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Abstract: Sequencing technologies have rapidly evolved over the past two decades, and new technolo-
gies are being continually developed and commercialized. The emerging sequencing technologies
target generating more data with fewer inputs and at lower costs. This has also translated to an
increase in the number and type of corresponding applications in genomics besides enhanced compu-
tational capacities (both hardware and software). Alongside the evolving DNA sequencing landscape,
bioinformatics research teams have also evolved to accommodate the increasingly demanding tech-
niques used to combine and interpret data, leading to many researchers moving from the lab to
the computer. The rich history of DNA sequencing has paved the way for new insights and the
development of new analysis methods. Understanding and learning from past technologies can
help with the progress of future applications. This review focuses on the evolution of sequencing
technologies, their significant enabling role in generating plant genome assemblies and downstream
applications, and the parallel development of bioinformatics tools and skills, filling the gap in data
analysis techniques.

Keywords: sequencing technologies; plant genomes; pan-genomes; assemblies; bioinformatics tools;
databases; big data; artificial intelligence; machine learning

1. Introduction

With more than 40 years of remarkable DNA sequencing improvements, today, the
development of cost-reducing and higher throughput sequencing technologies, along
with relevant bioinformatics tools, have made it possible to produce high-quality genome
assemblies in a much-reduced timeline, which has subsequently led to the mapping of the
genetic variations in thousands of individuals, providing genetic insights into population
histories and domestication events. The multinational and multi-institutional consortium
the Earth BioGenome Project (EBP) aims to unify the phylogenetic networks across all
eukaryotic life derived from their complete de novo genomes [1,2]. This illustrates
how far the advancement and standardization of genome data generation, assemblies,
storage, retrieval, and analysis have developed, with more expected and required with
the generation of massive genomic data from species bridging the phylogenetic gaps
between currently sequenced genomes.
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Complete reference genome assemblies of the entire plant kingdom will open new
scientific views on the evolution and speciation events on earth and genetic control of plant
traits, both at intra- and inter-species levels. They will also enhance the understanding of
how plants function in ecosystems, lead to the discovery of natural botanical compounds
for human medicine, and will aid an increase in food production to curb global hunger
while respecting planetary boundaries and adapting to climate change.

Here, we provide an overview of the improvements in sequencing technologies, the
development of the associated bioinformatics tools, and advancements in plant genomics.
We also outline the progress achieved in assembling plant genomes, sequence technologies,
and assemblers used to contribute towards crop improvement.

2. Genome Sequencing Milestones

Over 40 years of consistent development of reliable sequencing technology emerging
to make considerable progress in accuracy, cost, and reduced sequencing time has been im-
proved.. From first-generation to third-generation sequencing, the combined technologies
developed have significantly increased the read length, improved quality, and provided
massive increases in throughput with significant cost reductions. However, currently,
second-generation (also called next-generation) sequencing technology dominates.

2.1. First-Generation Sequencing (FGS)

It is during this phase that the sequencing process advanced as a technology to help
understand the genetic basis behind the phenotype. This first-generation sequencing
technology is based on the dideoxynucleotide chain termination method developed by
Sanger and Coulson in 1975, commonly known as the Sanger method [3] and nucleobase-
specific partial chemical modification of DNA in Maxam–Gilbert sequencing [4]. The first
genome sequence for Phage X174 was generated in 1977 using a variant of this method.
The automated Sanger method (through capillary electrophoresis in 1980) was an essential
improvement and aided the completion of the Human Genome Project in 2001. The merit
of this technology was that it produced a read length of around 1 kb with 99.999% accuracy,
but the drawback was its high cost, short run length, and low throughput.

2.2. Second-Generation Sequencing (SGS)/Next-Generation Sequencing (NGS)

While the Sanger method was continuously popular, particularly for accurate sequenc-
ing of specific sequences, such as genes, many other sequencing technologies emerged at
around the same time, such as (i) the pyrophosphate sequencing used by Roche for the
454 sequencing platform (the first major successful commercial SGS technology), (ii) the
ligation enzyme method used for the SOLID technique by ABI sequencing company,
(iii) single-molecule sequencing with HeliScope from Helicos Biosciences, and (iv) DNA
colony sequencing technology from Illumina.

SGS sequencing was conducted in either a stepwise iterative process or in a real-time
manner, producing a combination of qualitative and quantitative sequence information,
which was not possible with FGS data. The second generation of sequencing technology was
symbolized by several approaches, all fundamentally based on parallel data production
with individual sequences identified by position on a flow cell or microarray. Roche’s
454, Illumina’s Solexa, Hiseq technology, and ABI’s Solid technologies not only reduced
sequencing costs but also increased the speed of sequencing [5]. The thirteen-year duration
of the human genome project using Sanger sequencing would now take just one week
with SGS technologies to generate the raw sequence data—although assembly remained
a significant computational problem. Sequencing throughput has increased with SGS
technologies, but the read length is often much shorter than in the first generation. The
specific technologies of SGS include the Ion Torrent technology that directly produces
digital nucleotide sequence information on a semiconductor chip [6]. It is possible to
generate such sequence information with several versions of the Ion Torrent platform, such
as the Ion Personal Genome Machine (PGM) System, Ion Proton System and Ion S5 system,
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and ION S5 XL systems. The Roche/454 Life Sciences introduced several sequencers in the
form of GS, GS 20 run, and GS FLX titanium. Similarly, Illumina sequencing supports a
variety of protocols with varying levels of throughput, including MiniSeq [7], MiSeq [8],
NextSeq (https://doi.org/10.48550/arXiv.1711.11004), HiSeq [9], and NovaSeq models
(Figure 1) (Table 1).
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2.3. Third-Generation Sequencing

Third-generation sequencing (TGS) technologies have focused on increasing the read
length while maintaining the sequencing throughput. The single-molecule real-time
sequencing-by-synthesis (SMRT) technology from Pacific Biosciences introduced read
lengths of single DNA fragments exceeding 10 Kb, and long sequences are particularly use-
ful for de novo genome assemblies, especially where genomes are large or contain repetitive
DNA, as is the case with many plants [10]. Pacific Biosciences (PacBio) has commercialized
two sequencing systems, RSII model and Sequel II, producing high-fidelity (HiFi) reads
with more than 99% accuracy [11], and Revio is an advanced platform to generate HiFi
reads at a higher throughput (15X. SMRT now enables the generation of very long reads of
lengths over 30 Kb to 50 Kb.

