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Abstract: Nuclear medicine has acquired a crucial role in the management of patients with neuroen-
docrine neoplasms (NENs) by improving the accuracy of diagnosis and staging as well as their risk
stratification and personalized therapies, including radioligand therapies (RLT). Artificial intelligence
(AI) and radiomics can enable physicians to further improve the overall efficiency and accuracy of
the use of these tools in both diagnostic and therapeutic settings by improving the prediction of
the tumor grade, differential diagnosis from other malignancies, assessment of tumor behavior and
aggressiveness, and prediction of treatment response. This systematic review aims to describe the
state-of-the-art AI and radiomics applications in the molecular imaging of NENs.

Keywords: neuroendocrine tumor; NET; machine learning; nuclear medicine; theragnostics; PET;
DOTA PET; radiomics

1. Introduction

Neuroendocrine neoplasms (NENs) comprise a wide variety of heterogeneous tumors,
originating from the diffuse neuroendocrine system. These tumors are considered rare,
with an incidence of about 3–5 new cases/100,000 inhabitants/year, although new data
from the US Surveillance Epidemiology and End Results Program (SEER) show an increase in
the incidence of the disease of about 520% over the last 32 years (1973–2005), with an annual
rate of 5.8% [1]. This increase in incidence can be partially attributed to the introduction of
new and/or more sophisticated diagnostic tools, such as single-photon emission computed
tomography (SPECT), positron emission tomography (PET) combined with computed
tomography (PET/CT), or magnetic resonance imaging (PET/MRI).

Although ubiquitous, these tumors most frequently affect the gastro-entero-pancreatic
(GEP) tract (33%) and the bronchopulmonary system (25%). The survival of NET depends
on the site and the stage according to the 2022 Tumor, Node, Metastasis (TNM) classification
and the World Health Organization (WHO) histopathological classification, which expresses
both the morphological appearance of the tumor and its proliferative activity in terms of
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the number of mitoses and the proliferation index (by assessing the Ki-67 index and thus
the disease grading) [2,3]. The current WHO classification of neuroendocrine tumors is
given in Table 1. Further prognostic factors are chromogranin A (CgA), synaptophysin,
somatostatin receptor (SSTR) expression, the tumor’s spontaneous evolution speed, and
the patient’s age [4,5]. Among these, the expression of somatostatin receptors (SSTRs) is
one of the most remarkable features of well-differentiated tumors; SSTRs type 1 and type 2
are present in most NENs [6].

In vivo imaging of SSTR expression in well-differentiated NENs (G1 and G2 with low-
intermediate levels of the Ki-67 index, <10%) is feasible with both [111In]DTPA-octreotide
scintigraphy (Octreoscan®) SPECT and somatostatin analog PET ([68Ga]Ga-DOTANOC,
[68Ga]Ga-DOTATATE, and [68Ga]Ga-DOTATOC) [7,8]. In cases of high levels of the Ki-
67 index (>10%), high-grade NET (G3) and NEC, or in cases of [68Ga]Ga-DOTA-peptide
imaging of SSTR-negative lesions, patients are also candidates for 2-[18F]F-fluoro-2-deoxy-
D-glucose ([18F]FDG) PET/CT, a glucose analog [9–12]. NENs usually grow slowly with
a low rate of glucose metabolism; indeed, [18F]FDG PET/CT scans are more likely to
detect more aggressive and poorly differentiated NENs, which correlate to worse clinical
outcomes [13].

In 2017, Chan et al. [14] proposed a staging protocol by means of [18F]FDG and
[68Ga]Ga-DOTA-peptides PET/CT, resulting in the formulation of a new score, the “NET-
PET grade”, which could help in the prognostic evaluation of NEN patients and the
resulting therapeutic decisions. However, to date, this protocol is hardly applicable in the
clinical setting; imaging with multiple radiotracers, although potentially providing the
most accurate biological characterization of the disease, is not feasible/reimbursed in all
patients and should only be considered in selected cases.

This drawback might be partially solved using new artificial intelligence (AI) ap-
proaches to extract data from both [68Ga]Ga-DOTA-labelled somatostatin analogs and/or
[18F]FDG PET/CT images [15–19]. Indeed, radiomics uses bioinformatics and data-
characterization algorithms to extract several quantitative characteristics (features) from
medical images. These characteristics, known as radiomics features (RFs), may be able to
identify disease characteristics that are invisible to the human eye, opening the door to
the prospect of quantifying particular tumor characteristics and phenotypes [18,20]. There
are a large number of radiomic features, related to morphological properties, the intensity
distributions of the image voxels, or to the properties of the image texture. Standardized
definitions of principal RFs are provided in the reference manual of the Imaging Biomarker
Standardization Initiative (IBSI) [21,22]. According to the EANM/SNMMI guidelines on ra-
diomics in nuclear medicine [23], there are three categories of radiomics-based approaches:
hand-crafted radiomics (with explicit extraction of pre-designed radiomics features from
the images followed by univariate or multivariate analysis), representation-learning based
radiomics (with automatic discovering of features and patterns inherent in the images)
and hybrid radiomics (a combination of the two other frameworks), AI comprises different
types of algorithms that can perform complex tasks by learning from available data, similar
to human intelligence. Under the general category of “AI”, deep learning (DL), reinforce-
ment learning, supervised machine learning, and unsupervised machine learning are all
included [24–28].

Nuclear medical imaging provides indispensable information for staging, monitoring,
and treatment choice and the application of new radiomic and AI tools could implement the
information extracted from PET/CT imaging in each setting. This systematic review aims
to summarize the most recent research on radiomics and AI used for molecular imaging
of NENs.



Life 2023, 13, 1647 3 of 21

Table 1. The World Health Organization (WHO) 2022 classification of neuroendocrine neoplasms.

