Pilot Translational Precision Biobehavioral Assays for Early Detection of Motor Impairments in a Rat Model of Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. In Utero Chorioamnionitis (CHORIO)
2.3. General Movements Assessment in Rats (GMA)
2.4. Statistical Analyses
3. Results
3.1. Group Comparison at Postnatal Day 10
3.2. Group Comparison at Postnatal Day 17
4. Discussion
4.1. Implications
4.2. Future Directions
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARRIVE | Animal Research: Reporting of In Vivo Experiments |
CHORIO | Chorioamnionitis |
CP | Cerebral palsy |
CPARF | Cerebral Palsy Research Alliance Foundation |
GMA | General Movements Assessment |
Hr | hour |
IACUC | Institutional Animal Care and Use Committee |
LPS | lipopolysaccharide |
NIH | National Institutes of Health |
P | Postnatal day |
References
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, accurate diagnosis and early intervention in cerebral palsy: Advances in diagnosis and treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.; Noritz, G.; Maitre, N.L.; NCH Early Developmental Group. Implementation of early diagnosis and intervention guidelines for cerebral palsy in a high-risk infant follow-up clinic. Pediatr. Neurol. 2017, 76, 66–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberg, G.K.; Jacobsen, B.K.; Jorgensen, L. Predictive value of general movement assessment for cerebral palsy in routine clinical practice. Phys. Ther. 2015, 95, 1489–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandle, M.; Sheppard, A.; Fletcher, A.A.; Berry, M.; DeVries, N. Early identification of infants at risk of cerebral palsy: Developing the use of general movement assessment in routine clinical practice in a tertiary neonatal unit in New Zealand. N. Z. Med. J. 2020, 133, 63–70. [Google Scholar]
- Williams, S.A.; Mackey, A.; Sorhage, A.; Battin, M.; Wilson, N.; Spittle, A.; Stott, N.S. Clinical practice of health professionals working in early detection for infants with or at risk of cerebral palsy across New Zealand. J. Paediatr. Child. Health. 2021, 57, 541–547. [Google Scholar] [CrossRef]
- Einspieler, C.; Marschik, P.B.; Bos, A.F.; Ferrari, F.; Cioni, G.; Prechtl, H.F.R. Early markers for cerebral palsy: Insights from the assessment of general movements. Future Neurol. 2012, 7, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Einspieler, C.; Prechtl, H.F. Prechtl’s assessment of general movements: A diagnostic tool for the functional assessment of the young nervous system. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- Colombo, P.; Bacca, E.; Sterpa, A. General movements in neonatology. Pediatr. Med. Chir. 2003, 25, 249–254. [Google Scholar]
- Darsaklis, V.; Snider, L.M.; Majnemer, A.; Mazer, B. Predictive validity of Prechtl’s method on the qualitative assessment of general movements: A systematic review of the evidence. Dev. Med. Child. Neurol. 2011, 53, 896–906. [Google Scholar] [CrossRef]
- Akula, S.K.; McCullough, K.B.; Weichselbaum, C.; Dougherty, J.D.; Maloney, S.E. The trajectory of gait development in mice. Brain Behav. 2020, 10, e01636. [Google Scholar] [CrossRef] [Green Version]
- Reed, J.; Grillakis, A.; Kline, A.; Ahmed, A.E.; Byrnes, K.R. Gait analysis in a rat model of traumatic brain injury. Behav. Brain Res. 2021, 405, 113210. [Google Scholar] [CrossRef] [PubMed]
- Sashindranath, M.; Daglas, M.; Medcalf, R.L. Evaluation of gait impairment in mice subjected to craniotomy and traumatic brain injury. Behav. Brain Res. 2015, 286, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tian, N.; Bai, Q.; Chen, Q.; Sun, X.; Wang, Y. Gait assessment of pain and analgesics: Comparison of the DigiGait and CatWalk gait imaging systems. Neurosci. Bull. 2019, 35, 401–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantzie, L.L.; Corbett, C.J.; Berglass, J.; Firl, D.J.; Flores, J.; Mannix, R.; Robinson, S. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J. Neuroinflamm. 2014, 11, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantzie, L.L.; Corbett, C.J.; Firl, D.J.; Robinson, S. Postnatal Erythropoietin Mitigates Impaired Cerebral Cortical Development Following Subplate Loss from Prenatal Hypoxia-Ischemia. Cereb. Cortex 2015, 25, 2683–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.; Corbett, C.J.; Winer, J.L.; Chan, L.A.S.; Maxwell, J.R.; Anstine, C.V.; Yellowhair, T.R.; Andrews, N.A.; Yang, Y.; Sillerud, L.O.; et al. Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp. Neurol. 2018, 302, 1–13. [Google Scholar] [CrossRef]