With continual upgrades in sequencing chemistry and technology, it is possible to
generate longer reads of over 100 Kb in length. Nanopore is a technology that takes
a different approach to sequencing via synthesis adopted by PacBio. This technology
(proposed in 1990 and commercialized by Oxford Nanopore Technologies, ONT) decodes
the DNA molecule by detecting electrical fluctuations as a nucleic acid molecule passes
through a small diameter biological “pore”. Continuous sequences from single molecules
up to 500 Kb have been reported, although generally, a single molecule sequence is
likely to average around 20 Kb [12]. By having multiple parallel pores and very rapid
processing, it is possible to obtain hundreds of gigabases of nucleotide sequences at
a low cost. Early iterations of the technology had relatively poor accuracy, and while
the accuracy has improved (partly through the development of software specifically
for interpreting nanopore signals), a nanopore is often corrected in practice by using
highly accurate short Illumina reads before being used for genome assembly. Nanopore
technology comes in different versions, including MinION, benchtop GridION, VolTRAX,
and high-throughput PromethION [13]. Next, 10× Genomics is another long-read
sequence technology (www.10xgenomics.com) integrated with GemCode technology
supplied with the Supernova2 genome assembler. This technology was specifically
designed for diploid and low-complex genomes, such as Corylus avellana, where its
implementation produced a chromosome-level genome assembly [14].

Similarly, optical mapping and Dovetail Hi-C technologies are useful to complete the
ordering of various DNA contigs in a genome by creating a visual physical map along large
DNA molecules, which assist in correlating a DNA sequence with a physical location [15,16].

https://doi.org/10.48550/arXiv.1711.11004
www.10xgenomics.com
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This technology was further improved by using nanofluidic methods, and image capture
and processing have further improved optical mapping [17,18]. The Bionano technology
was commercially developed and made available to process samples through Bionano
Genomics (San Diego, CA, USA) (https://bionanogenomics.com/products/) and OpGen
(http://www.opgen.com/about-us/opgen-overview/).

Table 1. Sequencing technologies and applications in the SGS era.

Sequencer/Technology Applications Reference

ChIP-Seq Protein-DNA interactions (using chromatin
immunoprecipitation) [19]

DNA-Seq A genome-derived sequence [20]
RIP-Seq, CLIP-Seq, HITS-CLIP Protein–RNA interactions [21]
RNA-Seq RNA (that is, the transcriptome) [22]
RAD-seq Restriction site-associated DNA sequencing [23]

TRAP Genetically targeted purification of polysomal
mRNAs [24]

Global run-on sequencing (GRO-Seq) Transcript analysis [25]
Reduced representation bisulphite sequencing (RRBS-Seq) Genome methylation [26]
Bisulfite sequencing (BS-Seq) Genome methylation [27]
Parallel analysis of RNA ends sequencing (PARE-Seq) microRNA target discovery [28]
Targeted DNA-Seq A subset of a genome (for example, an exome) [29]
Methyl-Seq Sites of DNA methylation, genome-wide [30]
Targeted methyl-Seq DNA methylation in a subset of the genome [31]
Hi-C Three-dimensional genome structure [32]
Chia-PET Long-range interactions mediated by a protein [33]

Ribo-Seq Ribosome-protected mRNA fragments (that is,
active translation) [34]

Synthetic saturation mutagenesis Functional consequences of genetic variation [35]

MAINE-Seq Histone-bound DNA
(nucleosome positioning) [36]

FRT-Seq Amplification-free, strand-specific
transcriptome sequencing [37]

PARS Parallel analysis of RNA structure [38]

Deep protein mutagenesis Protein binding activity of synthetic peptide
libraries or variants [39]

Repli-Seq Replication [40]

DNase-Seq, Sono-Seq, and FAIRE-Seq Active regulatory chromatin (that is,
nucleosome-depleted) [41]

NET-Seq Nascent transcription [42]
Immuno-Seq The B-cell and T-cell repertoires [43]

PhIT-Seq Relative fitness of cells containing disruptive
insertions in diverse genes [44]

Nacent-Seq Transcription [45]
ChIRP-Seq Genome localization [46]
Massively parallel functional dissection sequencing (MPFD) Enhancer assay [47]
Assay for transposase-accessible chromatin using
sequencing (ATAC-Seq) Open chromatin [48]

Structure-Seq RNA structure [49]
RNA on a massively parallel array (RNA-MaP) RNA–protein interactions [50]
SEQ-500 Genome sequencer [51]
RNA immunoprecipitation sequencing (RIP-Seq) RNA–protein interactions [52]
HiSeq 2000/2500/4000/X10 Genome sequencer www.illumina.com
MGISEQ-2000 Genome sequencer www.en.mgi-tech.com
NovaSeq 6000 Genome sequencer www.illumina.com
PacBio Sequel/II/HiFi Genome sequencer www.pacb.com
Nanopore PromethION/MinION Genome sequencer www.nanoporetech.com
MiSeq Genome sequencer www.illumina.com
TruSeq Genome sequencer www.illumina.com
DNBSEQ-T7 Genome sequencer www.en.mgi-tech.com

MeDip-Seq/DIP-Seq Methylated DNA
immunoprecipitation sequencing www.illumina.com

3. Plant Genomic Resources (Big Data Generation)

Sequencing technologies, mainly using high-throughput NGS sequencers, generate
significant amounts of data. For example, the recent sequencer from Illumina (NovaSeq
6000) has a higher output than the earlier generation of sequencing machines producing

https://bionanogenomics.com/products/
http://www.opgen.com/about-us/opgen-overview/
www.illumina.com
www.en.mgi-tech.com
www.illumina.com
www.pacb.com
www.nanoporetech.com
www.illumina.com
www.illumina.com
www.en.mgi-tech.com
www.illumina.com
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between 1300–20,000 million reads (65 Gb to 3 Tb). The long reads from PacBio reach up to
a maximum of 300 Kb, and the data generated with Sequel I, II (CLR), II (HiFi) range from
0.5 million to 400 million reads (15 Gb to 100 Gb), with the nanopore sequencing technology
(Minion and Promethion) sequencing ranging from 2.5–12 million reads (40 Gb to 180 Gb).