Lung and
Thymus

Mitotic
Index Necrosis Other

Features

Gastro-intestinal
(GI) Tract and

Hepato-
Pancreato-Biliary

Organs

Mitotic
INDEX

Ki67
Index

Other
Features

Upper
Aerodigestive

Tract and
Salivary
Glands

Mitotic
Index

Ki67
Index

Other
Features Thyroid Mitotic

Index
Ki67

Index Necrosis

Well-
differentiated *

NET, TC <2/10HPF No NET, G1 <2/10HPF <3% NET. G1 <2/10HPF <20%

Low grade
MTC

<5/10HPF <5% No
NET, AC 2-10/10HPF Yes

(punctate) NET, G2 2–
20/10HPF

3–
20% NET. G2 2–

10/10HPF <20%

Carcinoids/
NETs >10/10HPF Yes

and/or
Ki67 index

(>30%)
NET, G3 >20/10HPF >20% NET, G3 >10/10HPF >20%

Poorly differ-
entiated *

NEC,
SCLC >10/10HPF Yes

small cell
cytomor-
phology

NEC, SCNEC >20/10HPF
>20%
(often
>70%)

small cell
cytomor-
phology

NEC, SCNEC >20/10HPF
>20%
(often
>70%)

small cell
cytomor-
phology High

grade
MTC

>/10HPF >5% Yes
NEC,

LCNEC >10/10HPF Yes
large cell
cytomor-
phology

NEC, LCNEC >20/10HPF
>20%
(often
>70%)

large cell
cytomor-
phology

NEC, LCNEC >20/10HPF
>20%
(often
>55%)

large cell
cytomor-
phology

Mixed
neoplasms MiNENs NA >30% MiNENs NA >30% MiNENs NA >30%

NOTE: AC, atypical carcinoid; HPF, high-power field; LCNEC, large cell neuroendocrine carcinoma; MiNEN, mixed neuroendocrine/non-neuroendocrine neoplasm; MTC, medullary
thyroid carcinomas; NEC, neuroendocrine carcinoma; NET, neuroendocrine tumor; SCLC, small-cell lung carcinoma; SCNEC, small cell neuroendocrine carcinoma; TC, typical carcinoid;
* Morphologically well-differentiated or poorly differentiated.
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2. Materials and Methods

We searched the PubMed, PMC, Scopus, Google Scholar, Embase, Web of Science, and
Cochrane library databases (between January 2010 and May 2023), using the following,
both as text and as MeSH terms: “neuroendocrine tumor*”, “NET*”, “NEN*”, “artifi-
cial intelligence”, “machine learning”, “deep learning”, “convolutional neural network”,
“artificial neural network”, “radiomic”, “segmentation”, “PET”, “PET/CT”, “PET/MR”,
“octreotide”, “[68Ga]Ga-DOTATOC”, “[68Ga]Ga-DOTANOC”, “[68Ga]Ga-DOTATATE”,
“FDG”, “[18F]Fluorodeoxyglucose, “DOPA”, “[177Lu]Lu”, “[90Y]Y”, “diagnosis”, “screen-
ing”, “theranostic”, “theragnostic”, “RLT”, “PRRT” and “peptide receptor radionuclide
therapy”. No language restriction was applied to the search, but only articles in English
were reviewed. The comprehensive literature review produced 84 papers. After removing
duplicates in accordance with the Preferred Reporting Items for Systematic Review and
Metanalysis (PRISMA) criteria, 25 papers have been taken into consideration, reviewed,
examined, and in-depth detailed in accordance with their title and abstract as previously
stated [29]. We also looked for more pertinent articles in the articles’ references that
were part of the retrieved literature. Following that, articles were divided into clinical
and technical applications. Figure 1 provides a graphic illustration of the search and
review strategy.
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3. Clinical Applications

Radiomics and AI could support the key role of nuclear medicine in the non-invasive
assessment of staging and restaging of NEN patients.

3.1. Staging

As already mentioned, the use of dual PET/CT with [18F]FDG and [68Ga]DOTA-
peptides could help to detect intratumor heterogeneity, facilitating the identification of the
best target lesions for diagnostic biopsy and histological subtypes, which have a strong
correlation with the prognosis of NEN [2,14,30]. The performance of dual PET for the
characterization of histological patterns and prognosis of NEN lesions may be further
enhanced by radiomics.

In 2017, Giesel et al. [31] published a study on the correlation between SUVmax and
CT radiomics analysis using lymph node density in the CT component of the PET/CT
examination to differentiate malignant from benign lymph nodes. The authors used a
sample size of 1,022 lymph nodes extracted from the PET/CT examinations of 148 patients
with different tumor types: 327 lymph nodes from 40 patients with lung cancer; 224 lymph
nodes from 33 patients with malignant melanoma; 217 lymph nodes from 35 patients with
GEP-NET; 254 lymph nodes from 40 patients with prostate cancer. Despite the large hetero-
geneity of the population evaluated, in terms of pathology and PET radiopharmaceutical
analysis ([18F]FDG, [68Ga]Ga-DOTATOC, and [68Ga]Ga-PSMA-11), the study showed that
PET-positive lymph nodes had significantly higher CT densities than PET-negative ones, ir-
respective of the type of cancer, identifying a CT density threshold of 7.5 Hounsfield units to
differentiate between malignant and benign infiltration of lymph nodes and 20 Hounsfield
units to exclude benign lymph nodes processes.

In 2020, Weber et al. [32], sought to determine whether conventional PET and MRI
parameters and RFs derived from simultaneous [68Ga]Ga-DOTATOC PET/CT and MRI
were related to the proliferative activity of NETs, potentially allowing for a non-invasive
tumor grading. The authors evaluated 304 lesions from 100 NET/NECs patients. They
showed that differences between G1 and G2 tumors in conventional PET parameters,
MRI ADC values, and RFs determined from both modalities were statistically significant.
However, the correlation between the aforementioned parameters and Ki-67-index was
weak, suggesting that RFs extracted from combined PET/MRI may not be reliably used
for accurate non-invasive tumor grading in patients with Ki-67 < 30%. Further insights
have been presented by Thuillier et al. [33] who assessed if conventional PET parameters
and RFs extracted by [18F]FDG PET/CT could differentiate among different histological
subtypes (NETs vs NECs) of lung-NENs in forty-four naïve-treatment patients (15 TC,
11 AC, 1 TC or AC, 16 LCNEC and 3 SCLC). Namely, conventional PET parameters resulted
to be able to distinguish Lu-NECs from Lu-NETs (SUVmax cut-off = 5.16; AUC = 0.91;
p < 0.001), but not TC from AC. In fact, stratifying TC and AC according to Ki-67 level,
SUVmax and SUVmean showed a positive correlation with Ki-67, without statistical signif-
icance (p = 0.05 and 0.07, respectively). Regarding the TNM status, SUVmax, MTV, and
TLG of the primary lesion were significantly associated with N+ status (p < 0.05). On the
contrary, RFs did not provide additional information.