- Kilkenny, C.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 2010, 1, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Yellowhair, T.R.; Noor, S.; Mares, B.; Jose, C.; Newville, J.C.; Maxwell, J.R.; Northington, F.J.; Milligan, E.D.; Robinson, S.; Jantzie, L.L. Chorioamnionitis in Rats Precipitates Extended Postnatal Inflammatory Lymphocyte Hyperreactivity. Dev. Neurosci. 2019, 40, 523–533. [Google Scholar] [CrossRef]
- Jantzie, L.L.; Oppong, A.Y.; Conteh, F.S.; Yellowhair, T.R.; Kim, J.; Fink, G.; Wolin, A.R.; Northington, F.J.; Robinson, S. Repetitive Neonatal Erythropoietin and Melatonin Combinatorial Treatment Provides Sustained Repair of Functional Deficits in a Rat Model of Cerebral Palsy. Front. Neurol. 2018, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.R.; Denson, J.L.; Joste, N.E.; Robinson, S.; Jantzie, L.L. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta 2015, 36, 1378–1384. [Google Scholar] [CrossRef]
- Yellowhair, T.R.; Newville, J.C.; Noor, S.; Maxwell, J.R.; Milligan, E.D.; Robinson, S.; Jantzie, L.L. CXCR2 Blockade Mitigates Neural Cell Injury Following Preclinical Chorioamnionitis. Front. Physiol. 2019, 10, 324. [Google Scholar] [CrossRef] [Green Version]
- Yellowhair, T.R.; Noor, S.; Maxwell, J.R.; Anstine, C.V.; Oppong, A.Y.; Robinson, S.; Milligan, E.D.; Jantzie, L.L. Preclinical chorioamnionitis dysregulates CXCL1/CXCR2 signaling throughout the placental-fetal-brain axis. Exp. Neurol. 2018, 301 Pt B, 110–119. [Google Scholar] [CrossRef]
- Jantzie, L.L.; Getsy, P.M.; Firl, D.J.; Wilson, C.G.; Miller, R.H.; Robinson, S. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol. Cell Neurosci. 2014, 61, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantzie, L.L.; Getsy, P.M.; Denson, J.L.; Firl, D.J.; Maxwell, J.R.; Rogers, D.A.; Wilson, C.G.; Robinson, S. Prenatal Hypoxia-Ischemia Induces Abnormalities in CA3 Microstructure, Potassium Chloride Co-Transporter 2 Expression and Inhibitory Tone. Front. Cell. Neurosci. 2015, 9, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jantzie, L.L.; Miller, R.H.; Robinson, S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr. Res. 2013, 74, 658–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gramsbergen, A. Normal and abnormal development of motor behavior: Lessons from experiments in rats. Neural Plast. 2001, 8, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Chroney, J.M.; McMurtry, C.M.; Chambers, C.T.; Bakeman, R. Developing and modifying behavioral coding schemes in pediatric psychology: A practical guide. J. Pediatr. Psychol. 2015, 40, 154–164. [Google Scholar] [CrossRef]
- Smirnov, K.; Sitnikova, E. Developmental milestones and behavior of infant rats: The role of sensory input from whiskers. Behav. Brain Res. 2019, 374, 112143. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerner, G.; Burton, V.J.; Kitase, Y.; Robinson, S.; Jantzie, L.L. Pilot Translational Precision Biobehavioral Assays for Early Detection of Motor Impairments in a Rat Model of Cerebral Palsy. Life 2023, 13, 1746. https://doi.org/10.3390/life13081746
Gerner G, Burton VJ, Kitase Y, Robinson S, Jantzie LL. Pilot Translational Precision Biobehavioral Assays for Early Detection of Motor Impairments in a Rat Model of Cerebral Palsy. Life. 2023; 13(8):1746. https://doi.org/10.3390/life13081746
Chicago/Turabian StyleGerner, Gwendolyn, Vera Joanna Burton, Yuma Kitase, Shenandoah Robinson, and Lauren L. Jantzie. 2023. "Pilot Translational Precision Biobehavioral Assays for Early Detection of Motor Impairments in a Rat Model of Cerebral Palsy" Life 13, no. 8: 1746. https://doi.org/10.3390/life13081746
APA StyleGerner, G., Burton, V. J., Kitase, Y., Robinson, S., & Jantzie, L. L. (2023). Pilot Translational Precision Biobehavioral Assays for Early Detection of Motor Impairments in a Rat Model of Cerebral Palsy. Life, 13(8), 1746. https://doi.org/10.3390/life13081746