With this capacity, sequencing land plants having a wide range of genome size DNA
content can, in theory, possibly generate good coverage of the entire genome sequence data.
For example, the corkscrew plant Genlisea margaretae with a 1C value of 0.07 pg (65 Mb) and
the canopy plant Paris japonica with a 1C value of 152.2 pg (148.9 Gb) are equally accessible
in terms of raw sequence generation and coverage [53] (https://cvalues.science.kew.org/).
Generating several-fold coverage of genomic data produces potentially massive datasets,
ranging from Gb to Tb of sequence information. Depending on the scope of the project,
handling such large datasets is a major concern for small (or even big) research labs.
Decades ago, geneticists were mostly involved in lab work; now, the most limiting factor is
the analysis of the data to derive meaning or interpretation out of it using computational
tools. Understanding the algorithms and processing the data are a crucial part of genetics
and genomics data analysis when searching for biological meaning.

Genomic sequencing is a field where handling big data and its processing requires
a suitable storage and data transfer platform, such as is present in cloud technologies.
These are extensively applied to enhance the availability of the data to all researchers in
a project and indeed researchers worldwide. The genome sequence data generated for
a crop genome project are immense; for example, a single Sorghum genome sequence
contains over 50 gigabytes of raw data (depending on the data format generated), and
processing the data for large population-wide studies, such as finding deeper scientific
insights, marker–trait association, analyzing diversity, domestication, and assessing data
from gene-editing technologies, requires robust storage and computing capacities.

To maintain the uniformity of the data in the global databases, the members’ databases
(GenBank, EMBL, DDBJ, CNGBdb, IBDC) of the International Nucleotide Sequence Database
Collaboration (INSDC) [54] share and update genomic data periodically.

The recent stats release of GenBank reports having 16.7 trillion nucleotide bases
for 1.7 million whole genome sequences (as of June 2022) (GenBank and WGS Statistics
(ncbi.nlm.nih.gov)) (Figure 2). Of which, green plant data (Viridiplantae) alone have
93.8 million sequences from 2324 genomes (including variants of the same plant species
genome), including genomic DNA/RNA for 33.4 million sequences, mRNA for 41.5 million
sequences, and rRNA for 80,709 sequences.
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With the increasing complexity of genomic data themselves, the major databases also
integrate other genomic features and provide tools to search and retrieve these datasets.
The Entrez system of NCBI is one such tool allowing users to search, view, and download
the sequences from GenBank. Other modes of data accessibility allow for downloading
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from the FTP site (ftp.ncbi.nlm.nih.gov) or downloading data programmatically with the
provided public API to the Entrez system (https://eutils.ncbi.nlm.nih.gov).

Numerous databases have been developed for genomic data to suit a variety of differ-
ent purposes (Table 2). Based on the data catchment of the database, the database is as big
as a global repository holding the sequences of all species, like Ensembl Plants, the National
Centre for Biotechnology Information (NCBI), PlantGDB, the Plant Genome Database Japan
(PGDBj), to medium size databases hosting only plant genome assemblies/annotations, like
Phytozome and the Legume Information System (LIS) (https://www.legumeinfo.org), to
smaller databases containing crop/plant-specific information, such as for the chickpea SSR
database (https://cegresources.icrisat.org/CicArMiSatDB/index.html) [55] and chickpea
SNP and indel database (https://cegresources.icrisat.org/cicarvardb/) [56]. However, the
medium to smaller databases are limited to the scope of species-level data, like the LIS and
proposed angiosperms database [57], and may do not need to use powerful bioinformatics
tools and computational resources to explore the terabytes of genomic data, and many such
databases were earlier discussed in [58].

Table 2. Recent developments and availability of plant databases.

Database Name Description Website Ref

PlantcircBase Plant circular RNAs http://ibi.zju.edu.cn/plantcircbase/ [59]
Fine-Root Ecology Database Fine root trait database http://roots.ornl.gov [60]
ATTED-II Coexpression database http://atted.jp [61]

Planteome Plant reference and species-specific ontologies
for plants http://www.planteome.org [62]

PLADIAS Plant diversity analysis and synthesis www.pladias.cz [63]
TRY plant trait database Plant trait data https://www.try-db.org [64]
PmiREN Small non-coding RNA molecules database http://www.pmiren.com/ [65]

Plant DNA C-values The catalogue of C-value data for land plants
and algae https://cvalues.science.kew.org/ [53]

PlantPepDB Phyto-peptides for various
therapeutic purposes http://www.nipgr.ac.in/PlantPepDB/ [66]

MtSSPdb Medicago truncatula Small Secreted
Peptide Database https://mtsspdb.noble.org/ [67]

GRooT A collection of root traits in responses to
environmental conditions https://groot-database.github.io/GRooT/ [68]

MPDB Medicinal plant database https://www.medicinalplantbd.com/ [69]

GreenPhylDB Exploration of gene families and homologous
relationships among plant genomes https://www.greenphyl.org [70]

PlantscRNAdb Plant single-cell RNA analysis http://ibi.zju.edu.cn/plantscrnadb/) [71]
TarDB Plant miRNA target sequences http://www.biosequencing.cn/TarDB [72]
Xylella spp. Host plant species https://www.efsa.europa.eu/en/microstrategy/xylella [73]
PlantGSAD Gene set annotation plant species http://systemsbiology.cau.edu.cn/PlantGSEAv2/ [74]
CpGDB Plant chloroplast database http://www.gndu.ac.in/CpGDB [75]

DBPR Plant protein, DNA, RNA, Pathway, and
Expression Database https://www.habdsk.org/dbpr.php [76]

PtncRNAdb tRNA-derived non-coding RNAs database https://nipgr.ac.in/PtncRNAdb [77]

4. Plant Genome Assemblies

Genome assembly refers to aligning the small fragments of a DNA sequence to re-
construct the genome sequence in the original order and orientation. High-throughput
sequencing through first- and second-generation sequences has enabled the assembly of
many plant genomes. The highly fragmented genome assemblies generated with short
reads have been improved with long read sequence assemblies, simplifying and improving
the ability to generate chromosome-level assemblies with reduced reliance on dedicated
research experts.