More recently, Fonti et al. [34] aimed to test the ability of the coefficient of variation
(CoV) derived from [68Ga]DOTA-peptides PET/CT imaging in the evaluation and quan-
tification of the heterogeneity of SSTR2 expression within 107 tumor lesions (including
35 primary tumors, 32 metastatic lymph nodes, and 40 distant metastases) of 38 NENs
patients (25 GEP-NENs, 7 lung-NENs and 6 from other anatomic districts). Among the
RFs for the assessment of tumor heterogeneity, CoV is a simple first-order parameter
that indicates the percent variability of SUVmean within the tumor volume reflecting the
heterogeneity of tracer distribution. Average CoVs were 0.49 ± 0.20 for primary tumors,
0.57 ± 0.26 for lymph node metastases, and 0.44 ± 0.20 for distant metastases. The CoVs
of malignant lesions were up to 4-fold higher than those of normal tissues (p ≤ 0.0001).
Among malignant lesions, the highest CoV was found for bone metastases (0.68 ± 0.20),
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and it was significantly greater than that of primary lesions (p = 0.01) and liver metastases
(p < 0.0001). The lowest CoV was observed for liver lesions (0.32 ± 0.07), probably because
of the high background uptake. On the other hand, no statistically significant differences
were found between the SUVmax of primary lesions, lymph node metastases and distant
metastases, although the SUVmax of distant metastases tended to be higher than that of
primary lesions (p = 0.0573).

Three studies focused on evaluating the role of radiomics parameters extracted by
[68Ga]DOTA-peptides PET images in predicting histopathological prognostic factors in
pancreatic NEN tumors (PanNETs) patients. In 2020, Mapelli et al. [35] retrospectively
extracted conventional and tumor burden PET parameters and radiomics parameters
(using Chang-Gung Image Texture Analysis software package, version 1.3; digitalization
method: 4; digitalization bins: 64) on the primary tumor lesion from both [18F]FDG
and [68Ga]Ga-DOTATOC PET/CT scan images of 61 treatment-naive PanNET patients
undergoing surgery. Intensity variability, SZV, homogeneity, SUVmax and MTV were
predictive for tumor dimension in [18F]FDG images. From principal component analysis
(PCA), 4 elements were extracted: PC1 correlated with all [18F]FDG variables, while
PC2, PC3 and PC4 with [68Ga]Ga-DOTATOC variables. The only significant predictor
of angioinvasion was PC1 (p = 0.02), while the only significant predictor of lymph node
involvement was PC4 (p = 0.015). All principal components except PC4 significantly
predicted tumor dimension (p < 0.0001 for PC1, p = 0.0016 for PC2 and p < 0.0001 for
PC3). The same group [36] extracted conventional PET and MRI parameters, and radiomics
parameters from hybrid [68Ga]Ga-DOTATOC PET/MRI of 16 treatment-naive PanNET
patients undergoing surgery, using another open-source Python package Pyradiomics 3.0.1
(https://www.radiomics.io/pyradiomics.html; accessed on 24 July 2023). They discovered
a moderately significant, inverse connection (rho = 0.58, p = 0.02) between SUVmax and
LN involvement. SUVmax proved to be a reliable indicator of LN involvement, with
an AUC of 0.850 (95% CI: 0.60–1.00), an optimal cut-off value of 90.960, sensitivity of
60%, and specificity of 100%. Potential correlations between radiomics characteristics and
tumor grade, LN involvement and vascular invasion were analyzed. After adjustment for
multiple comparisons, only second-order radiomics parameters Gray-Level-Variance (GLV)
and High-Gray-Level-Zone-Emphasis (HGLZE) extracted from T2 MRI demonstrated
significant correlations with LN involvement (adjusted p = 0.009), also showing a good
predictive performance (AUC = 0.992), with an optimal cut-off value of 0.145 for GLV
(correspondent sensitivity and specificity of 90% and 100%, respectively) and of 1.545
for HGLZE (correspondent sensitivity and specificity of 90% and 100%, respectively).
Finally, Bevilacqua et al. [37] extracted conventional PET and radiomics parameters from
[68Ga]Ga-DOTANOC PET/CT imaging of 51 patients with primary G1-G2 treatment-naive
PanNET to investigate their ability to predict G1 versus G2 patients. Patients were grouped
according to the method of tumor grade assessment: histology on the entire primary
excised lesion (HS) or biopsy (BS). Three radiomics models were evaluated: A (trained
on HS, validated on BS), B (trained on BS, validated on HS) and C (using cross-validation
on the entire dataset). HS group SUVmax values did not significantly differ between G1
(36.9 ± 23.5, [6.9–84.8]) and G2 (45.3 ± 28.6, [15.0–95.7]) (p-value = 0.60). On the contrary,
the grade of the primary lesion was accurately determined when using RFs: the best RF
pairs for predicting G2 and G1 were second-order normalized homogeneity and entropy
(p-value = 0.0002 with AUC = 0.94 (95% CI, 0.74–0.99). Model A had the best performance
(test AUC = 0.90, sensitivity = 0.88, specificity = 0.89) whereas Model C had the worst
performance (test median AUC = 0.87, sensitivity = 0.83, specificity = 0.82).

In 2022, Noortman et al. [38] investigated the use of [18F]FDG-PET/CT radiomics,
SUVmax, and biochemical profile for the identification of the genetic clusters of 40 para-
gangliomas (PPGLs) patients (13 cluster 1, 18 cluster 2, 9 sporadic). The dataset was split
into five equal-sized folds, stratified for the genetic clusters. Each subgroup consecutively
served as a test set and the remaining four-fifths of patients served as the training set. The
biochemical profile alone was the lowest performing model with an average multiclass

https://www.radiomics.io/pyradiomics.html
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AUC of 0.60. The three-factor PET model showed the best classification performance to
distinguish cluster 1 from cluster 2 of PPGL (multiclass AUC of 0.88), however compara-
ble to the performance achieved by SUVmax alone (multiclass AUC of 0.85), which could
therefore be preferred to the radiomics analysis model in a clinical scenario being more
handleable. The most important characteristics and results of the above-mentioned studies
are summarized in Table 2.

