false negative (FN) result is represented by a PIM-1 kinase inhibitor
with an entirely different chemotype (CHEMBL1782530, 7-[(4-aminocyclohexyl)amino]-
5-bromo-1-benzofuran-2-carboxylic acid). The carboxylate moiety formed a salt bridge
with Lys67 and a water hydrogen bond with HOH334, similar to the x-phosphate of
AMP-PNP, and a hydrogen bond with Asp186. Moreover, the benzofuran scaffold formed
several nonpolar interactions, such as pi-sigma interactions with Val52 and Ile185, and
pi—pi stacked interactions with Phe49. However, the positively charged 4-aminocyclohexyl
moiety failed to interact through attractive charges with Asp131 due to an unfavorable
orientation of the substructure (Figures 9C and 10C). However, the latter interaction is not
essential for PIM-1 kinase inhibitory activity, as revealed by the crystal structure used in
this study. The erroneous classification of this particular ligand can be attributed to the lack
of contact with Gly45, Pro123, and Asp131, and a relatively low predicted binding affinity
(—7.825).

Lastly, we further examined the predicted interactions between PIM-1 and a true
negative (TN) ligand, which is also a carboxylic acid derivative (CHEMBL4086292, 7-(2-
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carboxyethylamino)-1-cyclopropyl-6-fluoro-8-nitro-4-oxoquinoline-3-carboxylic acid). The
TN ligand is based on a 4-oxoquinoline scaffold and has two carboxylate moieties. The
oxoquinoline derivative formed two water hydrogen bonds with HOH334 but failed to
form a salt bridge with Lys67, showing only weak van der Waals contact with this residue.
However, the second carboxylate moiety interacted with Lys169 through attractive charges,
similar to the y-phosphate of AMP-PNP, but also exhibited an unfavorable acceptor—
acceptor interaction with the same residue. Nonetheless, the main scaffold formed nonpolar
interactions with Val52, I1e185, Ala65, and Leul74, similar to other ligands. Considering
that the predicted binding energy was higher than the values for the majority of potent
inhibitors (—8.362 kcal/mol) and that no contacts were made with Pro123 and Asp131, the
ligand was correctly predicted as inactive.

4. Discussion

Analyzing the two compound sets in their entirety, the difference in terms of chemical
structures between the decoy set and the PIM-1 inhibitors can be easily observed when tak-
ing into account chemical descriptors, as the descriptive data suggest that the compounds
in the inhibitor set have larger molecular weights, higher lipophilicity, increased potential
for hydrogen bonding, larger surface areas, higher complexity and flexibility, and a greater
presence of non-carbon atoms and rotatable bonds compared with the compounds in the
decoy set. This aspect could be further explored in further similar studies, which could
investigate PIM-1 inhibitors compared with other protein kinase inhibitors in order to
observe the differences in interaction between the protein kinase inhibitor classes. For the
current study, the decoy set was intentionally formed to contain molecules that do not
target a specific protein, as this kind of approach is mostly used when training a predictive
model, such as for the probability of being active in this case.

An important aspect to cover is the pharmacophore groups of the inhibitors and their
impact on the binding affinity towards the protein. The majority of decoy compounds
do not possess the pharmacophore groups needed for inducing a stable affinity towards
the binding site of the PIM-1 kinase. Several key features, described further, have been
identified in the literature by various pharmacophore-based screening studies [21-23]. One
of the key pharmacophore groups in PIM-1 kinase inhibitors is the hinge-binding motif,
which typically consists of a hydrogen bond acceptor and a hydrogen bond donor, needed
for interaction with key residues in the kinase’s hinge region. The hydrogen bond acceptor,
often an oxygen or nitrogen atom, forms a hydrogen bond with the backbone amino group
of the hinge residue, while the hydrogen bond donor, such as an amino or hydroxyl group,
interacts with the backbone carbonyl group. These interactions help stabilize the inhibitor
within the kinase active site. Indeed, a quick statistical analysis confirms that 2504 out of the
2546 inhibitors (98.35%) possess at least one hydrogen acceptor and one hydrogen group,
compared with the decoy molecules with only 1321 structures (52.13%). Additionally, a key
feature in PIM-1 kinase inhibitors is the presence of a basic nitrogen atom, which serves as
a pharmacophore for interactions with acidic residues in the kinase active site. This salt
bridge or electrostatic interaction contributes to the binding affinity and specificity of the
inhibitor. In total, 1636 of the inhibitors (64.26%) display at least one basic nitrogen in their
molecule, compared to 894 molecules (35.28%) in the decoy group. Another important
group is the hydrophobic moiety, which enhances the binding affinity of PIM-1 kinase
inhibitors. This hydrophobic group, often an aromatic ring or aliphatic chain, interacts with
hydrophobic residues in the kinase binding pocket, contributing to the overall stability
of the inhibitor and improving selectivity and potency. As expected, 2545 (99.96%) of the
inhibitors possess an aromatic ring in their molecular structure, whereas in the decoy group
aromatic rings were present in only 1415 cases (55.84%). Undoubtedly, these aspects are of
great importance when identifying or designing a PIM-1 kinase inhibitor, as these features
have a direct impact on interaction patterns, conditioning the affinity and stability of the
ligand with the active site of the target protein.
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In order to observe the manner in which the docking algorithm estimates interactions
between the ligands and the targeted protein, we compared the binding energy values of the
Autodock4 docking study with the results obtained using the AutoDock Vina algorithm. In
terms of discriminating between decoys and inhibitors, data suggest that the two docking
algorithms are similar, as indicated by the ROC curve analysis. However, AutoDock4
behaved less successfully in predicting the correct binding pose, also estimating a higher
number of interactions with the binding pocket. Therefore, interaction and regression
analyses were performed only using the data generated by docking with Vina.