Thanks to the NGS technology and increased computational power, the standard of
the genome assemblies available has improved significantly. Genomics has accelerated
its growth in the past decade from draft-level genome assemblies to reference-level
genome assemblies [78–80].

The plant genomes assembled in the FGS era faced significant throughput issues
and were limited by a read length of around 1 Kb. This necessitated approaches such as
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BAC-end reads and BAC barcoding to allow contigs to be linked and positioned throughout
the genetic mapping. The plant genomes assembled in the FGS era are far fewer than the
genomes assembled in the SGS and TGS sequencing technology era (Figure 3A), primarily
due to the lower throughput and high cost of FGS. The situation changed sharply with
SGS, as the volume of the sequence (although not the length) was significantly increased.
Long-read sequence technologies play a crucial role in genome assembly projects, which
helps in scaffolding the contig sequences, and thus many genome projects were initiated
with combined SGS and TGS technologies (Figure 3B). With the advent of advanced se-
quence technologies such as PacBio HiFi sequencing, which produces a 10 to 30 Kb circular
consensus sequence, thus reducing error rates (CCS) [11], Oxford Nanopore long-read pro-
tocols [81], Hi-C scaffolding [32], and optical mapping technologies, such as Bionano [82],
it is possible to assemble complex genomes. The emerging third-generation sequence data
have boosted the genome assembly quality to build a chromosome-level assembly by over-
coming the limitation of short reads assembly, particularly in plants, where islands of repeat
sequences need to be bridged between the gene-rich regions of the chromosomes. With
the low-cost and high-throughput sequence data generations, at least 1143 plant reference
assemblies have been published (www.plabipd.de) (Supplementary Table S1). Based on
the availability of funds and the feasibility of applying high-volume sequence data gener-
ation, multiple individuals of the same species were de novo assembled, e.g., potato [83],
or the genome assembly of the same varieties improved, such as for chickpea [84,85] and
sesame [86]. The development of long-read technologies as part of the TGS allowed for a
relatively simple assembly of smaller genomes. With optical and chromatin-based methods,
such as Bionano and HiC, far more comprehensive and larger genome assemblies are now
possible, which are based on a range of techniques, including the integration of scaffolds
into the chromosome through genetic mapping.

In recent years, gold-standard and platinum-standard chromosome-level genome
assemblies are being achieved in prominent model crop plants [87–92]. Here, gold-standard
assembly refers to cases where the number of superscaffolds matches the number of haploid
chromosomes, yielding a chromosome-level assembly; a platinum-standard assembly refers
to a telomere-to-telomere (T2T) assembly with the final scaffolds matching the number
of haploid chromosomes. This era has led to gold- or platinum-standard assemblies in
crop plants, and publications meeting these standards are continuing to appear [93]. The
importance of having platinum-standard reference genome assemblies and the importance
to compare cultivated species with wild relatives of rice is documented [94].

Chromosome-level genome assemblies were initiated with Arabidopsis in 2000 [95]
and later with rice in 2005 [96]. These assemblies were generated with the traditional,
expensive, and low-throughput Sanger sequencing method. With current third-generation
sequencing (such as PacBio, HiFi, Hi-C, and optical mapping methods), it is possible to gen-
erate chromosome-level pseudomolecules [97]. With PacBio sequence data, a chromosome-
level assembly was first achieved for Arabidopsis [98] followed by Oropetium [99]. Similar
to the PacBio long reads, ONT generates around 200 Kb length reads highly suitable for
bacterial genomes assembly [100]. Synthetic long reads (SLR) are long reads generated from
Illumina short-read data to assemble long reads [101]. In total, 113 plant species have the
chromosome-level genome assemblies published (as of the end of 2022) (www.plabipd.de)
of the total assembly number of 1143 flowering plants, and 125 are non-flowering plants
(Supplementary Table S1). Most of these near-complete plant genomes were produced with
sequence data generated from multiple technologies. The long-read 10× Genomics with
short-read Illumina data were used to assemble the blueberry genome [102]. PacBio and
Hi-C sequence technology were used for assembling the octoploid sugarcane genome [103],
allotetraploid peanut [104], and teff [105].

Several novel technologies have emerged (such as optical mapping [106]), the Irys
system by BioNano Genomics (www.bionanogenomics.com) and chromosome conforma-
tion capture sequencing (Hi-C) [32]) to improve the scaffolding without depending on
genetic mapping. However, these advances in genome assembly have recently improved

www.plabipd.de
www.plabipd.de
www.bionanogenomics.com
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further to generate the telomere-to-telomere (T2T) assemblies, as first implemented in
2020 for the X chromosome sequence of the human genome [107] and later adapted
to plants, such as Arabidopsis [108,109], rice [110], and banana [111] (Table 1). The
combined integration of PacBio and modified Hi-C protocol as Dovetail Genomics has
improved the assembly contiguity for A. alpina [112]. The high-resolution gap-free
T2T genome assemblies ensure the capture of all the repetitive sequences and genomic
variants without any misassemblies.

The greatest bioinformatics challenge for sequencing plant genomes was repetitive
sequences, leading to sequencing errors and unrecognizable assembling errors at earlier
stages of assembly computation. As the plant genome size and ploidy or repeat content
increases, the complexity of assembly of the sequence reads correctly also increases,
and thus the assembly programs used in these genome projects needed increasingly
sophisticated strategies (such as chromosome flow sorting methods used in wheat) to
handle such challenges. Additionally, handling the terabytes of sequence data and
storage and managing the computing clusters and complexity of the algorithms also
need to be addressed.