3.2. Restaging

Radiomics and AI may emphasize the role of radiological and functional imaging as
prognostic biomarkers, especially to identify patients eligible for targeted therapies, such
as RLT, and to evaluate their response to such therapies, facilitating patient-tailored treat-
ments [19,39–41]. Several studies have already been published in this field in NEN patients.

In 2017, Nogueira et al. [42] developed an artificial neural network (ANN) approach to
automatically assess the treatment responses of patients suffering from NENs (34 patients)
and Hodgkin lymphoma (29 patients) based on image features extracted from pre- and
post-treatment [18F]FDG and [68Ga]Ga-DOTANOC PET/CT scans, respectively. Cases were
divided into four classes of treatment response: negative (malignancy increased), neutral
(no response), positive incomplete (malignancy decreased but lesion did not disappear),
and positive complete (the lesion disappeared). Four standard ANN architectures were
explored: multilayer perceptron (MLP), radial basis function neural network (RBFNN),
probabilistic neural network (PNN), and learning vector quantization neural network
(LVQNN). After synthetic data generation and PCA-based dimensionality reduction to
only two components, the LVQNN assured classification accuracies of 100%, 100%, 96.3%,
and 100% regarding the four response-to-treatment classes.

In 2016, Wetz et al. [43] compared the Krenning score, tumor/lesion (T/L) ratio, and
asphericity (ASP) between responding and non-responding lesions (total n = 66) segmented
on baseline [111In]DTPA-octreotide scintigraphy (Octreoscan®) SPECT. According to their
analysis, a greater ASP level was related to a worse response to RLT. Additionally, ASP
outperformed both the Krenning score and the T/L ratio, being the parameter with the
greatest AUC (>0.96), at 4 and 12 months of follow-up to distinguish responding from
non-responding lesions. In 2020, the same group [44] evaluated the lesional asphericity
(ASP), extracted from the pre-therapeutic Octreoscan, as the first imaging-based prognostic
marker for progression-free survival (PFS) in 30 GEP-NEN patients that were candidates
for therapy with mTOR inhibitor everolimus and with metachronous or progressive liver
metastases. Only ASP > 12.9% (hazard ratio, HR), 3.33; p = 0.024) and prior RLT (HR,
0.35; p = 0.043) resulted as statistically significant in multivariable Cox analysis. Moreover,
when the ASP was above 12.9%, the median PFS was 6.7 months (95% CI: 2.1–11.4 months),
whereas when it was below 12.9%, it was 14.4 (12.5–16.3) months (log-rank, p = 0.028).

Further studies evaluated the application of AI on the assessment of responses to
RLT in PET images; the assessment of response to RLT is still challenging, despite the fact
that it seems to be one of the most successful treatment choices for metastatic, inoperable,
well-differentiated GEP NETs. Particular attention has been paid to the evaluation of
RFs capable of describing tumor heterogeneity, which is usually associated with a worse
prognosis as a result of more aggressive biological behavior and treatment failure. In
2020, Weber et al. [45] aimed to assess changes in semiquantitative [68Ga]Ga-DOTA-TOC
PET/MRI parameters, including ADC, after different types of treatment including RLT.
Although the study’s sample size was too small to be statistically significant (only nine
patients underwent RLT), responding patients showed a significant decrease in lesion
volume on ADC maps and a borderline significant decrease in entropy after RLT, even if
non-statistically significant.
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Table 2. Published articles concerning the implementation of radiomic and/or AI tools in the staging of NEN patients.

Author Year of
Publication Study Design NET Type Number

of Patients
Source of

Data Software AI
Application Validation Aim of

the Study Findings

Giesel et al.
[31] 2017 retrospective GEP-NET 35

[68Ga]DOTA-
peptides
PET/CT

software
developed at the

Fraunhofer
Institute for

Medical Image
Computing

no no
malignant

versus benign
lesions

PET-positive lymph nodes
had significantly higher CT
densities than PET-negative
ones, irrespective of the type

of cancer

Weber et al.
[32] 2020 retrospective all NENs 100

[68Ga]DOTA-
peptides

PET/MRI
LIFEx no no tumor grading

the correlation between
imaging parameters
(conventional PET

parameters, ADC values
from MRI, and RFs

parameters) and Ki-67-index
was weak

Thuillier et al.
[33] 2020 retrospective Lung-NET 44 [18F]FDG

PET/CT
LIFEx no no tumor grading

conventional PET parameters
were able to distinguish

Lu-NECs from Lu-NETs but
not TC from AC. On the

contrary, RFs did not provide
additional information

Fonti et al.
[34] 2022 retrospective all NENs 38

[68Ga]DOTA-
peptides
PET/CT

LIFEx no no
malignant

versus benign
lesions

the CoVs of malignant
lesions were up to 4-fold

higher than those of normal
tissues (p ≤ 0.0001)

Mapelli et al.
[35] 2020 retrospective Pan-NENs 61

[68Ga]DOTA-
peptides and

[18F]FDG
PET/CT

Chang-Gung
Image Texture

Analysis software
package

no no
predictive value

of tumor
aggressiveness

intensity variability, SZV,
homogeneity, SUVmax and
MTV were predictive for

tumor dimension in
[18F]FDG images; all

principal components except
PC4 significantly predicted

tumor dimension (p < 0.0001
for PC1, p = 0.0016 for PC2,

and p < 0.0001 for PC3)
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Table 2. Cont.

Author Year of
Publication Study Design NET Type Number

of Patients
Source of

Data Software AI
Application Validation Aim of

the Study Findings

Mapelli et al.
[36] 2022 retrospective Pan-NENs 16

[68Ga]DOTA-
peptides

PET/MRI

Python package
Pyradiomics 3.0.1 no no

predictive value
of tumor

aggressiveness

a significant inverse
correlation between SUVmax

and LN involvement
(rho = −0.58, p = 0.02). Only

second-order GLV and
HGLZE extracted from T2

MRI demonstrated
significant correlations with
LN involvement (adjusted

p = 0.009)

Bevilacqua
et al. [37] 2021 retrospective Pan-NENs 51

[68Ga]DOTA-
peptides
PET/TC

ImageJ and
MATLAB® no yes tumor grading

SUVmax values did not
significantly differ between
G1 and G2 (p-value = 0.60).