Several binary logistic regression models were trained based on binding energies and
interactions with amino acid residues. We further selected a regression equation that used
as dependent variables activity classes derived from a pICsy value of 5 M as a threshold,
which is a consensus for defining relevant biological activity. The model yielded satisfactory
true positive and true negative rates and estimated the probability of PIM-1 inhibitory
activity based on binding energy values, and the presence of interactions with three amino
acid residues (Gly45, Pro123, and Asp131) and the structural water molecule (HOH334).

In terms of interaction patterns, it can be easily concluded that the two identified
clusters correspond to the two binding modalities in which the inhibitors and the decoys
interact with the protein. The cluster separation silhouette value suggests that the clustering
solution captured meaningful patterns in the data, an aspect that was also highlighted by
the regression equation for Class 5 and Class 6, by including amino acid residues with a
high contribution in the cluster classification. One notable residue that stands out is Pro123,
which exhibits one of the highest predictor importance values. Prol23 is particularly
significant as it is part of the hinge region and is specific to PIM-1 kinase, playing a crucial
role in disrupting the formation of one of the two hydrogen bonds typically observed
between the ATP molecule and the hinge regions of other protein kinases [24]. Asp131 and
Gly45, residues also present in Class 5 and 6 equations, appeared to have a lower impact on
cluster formation, with predictor importance values of 0.0025 and 0.02, respectively. This
could be attributed in part to Gly45’s tendency to form weak van der Waals interactions
with most of the ligands (with some exceptions when forming carbon-hydrogen or halogen
interactions), and Asp131’s weak salt-bridge interactions with some ligands. In our study,
we chose to keep the structural water HOH334, as it can mediate hydrogen bonding
between inhibitors and Glu89, a key residue located in the «C-helix. In contrast, other
authors chose to delete all the water molecules within the active site prior to performing
virtual screening [15]. Overall, the data highlight the variability in residue interactions
within the inhibitor set. While some residues show high occurrence and strong interactions,
others exhibit lower frequencies, indicating less prominent or less stable interactions with
the inhibitors. It is important to consider these variations in residue interactions when
analyzing the structural and functional aspects of the protein-ligand interactions, and this
aspect is individually applicable to most of the target proteins.

Nonetheless, it is not about a single key interaction with a certain residue, but rather a
combination of interactions and lack of interactions with certain amino acid residues that
are responsible for good binding of the ligand to the targeted protein, as the current research
attempts to explore. High-throughput screening campaigns rely on visual inspection of
top-scoring ligands for candidate selection and mostly have success rates of approximately
20% on average after experimental validation [25]. The binding energy can be strongly
correlated with the number of heavy atoms and can often prove to be a poor predictor on
its own since the establishment of certain molecular interactions with the target binding
pocket is essential for the desired activity. Therefore, rescoring of molecular docking results
based on predictive models that integrate both docking scores and interactions with key
amino acid residues could potentially speed up the selection of promising drug candidates
and heighten the success rate for hit discovery.

One possible limitation of the current study is the inclusion of a certain amount of
bias in the docking protocol. The optimization steps of the co-crystallized protein-ligand
complex prior to docking eventually impact the screening experiment by favoring certain



Life 2023, 13,1635

19 of 20

chemotypes which resemble the crystal structure of the known inhibitor. In addition, the
regression model could potentially recognize only the predicted strong binders that interact
with the binding site in a similar fashion to the ligands used for training. The inclusion
of one structural water and optimization of the hydrogen positions could be especially
responsible for this outcome. Since the presented docking optimization protocol can be
suitable for high-throughput virtual screening, a strategy for overcoming this limitation
could be considered. Such strategies could imply repeating the screening on a set number of
interesting hit molecules, by performing a more precise docking procedure, using induced-
fit (flexible residues) approaches. Following the induced-fit approach, the investigators
should visually inspect the binding pose of the ligand and decide whether the outcome
warrants a repeated experiment with the exclusion of structural water molecules.

This research suggests current docking methods and virtual screening protocols could
be further improved by making use of the widely available data provided by online
chemical databases in order to better apply and adjust docking protocols and to interpret
the results more deeply, further obtaining richer information about potential hits or leads.

5. Conclusions

The current research may be promising for the statistical identification of certain
chemical structures for which binding-affinity results obtained from docking studies may
be adjusted to better predict the biological activity, depending on which key interacting
residues a ligand binds. By identifying and focusing on these key residues, further in-
vestigations and experimental studies can be conducted to explore their functional and
structural significance in the binding process.

Our findings suggest that these key residues may serve as potential targets for design-
ing compounds with enhanced binding affinity or specificity towards PIM-1 kinase protein.
This approach may be further applied to diverse drug targets, possibly improving current
knowledge about ligand-protein interaction in certain cases.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/1ife13081635/s1, Table S1: Predictor importance for all 50
binary variables representing the participating amino acid residues of the protein and their interaction
with a ligand. Values range between 0 and 1, with 1 representing the highest importance, meaning the
presence of an interaction with the importance of 1 has a very high impact on the clustering solution,
while the interaction or lack of it with a residue with predictor importance close to 0 does not very
much affect the placement of a case into one cluster or the other. Figure S1: Clustering analysis model
view of cluster cells, as generated by SPSS two-step clustering classification analysis, with cluster
center value (left) and relative distributions (right) for the binary value of the respective cell. The
table is continued in the next two pages, with a repetition of the last row for easier reading.
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