In addition to improving the quality of reference genomes to platinum-standard,
present-day technologies paved the way for the transformational shift from the representa-
tive single genotype’s genome sequence to the pan-genome sequence as a reference for a
better understanding of the variability present within a species [113]. The advantages of
the pan-genome reference are being realized in generating novel insights and the identifi-
cation of the genes or genomic regions underlying the important agronomical traits and
domestication process [86,114–118].
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5. Genome Assemblers

As sequencing technology evolved, assembly approaches also had to evolve. The
Celera Assembler and Arachne assemblers were developed to handle genomes of the
fruit fly (Drosophila melanogaster) and human genome in 2000–2003; later, AMOS was
launched under an open-source framework. These assemblers were developed based
on overlap–layout–consensus on an overlap graph [120] in which the nodes were the
reads and the edges represented the shared sequence between reads. This type of
assembler is suitable for assembling FGS technology sequencing reads produced by
the dideoxy termination method (Sanger sequencing). As massively parallel high-
throughput sequencing technology was developed to produce millions of bases (in
SGS), the read size became smaller and more error-prone with higher genome coverage.
The leading Illumina technology of SGS/NGS sequencing technology yields 35–150 bp
length paired-end reads from fragments with a 200–300 bp insert size. Such high-
throughput data required a new approach, and thus de Bruijn graph-based assembly
was developed [121,122] where the nodes represent fixed-length strings drawn from
a larger set of strings, and the edges represent perfect shared sequences. However, de
Bruijn graph-based assemblers have difficulties handling sequencing errors and need
high computational power (100+ Gb of memory). The challenge with uneven genome
coverage and reads too short to span repeated regions can be addressed by a combination
of many short reads and fewer longer reads or mate–pair reads (Sanger, 454 and Illumina
sequencing methods). Multiplex de Bruijn graphs automate the assemblies of long HiFi
reads [123], and the recently updated Minimap2 version can be used for long read
assembly [124]. Newbler was the first assembler released in 2004 to assemble the 454
sequence data followed by a hybrid version of the MIRA assembler for 454 and mixed
with Sanger reads. After upgrading the Illumina sequence technology to produce from
the initial 36 base-length read to reads over 100 bases in length, the produced sequence
was suitable for de novo assembly. After the release of the SHARCGS assembler for
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Solexa reads, other assemblers were released and became the most popular assembly
tools (Figures 4 and 5).
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Plant genome assembly was initiated with Arabidopsis thaliana in December 2000 [95]
where the approach relied on overlapping bacterial artificial chromosome (BAC) clones
which were end sequenced and the same approach was applied to the crop plant
rice [125,126]. Later, the emerging whole genome shotgun (WGS) strategy was ap-
plied to black cottonwood [127]. This was where more difficulties and challenges were
faced to assemble the short sequence reads, which resulted in a more fragmented assem-
bled genome sequence followed by two versions of the grapevine genome sequence in
2007 [128,129]. A hybrid approach was adopted to sequence the cucumber with Illumina
and Sanger sequencing technology, indicating the feasibility of using this approach for
plant genome sequencing [130]. With the change in technology, 454 combined with the
Sanger sequencing approach was applied to the genomes of apple [131], cocoa [132],
and muskmelon [133]. In 2011, the first plant genome was sequenced using SGS tech-
nology combining 454, Illumina, and the SOLID platform for strawberry [134], Chinese
cabbage [135], potato [136], chickpea [137], pigeonpea [138], and watermelon [139].

The advances in sequencing technology (SGS and TGS) and assembly approaches
have removed the limitation of genome sequencing for not only the crops with small
genome sizes but also enabled sequencing and assembly of large genome crops, like wheat
(~17 Gbp) [87,140,141], barley (5.1 Gbp) [142], rye (~7–8 Gbp) [143], and tea
(~3.8–4.0 Gbp) [144], which are important for animal feed and human nutrition.
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The genome assembly quality has improved as the sequencing technologies and
assembling tools improved (Figures 3–5), especially when combined with the utilization of
multiple sequencing technologies of TGS, for example.

The initial assembly version of the sorghum genome assembly released in 2009 [145]
with shotgun sequencing and BAC libraries data captured 738.5 Mb of sequences in 12,873
contig sequences (scaffolded to 3304 sequences), which is more fragmented compared to
the chromosome-scale assembly of the sorghum genome using nanopore sequencing and
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optical mapping data that produced a hybrid assembly made of 29 scaffolds capturing the
661.16 Mbps [146].

For a large genome (~8 Gb) rye (Secale cereale), initially, a virtual linear gene order
model (22,426 genes) was established with high-throughput transcript mapping and
chromosome survey sequencing [147]; following reference genome assembly with a
shotgun, de novo genome assembly produced 1.29 million scaffolds, capturing 2.8 Gbp of
sequence [148] and later chromosome-scale genome assembly with 10×, HiC, Bionano op-
tical genome mapping, and chromosome-specific shotgun (CSS) reads produced 6.74 Gb
(of estimated 7.9 Gb) [149].

In addition to the chromosome-scale assemblies, TGS has enabled the assembly of
polyploid genomes, such as bread wheat [87], potato [150], and peanut [151].

6. Advancements in Plant Genomics

With the emerging sequence technology and bioinformatics tools, it is possible to
assemble a nearly complete genome sequence. With cytogenetic advances to measure the
genome size (such as flow cytometry), a genome size estimation is a useful first step in a
complete genome sequencing project. The amount of sequencing data required to produce
a given level of coverage depends on the 1C amount of DNA per cell (including ploidy
level), and for most species, this can be found in the Kew Plant Genome Database. Most
plant genome assemblies are smaller than the cytogenetic genome estimation size; this may
be because of assembly errors or difficult-to-approach genomic regions, like centromeric
and repetitive regions in the plant genome, where assemblers struggle (physical maps, such
as Bionano, resolve such issues). Some of the assembled plant genome sizes are quite close
to the cytogenetic estimated size, indicating the assembler has captured the majority of the
genome content. Assemblies above the estimated size, however, may need refinement to
reduce contaminants or alter the assembly parameters.

The genome assembly provides the coordinate system for the gene models and other
genomic features, like SNPs, Indels, SSRs, etc. Predicting the gene models with ab initio
gene findings and supporting evidence in the form of RNA data increases the accuracy.
However, this may not list out the complete complement of genes of the species for which
resequencing a wide range of diverse accessions will reveal more genes that are genotype-
specific. For example, the resequencing of >1000 wild and cultivated rice accessions has
predicted the presence of thousands of genes with lower sequence diversity in cultivated
rice, indicating a rice domestication genetic bottleneck [114,152]. Moreover, genetic di-
versity is often reduced during domestication, and resequencing a single individual may
not capture the species-wide gene content. Thus, the concept of the pan-genome was
developed and adapted to plants’ genomes to identify the species-wide gene content. The
core genome is usually defined as the housekeeping genes (which must be present for
the organism to survive and reproduce) and the variable/dispensable genes (these genes
are present or absent in a particular cultivar/accession of a species) that exhibit the gene
diversity or variability in a species (Figure 6). Thus, the first plant pan-genomes appeared
in 2007, describing the variable genes in rice and maize genomes, and were later adapted to
a wide range of plant genomes [153], including banana [154], white lupin [155], barley [156],
wheat [156], wheat panache [157], and sorghum [158] (Table 3).
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Table 3. The pan-genome assemblies.