On the contrary, the primary
lesion’s grade was correctly
identified when using RFs,
second-order normalized
homogeneity, and entropy

(p-value = 0.0002 with
AUC = 0.94)

Noortman et al.
[38] 2022 retrospective PPGLs 40 [18F]FDG-

PET/CT
Python package

Pyradiomics 3.0.1 no yes

although comparable to the
performance produced by
SUVmax alone (multiclass

AUC = 0.85), the three-factor
PET model demonstrated the

best classification
performance to separate
cluster 1 from cluster 2

of PPG
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In two subsequent studies, Werner et al. [46] evaluated the prognostic value of baseline
[68Ga]Ga-DOTA-SSTa PET/CT RFs before RLT. RF entropy predicted both PFS and overall
survival (OS) in a heterogenous cohort of 141 NET patients who were eligible for RLT
(cut-off = 6.7, AUC = 0.71, p = 0.02), whereas conventional PET parameters did not show
significant impacts. In a consecutive study [47] on a smaller, more homogeneous cohort
of 31 pan-NET patients (G1/G2), the authors discovered a similar outcome: entropy was
a predictor of overall survival (OS) at ROC analysis (cutoff = 6.7, AUC= 0.71, p = 0.02).
Indeed, higher entropy indicated longer survival (OS = 2.5 years, 17/31, entropy > 6.7),
whereas standard PET parameters did not.

In 2020, Önner et al. [48] evaluated tumor heterogeneity using the parameters skewness
and kurtosis on pre- and post-treatment [68Ga]Ga-DOTATATE PET/CT to assess the therapy
responses of 326 lesions (137 lesions responded partially or completely to the treatment;
189 lesions did not respond to treatment, remained stable, or progressed) delineated
from PET images of 22 GEP-NET patients treated with 2–6 therapy cycles of [177Lu]Lu-
DOTATATE. Lesions that did not respond to RLT had significantly higher skewness and
kurtosis values than responding lesions (p < 0.001 and p = 0.004, respectively). However,
ROC curves provided a moderate AUC value for skewness and a slightly lower value for
kurtosis (0.619 and 0.518, respectively). Moreover, the authors did not compare the RF
parameters with conventional PET parameters.

Subsequent studies have better analyzed this aspect, attempting to highlight the
possible added value of radiomics parameters compared to conventional ones. In 2021,
Ortega et al. [49] aimed to determine whether quantitative PET parameters (mean SUVmax,
ratio tumor to liver/spleen, T/L and T/S ratio, SUVmax, SUVmean, and heterogeneity pa-
rameters, such as CoV, kurtosis, and skewness) on baseline [68Ga]Ga-DOTATATE PET/CT
(bPET) and interim PET (iPET) performed prior to the second RLT cycle were predictive
of therapy response and PFS in ninety-one NET patients (71 responders and 20 non-
responders). At bPET, higher mean SUVmax and mean SUVmax (tumor/liver ratio) were
predictors of the therapy response (p = 0.018 and 0.024, respectively); while higher SUVmax
and SUVmean and lower kurtosis were predictors of favorable responses (p = 0.025, 0.0055,
and 0.031, respectively) and correlated with longer PFS. From the multivariable analy-
sis adjusted for age, primary site, and Ki-67, the mean SUVmax (p = 0.019), SUVmax T/L
(p = 0.018), SUVmax T/S (p = 0.041), SUVmean liver (p = 0.0052), and skewness (p = 0.048)
remained significant predictors of PFS. On the other hand, iPET parameters were not
predictive of PFS, even if iPET was performed only for a subset of patients.

The same year, in a pilot report on two NET patients who experienced discordant
responses to RLT (responder vs. non-responder) according to RECIST1.1, Liberini et al. [50]
aimed to assess whether both tumor burden and radiomics parameters may have an added
value over conventional parameters in predicting RLT response. They found that 28 RFs
extracted from pre-therapy [68Ga]Ga-DOTATOC PET/CT showed significant differences
between the two patients in the Mann–Whitney test (p < 0.05), and the modifications of the
tumor burden parameter obtained from pre- and post-PRRT PET/CT correlated with the
RECIST1.1 response. Moreover, the authors concluded that seven second-order features
with poor correlation with SUVmax and PET volume, identified by the Pearson correlation
matrix, might have a role in defining inter-patient heterogeneity and in the prediction of
therapy response.

The prognostic potential of tumor heterogeneity and tracer avidity in NET patients
through a radiomics analysis of pre-RLT [68Ga]Ga-DOTATATE PET/CT images has also
been evaluated by Atkinson et al. [51] in 44 metastatic NET patients (carcinoid, pancreatic,
thyroid, head and neck, catecholamine-secreting, and unknown primary NET). Measures
of heterogeneity (higher kurtosis, higher entropy, and lower skewness) on coarse texture
scale CT and unfiltered PET images predicted shorter PFS (CT coarse kurtosis: p = 0.05,
PET entropy: p = 0.01, PET skewness: p = 0.03) and shorter OS (CT coarse kurtosis:
p = 0.05, PET entropy: p = 0.01, PET skewness p = 0.02). Multivariate analysis identified that
CT-coarse kurtosis (HR = 2.57, 95% CI = 1.22–5.38, p = 0.013) independently predicted PFS,
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while PET-unfiltered skewness (HR = 9.05, 95% CI = 1.19–68.91, p = 0.033) independently
predicted OS. Conventional PET parameters, such as SUVmax and SUVmean, showed trends
toward predicting outcomes but were not statistically significant.

Finally, in 2022, Laudicella et al. [52] retrospectively analyzed and compared the
predictive value of conventional parameters, radiomics, and ∆radiomics parameters in
324 SSTR-2-positive lesions from 38 metastatic well-differentiated GEP-NET patients (nine
G1, twenty-seven G2, and two G3) who underwent restaging [68Ga]Ga-DOTATOC PET/CT
before complete RLT. The disease status for each lesion was determined by [68Ga]Ga-
DOTATOC PET/CT follow-up using the same scanner for each patient (progression vs.
response in terms of stability, decrease, or disappearance). The k-fold approach was used
to divide the data into training and validation sets, and discriminant analysis was utilized
to create the predictive model. Once again, SUVmax could not predict responses to RLT
(p = 0.49, AUC 0.523), while radiomics parameters proved to be superior to conventional
quantitative parameters. From the reduction and selection process, HISTO_Skewness and
HISTO_Kurtosis were able to predict the RLT response with AUC, sensitivity, and specificity
levels of 0.745, 80.6%, 67.2% and 0.72, 61.2%, 75.9%, respectively. In RLT-responsive lesions,
the authors also observed a mean percentage reduction in the asymmetry (skewness) and a
more evident increase in the “discrepancy of the considered histogram from the ordinary
one” (Kurtosis) than in non-responsive lesions. The most important characteristics and
results of the above-mentioned studies are summarized in Table 3.
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Table 3. Published articles concerning the implementation of radiomic and/or AI tools in the restaging of NEN patients.

Author Year of
Publication

Study
Design NET Type Number of

Patients Source of Data Software AI
Application Validation Aim of the Study Findings

Nogueira et al.
[42] 2017 retrospective NENs 34

[18F]FDG and
[68Ga]DOTA-

peptides
PET/CT

NA yes no
predictive value of

response to
treatment

LVQNN assured classification accuracies
of 100%, 100%, 96.3%, and 100%

regarding the 4 response-to-treatment
classes (negative, neutral, positive
incomplete, and positive complete)

Wetz et al.
[43] 2016 retrospective GEP-NENs 20

[111In]DTPA-
octreotide

scintigraphy

ROVER version
2.1.20 (ABX,

Radeberg, Germany)
no no

predictive value of
response to
treatment

a higher ASP level was associated with
poorer response to RLT

Wetz et al.
[44] 2020 retrospective GEP-NENs 30

[111In]DTPA-
octreotide

scintigraphy

ROVER version
2.1.20 (ABX,

Radeberg, Germany)
no no

predictive value of
response to
treatment

ASP > 12.9% (p = 0.024) predicted
response to everolimus

Weber et al.
[45] 2020 retrospective all NENs 18

[68Ga]DOTA-
peptides

PET/MRI
LIFEx no no

predictive value of
response to
treatment

even if not statistically significant,
PRRT-responding patients displayed a

substantial decrease in lesion volume on
ADC maps and a borderline significant

decrease in entropy after RLT

Werner et al.
[46] 2017 retrospective

all NENs
(108

GEP-NET)
141

[68Ga]DOTA-
peptides
PET/CT

Interview Fusion
Workstation (Mediso

Medical Imaging
Systems Ltd.,

Budapest, Hungary)

no no predictive value of
PFS and OS

RF entropy predicted both PFS and OS
(cut-off = 6.7, AUC = 0.71, p = 0.02),
while conventional PET parameters

failed to predict patient outcome

Werner et al.
[47] 2019 retrospective Pan-NET 31

[68Ga]DOTA-
peptides
PET/CT

Interview Fusion
Workstation (Mediso

Medical Imaging
Systems Ltd.,

Budapest, Hungary)

no no predictive value of
PFS and OS

entropy was predictive for OS
(cutoff = 6.7, AUC = 0.71, p= 0.02);

indeed, an increased entropy predicted
longer survival (entropy > 6.7,
OS = 2.5 years, 17/31), while

conventional PET parameters failed to
predict patient outcome

Önner et al.
[48]

2020 retrospective GEP-NET 22
[68Ga]DOTA-

peptides
PET/CT

LIFEx no no
predictive value of

response to
treatment

the skewness and kurtosis values of the
lesions which did not respond to RLT
were significantly higher than those

with a response (p < 0.001 and p = 0.004,
respectively).
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Table 3. Cont.

Author Year of
Publication

Study
Design NET Type Number of

Patients Source of Data Software AI
Application Validation Aim of the Study Findings

Ortega et al.
[49] 2021 retrospective All NENs 91

[68Ga]DOTA-
peptides
PET/CT

nuclear medicine
PACS system with

fusion software
(Mirada Medical)

no no predictive value of
PFS and OS

at baseline-PET, from the multivariable
analysis, mean SUVmax (p = 0.019),

SUVmax T/L (p = 0.018), SUVmax T/S
(p = 0.041), SUVmean Liver (p = 0.0052)

and skewness (p = 0.048) were
significant predictors of PFS after RLT.

On the other hand, interim-PET
parameters failed to predict

patient outcome

Liberini et al.
[50] 2021 retrospective GEP-NEC 2

[68Ga]DOTA-
peptides
PET/CT

LIFEx no no
predictive value of

response to
treatment

28 RFs extracted from pre-therapy
PET/CT showed significant differences

between the two patients in the
Mann–Whitney test (p < 0.05) and the

modifications of tumor burden
parameter obtained from pre- and

post-PRRT PET/CT correlated with
RECIST1.1 response

Atkinson et al.
[51] 2021 retrospective All NENs 44

[68Ga]DOTA-
peptides
PET/CT

TexRAD research
software (TexRAD,
part of Feedback

Medical Ltd.,
www.fbkmed.com,

Cambridge, UK)

no no predictive value of
PFS and OS

multivariate analysis identified that
CT-coarse kurtosis (HR = 2.57,
95% CI = 1.22–5.38, p = 0.013)

independently predicted PFS, while
PET-unfiltered skewness (HR = 9.05,

95% CI = 1.19–68.91, p = 0.033)
independently predicted OS

Laudicella et al.
[52] 2022 retrospective GEP-NET 38

[68Ga]DOTA-
peptides
PET/CT

LIFEx yes yes
predictive value of

response to
treatment

SUVmax could not predict response to
RLT (p = 0.49, AUC 0.523), while

HISTO_Skewness and HISTO_Kurtosis
were able to predict RLT response with
AUC, sensitivity, and specificity of 0.745,

80.6%, 67.2% and 0.72, 61.2%, 75.9%,
respectively

www.fbkmed.com
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4. Technical Applications

Although the scientific interest is rapidly growing, there is the necessity to test and
standardize a methodological approach before radiomics and AI applied to PET imaging
can potentially be used in a clinical setting [21,23,53]. The technical aspects impacting
the stability of PET radiomics and potentially lowering its robustness, repeatability, and
performance are graphically summarized in Figure 2.
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Figure 2. A graphic summary of technical factors affecting the stability of PET radiomics and
potentially reducing its robustness, reproducibility, and performance.

The word “robustness” is frequently used to describe the repeatability and repro-
ducibility of RFs that have been assessed under various acquisition and processing set-
tings. In the literature, there are several studies evaluating RFs’ robustness in [18F]FDG
PET/TC imaging, while only a few have yet been published on [68Ga]Ga-DOTA-peptide
PET/CT imaging.