Approach Species Domestication
Status Ploidy Number of

Accessions Reference

de novo Brassica rapa Crop Diploid 3 [159]
de novo G. soya (soybean) Wild Tetraploid 7 [160]
de novo O. sativa Crop Diploid 3 [161]
de novo transcriptome Zea mays (maize) Crop Diploid 503 [162]
de novo metagenome
assembly O. sativa (indica/japonica) Crop Diploid 1483 [163]

Iterative assembly B. oleracea Crop Diploid 10 [164]
Read mapping Populus (poplar) Wild Diploid 7 [165]
de novo B. distachyan Wild Diploid 54 [166]
de novo Medicago truncatula Wild Diploid 15 [167]
Iterative assembly Triticum aestivum (bread wheat) Crop Hexaploid 19 [115]
Iterative assembly B. napus Crop Tetraploid 53 [168]
Iterative assembly Capsicum (pepper) Crop Diploid 383 [169]
Iterative assembly O. sativa/O. rufipogon Crop Diploid 67 [170]
Map-to-pan O. sativa (rice) Crop Diploid 3010 [78]
de novo Sesamum indicum (sesame) Diploid 5 [171]
Iterative assembly Helianthus annuus (sunflower) Crop Diploid 493 [172]
Iterative assembly Solanum lycopersicum (tomato) Crop Diploid 725 [116]
de novo B. napus (oilseed rape) Crop Tetraploid 9 [173]
de novo Juglans (walnut) Wild Diploid 6 [174]
de novo, graph G. max (soybean) Crop Diploid 29 [175]
PHG Sorghum Diploid 398 [176]
Iterative assembly B. napus Crop Tetraploid 50 [177]
Iterative assembly Pigeon pea (Cajanus cajan) Diploid 89 [113]
de novo Pecan (Carya illinoinensis) Tree Diploid 4 [178]
de novo White lupin Crop Diploid 39 [155]
Iterative assembly Sorghum Crop Diploid 354 [158]

Iterative assembly Brassica napus, rapa, oleracea Crop Diploid, diploid,
amphidiploid 87, 77 and 79 [179]

Iterative assembly Chickpea Crop Diploid 3366 [180]

de novo Sorghum Crop/Wild
relatives Diploid 16 [181]

Iterative assembly Eggplant (Solanum melongena L.) Diploid 23 [182]
Iterative assembly Banana (Musa and Ensete) Triploid 15 [154]
de novo Tomato (Solanum lycopersicum) Crop Diploid 838 [183]
de novo Potato (Solanum tuberosum L.) Crop Diploid 44 [83]
Iterative assembly Lupin Crop Diploid 55 [184]

The most commonly used downstream analysis with pan-genome assemblies is to
identify the genetic variation of any DNA segment in a genome or a gene (including
gene fragments) that can be used as a marker for genotyping. Bioinformatics resources
enhancing crop genomics for downstream analysis include copy number variations (CNV),
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identification of variations based on the length (SNP, SSR, Indels), a set of SNPs used as a
unit in the form of a haplotype to increase the resolution of GWAS, k-mer analysis, linkage
disequilibrium (LD), presence–absence variations, pan-genome-wide association studies
(PWAS), genotyping-by-sequencing, reduced representation sequencing, domestication,
and diversity analysis (Figure 7). With these bioinformatics tools, the genomic data also
assists plant phylogenomic research with useful information, such as genome diversity
and speciation events. Therefore, bioinformatics has become a most essential part of plant
genomics research.

Life 2023, 13, x FOR PEER REVIEW 15 of 29 
 

 

(PWAS), genotyping-by-sequencing, reduced representation sequencing, domestication, 
and diversity analysis (Figure 7). With these bioinformatics tools, the genomic data also 
assists plant phylogenomic research with useful information, such as genome diversity 
and speciation events. Therefore, bioinformatics has become a most essential part of plant 
genomics research. 

 
Figure 7. The downstream analysis and the associated bioinformatics tools used for the data analy-
sis. 

High-throughput genotyping enables the genotyping of thousands of targeted loci 
(genetic markers) on thousands of samples. Depending on the number of markers and the 
sample size, different genotyping techniques can call genotypes in different ranges. Some 
of the technologies include Illumina golden gate, Affymetrix SNP, reduced-representation 
genome sequencing, exome-seq, Fluidigm (hĴps://investors.flu-
idigm.com/node/13686/pdf), IntelliQube (hĴps://www.myebpl.com/intelliqube.html), 
MassARRAY [185], MassEXTEND, GeneChip [186], APEX-Seq [187], BeadARRAY 
(hĴps://www.illumina.com/science/technology/microarray.html), TaqMan [188], and 
DArT (hĴps://www.diversityarrays.com/). Genotyping by sequencing (GBS) is a highly 
multiplexed system for constructing reduced representation libraries from the sequencing 
platform with low-cost, reduced sample handling with no need for a reference genome. 
GBS (including the single digest RAD and double digest RAD and skim-sequencing) are 
tools for genomics-assisted breeding in a range of plant species through the applications 
of SNPs identification, gene/QTL mapping, molecular diversity, GWAS, construction of 
high-density genome maps, haplotype maps, phylogenetics, identification of candidate 
genes, genetic linkage analysis, molecular marker discovery, and genome sequencing and 
selection. Such genetic resources assist in predicting the genetic value of selected candi-
dates based on the genomic estimated breeding values (GEBV) from high-density and 
quality markers. Genomic selection (GS) is an approach to exploit genetic markers to de-
velop new markers-based models to increase the genetic gain of complex traits for breed-
ing programs. High-throughput marker technologies have changed the entire scenario of 
marker applications and enabled the use of GS routine work for crop improvement. 