In 2016, Bailly et al. [54] aimed to evaluate the robustness of RFs extracted from
[68Ga]Ga-DOTANOC PET images of twenty-six GEP-NET patients, as a function of the
acquisition and reconstruction parameters within the context of multi-centric trials. All
datasets were reconstructed using four different algorithms, three different matrix sizes,
and, for each reconstruction algorithm, three different numbers of iterations. They found
that only entropy, energy, RP, and ZP resulted in adequate robustness with respect to
the number of iterations, the post-filtering level, the noise in the input data, and the
reconstruction algorithm used. In contrast, correlation and LZLGE were found to be very
sensitive to the aforementioned parameters. Moreover, the voxel size used to reconstruct
the PET images severely impacted the following RFs: Correlation, Energy, Contrast, and
Dissimilarity, LGRE, ZLNU, LGZE, and LZLGE RFs. Only entropy and RP had a variability
that was comparable to that of SUVmean.

Compared to [18F]FDG, [68Ga]Ga-DOTA-peptides have a significantly different physi-
ological distribution and showed more inter- and intra-patient heterogeneity for physiolog-
ical and pathological uptake, requiring the use of different methods of segmentation and
different discretization settings. On this premise, in 2021, Liberini et al. [55] sought to iden-
tify robust RFs extracted from [68Ga]Ga-DOTATOC PET images of forty-nine NET patients,
as a result of different segmentation (manual contouring applying three different fixed
SUVmax thresholds of 20, 30, and 40% respectively, versus a semiautomated edge-based
segmentation algorithm, SAEB) and grey-level intensity discretization (an absolute one,
namely, AR60 = SUV from 0 to 60, and a relative one, namely, RR = min-max of VOI’s SUV)
methods. Of 51 RFs extracted with the open-source IBSI-compliant Lifex software [56],
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64.7% (7/10 conventional, 3/6 histogram, 2/4 shape, and 21/31 textual) showed high
robustness in terms of consistency (intra-class correlation coefficients—ICC > 0.9) and
agreement (low median coefficient of variance, COVL) between different operators, im-
proved by applying an SUVmax threshold of 40% (86.5%). Furthermore, the dice similarity
coefficient (DSC) mean value was 0.75 ± 0.11 (0.45–0.92) between the SAEB and operators
and 0.78 ± 0.09 (0.36–0.97) among the four manual segmentations, suggesting that SAEB
segmentation could be an optimal alternative to manual segmentation, even if further vali-
dations are needed. Finally, the use of the absolute intensity scaling factor (AR60) achieved
greater robustness of RF in segmentation than the relative intensity scaling factor (RR).

Although RF robustness is high using manual contouring with the 40% fixed SUVmax
thresholds, this approach is time-consuming; moreover, it may lead to the loss of important
biological information and a reduction of analyzable lesions with textural characteristics
due to the low number of voxels not being sufficient to perform a radiomics analysis. For
that reason, various semiautomatic and automatic segmentation methods were evaluated
for both single-lesion and total tumor-burden segmentation [49,57–64]. A 2D fully convolu-
tional U-Net-like neural network was used in 2021 by Wehrend et al. [65] to automatically
identify liver lesions by [68Ga]Ga-DOTATE PET/CT. The neural network was trained by
minimizing a linear combination of binary cross-entropy loss and dice loss with a stochastic
gradient descent algorithm for 100,000 iterations. The model was performed on 125 patients
(57 with PET-positive liver lesions and 68 without) randomly divided into 75 patients for
the training set (36 abnormal, 39 normal), 25 for the validation set (11 abnormal, 14 normal),
and 25 for the test set (11 abnormal, 14 normal). In this study, manual liver segmentation
and semiautomated annotation of lesions were used as the ground truth; the authors used
a modified PERCIST threshold for liver lesion identification and a commercially available
gradient edge detection tool (PET Edge plus; MIM 7.0.3 software) to define the lesion
boundaries. A total of 233 lesions were annotated, with each abnormal study containing a
mean of 4 ± 2.75 lesions. To reduce the effects of noisy predictions, filters based on pixel
area were applied to remove values below a certain threshold; the highest mean positive
predictive value (PPV) of 0.94 ± 0.01 and the highest mean F1 score of 0.79 ± 0.01 were
produced with a 20-pixel filter, while the highest mean area under the precision–recall
curve (PR-AUC) of 0.73 ± 0.03 was produced with a 15-pixel filter. The most common
sources of error reported for false-positive lesions were lesions that were close to the edge
of a true lesion, with a score above the PERCIST limit, but disagreed with the annotated
gold standard (6/12; 50%); while false-negative lesions were lesions with low uptake.

In 2022, Carlsen et al. [66] investigated the performance of an AI network with deep
learning U-Net architecture for the tumor segmentation of [64Cu]Cu-DOTATATE PET/CT
images of GEP-NEN and lung-NEN patients (117 in training, 41 in testing, and 10 patients
without signs of NEN included as negative controls). Ground truth segmentations were
obtained by a standardized semiautomatic method for tumor segmentation. Although
the ensemble model obtained rather high values of the lesion-wise dice index, pixel-wise
dice index, precision, and sensitivity (0.85, 0.8, 0.79, and 0.87, respectively), some degree of
manual adjustment was required in 85% (35/41) of patients to consider the performance of
the model as acceptable. Nevertheless, the AI model appeared to be faster than the ground
truth (semiautomatic) method, reducing the manual adjustment time to 5 min (vs. 17 min,
p < 0.01). Among the limitations of the evaluated AI model, the authors reported:—The need
to manually remove false-positive segmentations (such as adrenal gland or bladder) and/or
to add lesions not included in the segmentation;—The elimination of all lesions smaller than
0.1 mL (lesions < 9 voxels) to reduce segmentation of noise;—A non-homogeneous training
and testing cohort due to a higher frequency of primary small bowel and pancreatic
tumors and grade-2 patients (although the Ki-67 index was not significantly different
between patients).
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Another interesting application of AI is the automatic segmentation of healthy organs
and tumor lesions for patient-specific dosimetry in radiopharmaceutical treatment (RPT)
for the development and validation of individualized protocols to provide personalized
therapy. In 2021, Khan et al. [67] developed a convolution neural network (CNN) for
automated kidney segmentation that accurately aligns the CT-segmented volume of interest
(VOI) to the kidneys in SPECT images, trained with SPECT/CT images performed over the
abdominal area of 137 patients treated with RLT. The Bland–Altman analysis demonstrated
higher accuracy for the CNN segmentation compared to the manual-segmented kidneys
without VOI adjustment, with the benefit of a reduced operating time. Similarly, in 2022,
Dewaraja et al. [68] aimed to construct and test an integrated voxel-level pipeline (CNNs)
that automates key components (organ segmentation, registration, dose-rate estimation,
and curve fitting) on CT of SPECT/CT of the RPT dosimetry process and then use it to report
patient-specific dosimetry in 20 patients that are candidates for RLT. Indeed, the organs on
CT of SPECT/CT are automatically segmented using CNNs; then, the VOI propagation
to other time-point is achieved by local contour intensity-based SPECT-SPECT alignment.
Dose-rate estimation is performed by explicit Monte Carlo (MC) using the fast, Dose-
Planning Method code, and the best function for dose-rate fitting is automatically chosen
for each voxel. CNN-defined kidneys resulted in high Dice index values (0.91–0.94) and
only small differences (2–5%) in the mean dose when compared with manual segmentation.
For a typical patient, the time for the entire process was ~25 min on a desktop computer,
including the time for CNN organ segmentation, co-registration, MC dosimetry, and voxel
curve fitting.

Finally, Ding et al. [69] examined the effectiveness of using a machine learning-based
algorithm for a rapid dual-tracer ([18F]FDG and [68Ga]Ga-DOTATATE) simulated dynamic
PET acquisition protocol in a single imaging session with NET imaging data of twelve
NET patients based on dynamic acquisitions performed separately on two different days.
Authors developed a recurrent extreme gradient boosting (rXGBoost) machine learning
algorithm to separate the mixed [18F]FDG and [68Ga]Ga-DOTATATE time activity curves
(TACs) for the region of interest (ROI)-based quantification with tracer kinetic modeling.
The results of this preliminary analysis were quite encouraging:—The correlation coefficient
of the proposed method was higher than that of the parallel multi-tracer compartment
model (PMCM);—The algorithm can effectively reduce the total scanning time by short-
ening the stagger time of the two tracers;—High accuracy was still maintained when the
simulated delay between the two tracers’ injection was only 5 min.

5. Discussion

This review highlights the state-of-the-art AI in the scenario of NETs in nuclear
medicine, revealing how several reasons make this field still in its preliminary state.

NENs are relatively rare and extremely heterogeneous tumors, which makes it difficult
to have a large and adequately homogeneous sample of patients.

Imaging analysis procedures such as tumor segmentation methods, grey-level intensity
discretization, and image reconstruction algorithms can affect the robustness, repeatability,
and reproducibility of radiomics variables and their results; while the more widespread
use of [18F]FDG PET/CT in clinical practice as a metabolic tracer has led to a significantly
larger evaluation of the robustness of radiomics studies, considerably fewer studies have
evaluated this aspect in [68Ga]DOTA-peptide PET/CT imaging.

In clinical studies, authors examined the potential of radiomics for several key objec-
tives in the management of NEN patients: prediction of tumor grade, prognostic assessment,
and prediction of response to RLT. Despite the attractive results reported above, there is
still considerable work required to apply the results of this research in clinical practice; a
prospective, sufficiently large and homogeneous study sample is hardly available due to
the rarity of NENs. Furthermore, NEN patients barely perform dual-imaging evaluation
with [18F]FDG and [68Ga]Ga-DOTA-peptides PET to evaluate the “NETPET score”, and the
inherent heterogeneity of these tumors makes a standardized approach in the methodology



Life 2023, 13, 1647 17 of 21

applied to PET imaging difficult compared to that for other tumors (high variability of
uptake for both [18F]FDG and [68Ga]Ga-DOTA-peptides PET imaging compared to other
tumors). [68Ga]Ga-DOTA-peptide PET imaging is considered the state-of-the-art approach
to quantify SST receptors in vivo, while [18F]FDG is used to metabolically characterize more
aggressive and higher-grade NET lesions; consequently, it may be difficult to identify and
segment the most aggressive lesions on only [68Ga]Ga-DOTA-peptide images, especially for
lesions with low SST receptor expression (low SUVmax values). Moreover, the majority of
the described studies are exploratory with univariable analyses, lacking external validation.
In addition, many studies were conducted before the drafting of the IBSI, which aims to
provide image biomarker nomenclature and definitions, and before the new European As-
sociation of Nuclear Medicine (EANM) and the Society of Nuclear Medicine and Molecular
Imaging (SNMMI) guidelines for pertinent study design, quality control, data collection,
the effects of acquisition and reconstruction, detection and segmentation, standardization,
and feature implementation, as well as adequate modeling schemes, model assessment,
and interpretation [17,21–23].

Nonetheless, some encouraging results obtained through the above-mentioned articles
suggest that a significant role in ‘non-invasive’ patient management in the clinical practice
and in the clinical decision support system (CDSS) could be played by some RFs in the
future, such as first-order statistics, metabolic tumor burden (MTB) from [18F]FDG PET/CT
images, somatostatin receptor tumor burden (SRTB) from [68Ga]Ga-DOTA-peptide PET/CT
images, and GLRLM features. Moreover, the publication of negative results in the radiomics
field is also very relevant to understand the directions for meaningful future research. Based
on the presented results, technical and clinical studies that used radiomics for the prediction
of response or long-term outcome seem to be more relevant endpoints compared with
studies focused on the identification of the tumor grade, since these latter presumably
require even more large and homogeneous samples and the availability of several data
(histopathological, genetic, radiological, and nuclear medical).

6. Conclusions

Clinically and physiologically, NENs range from quite indolent to extremely aggressive
neoplasms. Both the staging and the histological grading affect their prognosis and course
of treatment since less-differentiated NENs are more likely to be aggressive and have a poor
prognosis than well-differentiated tumors. The scientific community is giving increasing
attention to AI techniques due to a variety of potential applications in the NEN field,
ranging from the technical aspects of image reconstruction and segmentation to clinical and
therapeutic aspects. However, a large workload and numerous validation and rigorous
studies following new radiomics and AI guidelines are still required to implement most of
these strategies in clinical practice.
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