Plant phenotyping through conventional methods relies on manual measurements, 
which are laborious, error-prone, and time-consuming. Similar to genotyping, high-
throughput phenotyping (HTP) (“phenomics”) has unique advantages in facilitating 

Figure 7. The downstream analysis and the associated bioinformatics tools used for the data analysis.

High-throughput genotyping enables the genotyping of thousands of targeted loci
(genetic markers) on thousands of samples. Depending on the number of markers
and the sample size, different genotyping techniques can call genotypes in different
ranges. Some of the technologies include Illumina golden gate, Affymetrix SNP, reduced-
representation genome sequencing, exome-seq, Fluidigm (https://investors.fluidigm.
com/node/13686/pdf), IntelliQube (https://www.myebpl.com/intelliqube.html), Mas-
sARRAY [185], MassEXTEND, GeneChip [186], APEX-Seq [187], BeadARRAY (https:
//www.illumina.com/science/technology/microarray.html), TaqMan [188], and DArT
(https://www.diversityarrays.com/). Genotyping by sequencing (GBS) is a highly mul-
tiplexed system for constructing reduced representation libraries from the sequencing
platform with low-cost, reduced sample handling with no need for a reference genome.
GBS (including the single digest RAD and double digest RAD and skim-sequencing)
are tools for genomics-assisted breeding in a range of plant species through the appli-
cations of SNPs identification, gene/QTL mapping, molecular diversity, GWAS, con-
struction of high-density genome maps, haplotype maps, phylogenetics, identification
of candidate genes, genetic linkage analysis, molecular marker discovery, and genome
sequencing and selection. Such genetic resources assist in predicting the genetic value
of selected candidates based on the genomic estimated breeding values (GEBV) from
high-density and quality markers. Genomic selection (GS) is an approach to exploit
genetic markers to develop new markers-based models to increase the genetic gain
of complex traits for breeding programs. High-throughput marker technologies have

https://investors.fluidigm.com/node/13686/pdf
https://investors.fluidigm.com/node/13686/pdf
https://www.myebpl.com/intelliqube.html
https://www.illumina.com/science/technology/microarray.html
https://www.illumina.com/science/technology/microarray.html
https://www.diversityarrays.com/
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changed the entire scenario of marker applications and enabled the use of GS routine
work for crop improvement.

Plant phenotyping through conventional methods relies on manual measurements,
which are laborious, error-prone, and time-consuming. Similar to genotyping, high-
throughput phenotyping (HTP) (“phenomics”) has unique advantages in facilitating
accurate, automated, high-quality data collection techniques, including visible light
imaging, X-ray computed tomography, visible and near-infrared spectroscopy, multi-
spectral imaging, chlorophyll fluorescence, fluorescence imaging, and nuclear magnetic
resonance (NMR) [189] (Xiao et al., 2022). These tools are generally used to obtain
high-resolution images of samples from which features are extracted with image process-
ing algorithms. Mostly machine learning algorithms are used to generate robust data
processing to produce accurate and time-efficient phenotypes of plants [190]. Highly
accurate genotype and phenotypic data need appropriate statistical methods to identify
true associations between genetic and phenotypic variation (Figure 8). Plant phenotyp-
ing systems, imaging techniques, challenges, and their applications have been reviewed
elsewhere, including imaging systems, data collection methods, and analysis techniques
and problems [191–193]. GWAS has high efficiency and high resolution and is conducted
on a genome-wide scale with statistical programs. Some of the R packages developed
for association analysis are GAPIT [194], qqman [195], gwasrapidd [196], eQTpLot [197],
Postgwas [198], GWASTools [199], and IntAssoPlot [200].
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7. Data Science and Artificial Intelligence

Genomics data science is a field that needs powerful computational and statistical
methods to decode the information in plant genomic DNA. Having a better understanding
of genomics with these data science tools helps researchers to uncover the differences
between the varieties at a DNA level and enhance crop improvement. Bioinformatics has
emerged to bring in vivo experimentation and in vitro data analysis with statistical and
computational tools to process the data by developing and implementing the algorithms as
software tools to make predictions based on the experimental data.

Researchers are now generating more genomic data to understand genome functions
and mine genetic information to explore novel insights from the vast amounts of generated
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genomic data. Sequencing huge numbers of individuals of a species generates terabytes of
data, and processing such large amounts of data needs additional terabytes to petabytes of
storage and working computational infrastructure. Researchers need special computational
and software tools to mine and interpret hidden biological information through assembling
the sequence data, aligning the sequence reads, and mining the variation, association
studies and other genomic insights [201].

Artificial intelligence (AI) tools help researchers process vast quantities of genomic
sequence data to find patterns in a genome [202]. AI typically contains hidden layers
of analysis leading to biases in generating the results and may be undetected [203].
Thus, there is a need to apply human intelligence to validate the prediction/results in
other dimensions.

Machine learning (ML) is a subset of artificial intelligence (AI) involving the devel-
opment of algorithms that learn to perform a specific task based on given inputs. ML is
implemented in either supervised learning (predicting output based on the given input
features describing the object) or unsupervised learning (seeking patterns comparison
and grouping the data) [204]. Supervised learning can be further grouped into two
categories of algorithms: classification and regression. Similarly, unsupervised learning
categories include clustering and association. Reinforcement learning is a feedback learn-
ing method in which the right action has a positive score, while a negative score is for
the wrong action. The deep learning (DL) approach involves using layers of neural net-
works, and DL uses several such layers as artificial neural networks [204]. Convolutional
neural networks are effective at image processing, while recurrent neural networks deal
with sequential data and support vector machines that can capture nonlinear relations
between objects. A better classification of the relationships between ML methods is
depicted in Figure 9.
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ML method implementations are available in the form of a Weka (https://www.cs.
waikato.ac.nz/ml/weka/) and Orange (https://orange.biolab.si/) as user-friendly graphi-
cal interfaces, scikit learn (https://scikit-learn.org/) [205], Keras [206], and PyTorch [207].
In Advances, in-neural information processing systems and are available as the TensorFlow
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package (https://www.tensorflow.org/overview/) [208] in Python and the Caret package
in R (https://cran.r-project.org/web/packages/caret/vignettes/caret.html) [209].

ML is widely used for crop improvement; some of the case studies include plant–
pathogen interactions [210], traits, and phenotyping [211], and applications include at
the molecular level in plants [212]. The use of ML in plant genomics has increased in
the last decade [213]; applications include the classification of genes into active and
inactive genes in maize [214], identifying genome crossovers [215], identification of
near-complete genetically fixed genomic regions [216], gene regulatory networks in
maize [217], gene prediction with deep learning with a variety of architectures [218],
diagnosis of pests and disease [219], gene prediction concerning climatic conditions [220],
predicted gene expression levels from genomic sequence data [221], identifying vari-
ants based on short-read sequence alignments [222], and classifying genes as core and
dispensable genes [223].

The applications of ML have been widely used in phenotyping through high-throughput,
image-based plant phenotyping which uses a convolutional neural network (CNN) [224]
and deep learning [225]. From a recent review [226], the most commonly used genome
selection R packages based on the linear mixed model and Bayesian regression model are
rrBLUP and Bayesian models rrBLUP [227], BGLR [228], lme4 [229], ASReml [230], and
glmnet [231]. For the multiple trait-based genome selection, MTGS (genomic selection
using multiple traits) and BMTME (Bayesian multi-trait and multi-environment) [232]
packages have been developed. The more detailed approaches and categories in genome
selection were discussed in an earlier study [226].

ML can improve plant breeding [204,233], with plant breeders relying on genomic
selection [234] to identify the QTLs (quantitative trait loci) (genomic regions associated
with traits), assess the genetic architecture of the crop, and predict traits for new geno-
types. ML algorithms used for such predictions are random forests [235], support vector
machines [236], and gradient tree boosting [237].

Mobile apps have been designed to collect data, record details, predict plant dis-
ease, predict weather changes, and other miscellaneous applications. The apps and
the underlying algorithms interpret images captured through the devices, thus report-
ing the health condition of plants, soil color and other phenotypes. The availability of
these apps for farmers assists in detecting disorders and suggests suitable measures to
protect the crop. Some of the apps are AgSpeak (https://www.agspeak.in/), AutoML
(https://www.automl.org/), aWhere (https://www.climateshot.earth/awhere), Farm
at Hand (https://www.farmathand.com/), Plantix (https://plantix.net/en/), Tumaini
(https://ciat.cgiar.org/phenomics-platform/tumaini/), and Xarvio (https://www.xarvio.
com/global/en.html).

8. Conclusions/Future Aspects

The goal of improving sequencing technology has been to generate genetic information
in a faster, cheaper, and more accurate way. The more portable sequencing platforms (such
as the Minion from Oxford) require less power, reagents, maintenance, and storage and have
an easy processing format. It is also equally important to have advanced and compatible
bioinformatics tools to analyze the big data generated from the agriculture sector.

First- and second-generation sequencing technologies generated short-sequence
reads resulting in highly fragmented reference genome assemblies (unless coupled
with long-range systems of mapping, such as BAC-end sequencing) but were used to
generate the first reference genomes for plants. Such low-quality assemblies (compared
to third-generation assemblies) have many gaps and do not represent the actual genome
structure. On the other hand, combined second- and third-generation sequence data have
contributed to generating full chromosome-level (CL) to T2T-level reference sequences.
Only in a few plant genomes have high-quality, gapless chromosome levels to T2T
quality assemblies been generated; therefore, further improvements are necessary to
generate high-quality standards.

https://www.tensorflow.org/overview/
https://cran.r-project.org/web/packages/caret/vignettes/caret.html
https://www.agspeak.in/
https://www.automl.org/
https://www.climateshot.earth/awhere
https://www.farmathand.com/
https://plantix.net/en/
https://ciat.cgiar.org/phenomics-platform/tumaini/
https://www.xarvio.com/global/en.html
https://www.xarvio.com/global/en.html
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T2T-level genome assemblies will provide insights into the genetic diversity, iden-
tification of domestication events, and the investigation of the evolutionary history of
plant species.

The sequencing of multiple accessions of a plant species is expected to allow the
assembly of a pan-genome which represents the collection of core and dispensable genes
present in a species [153]. In addition to pan-genome studies, several intensive genome
and transcriptome projects have been initiated (10,000 plant genomes and 1000 plant
transcriptomes) [238]. Additionally, the Earth BioGenome Project (EBP) is planning to
sequence and catalogue the genome of all eukaryotes on Earth.

The recent advances and developments in bioinformatics applications for plant genomes
provide huge potential for plant genome research. As sequencing technology has become
much more affordable and portable to handle, the importance of bioinformatics tools in-
creases to analyze and manage the data. More plant species genome databases are being
established with a variety of analysis methods. Phylogenomics and GWAS now generate
more accurate results with the tools developed with newer algorithms. Moreover, high-
throughput phenotyping needs to provide results with a high resolution to meet the density
of genotype information.

The genetic information in the form of sequence data or optical maps needs to be
as error-free as possible, selecting the appropriate informatics tools for de novo assembly,
scaffolding, annotation, and downstream analysis. This is key for gold- or platinum-
standard genome assemblies.

With the rate of the growing world population, there is a constant increase in demand
for food, and AI will play a vital role in meeting these demands, coupled with computa-
tional power through robotics, smartphone apps, and image processing algorithms. AI
provides automation in agriculture. Technology is being developed in agriculture for auto-
mated methods, crop improvement, and crop protection. With computational advances,
including AI, ML, and DL, the future GAB, including marker-assisted selection (MAS),
MABC, marker-assisted recurrent selection (MARS) [239], haplotype-based breeding, speed
breeding (SB) [240,241], and genomic selection (GS), are expected to play a key role in
breeding more smart crop cultivars with higher production and nutritional value in both a
cost- and time-saving manner.

In the past two decades, the parallel advances in sequencing technology and bioinfor-
matics tools have enabled plant researchers to generate genomics resources for economically
important plants, which is critical for crop improvement and to develop a greater scientific
understanding of the gene underlying critical traits for future agriculture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life13081668/s1, Table S1: The available plant genome assemblies
(at the level of scaffold, chromosome and t2t standard quality).
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