Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patient Assessment
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Hemodynamic Changes and Biomarkers by Time Point and by Group
3.3. Echocardiographic Changes by Time Point and by Group
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Triposkiadis, F.; Xanthopoulos, A.; Bargiota, A.; Kitai, T.; Katsiki, N.; Farmakis, D.; Skoularigis, J.; Starling, R.C.; Iliodromitis, E. Diabetes Mellitus and Heart Failure. J. Clin. Med. 2021, 10, 3682. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J. Epidemiology, Pathophysiology, Diagnosis and Treatment of Heart Failure in Diabetes. Diabetes Metab. J. 2021, 45, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Maack, C.; Lehrke, M.; Backs, J.; Heinzel, F.R.; Hulot, J.S.; Marx, N.; Paulus, W.J.; Rossignol, P.; Taegtmeyer, H.; Bauersachs, J.; et al. Heart failure and diabetes: Metabolic alterations and therapeutic interventions: A state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur. Heart J. 2018, 39, 4243–4254. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Diabetes, heart failure, and renal dysfunction: The vicious circles. Prog. Cardiovasc. Dis. 2019, 62, 298–302. [Google Scholar] [CrossRef]
- Yu, Y.W.; Zhao, X.M.; Wang, Y.H.; Zhou, Q.; Huang, Y.; Zhai, M.; Zhang, J. Effect of sodium-glucose cotransporter 2 inhibitors on cardiac structure and function in type 2 diabetes mellitus patients with or without chronic heart failure: A meta-analysis. Cardiovasc. Diabetol. 2021, 20, 25. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC Basic. Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Tse, G.; Korantzopoulos, P.; Letsas, K.P.; Zhang, Q.; Li, G.; Lip, G.Y.H.; Liu, T. Effect of sodium-glucose cotransporter-2 inhibitors on cardiac remodelling: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022, 28, 1961–1973. [Google Scholar] [CrossRef]
- Jensen, J.; Omar, M.; Kistorp, C.; Tuxen, C.; Poulsen, M.K.; Faber, J.; Kober, L.; Gustafsson, F.; Moller, J.E.; Schou, M. Effect of Empagliflozin on Multiple Biomarkers in Heart Failure: Insights From the Empire Heart Failure Trial. Circ. Heart Fail. 2022, 15, e009333. [Google Scholar] [CrossRef]
- Lee, M.M.Y.; Brooksbank, K.J.M.; Wetherall, K.; Mangion, K.; Roditi, G.; Campbell, R.T.; Berry, C.; Chong, V.; Coyle, L.; Docherty, K.F.; et al. Effect of Empagliflozin on Left Ventricular Volumes in Patients with Type 2 Diabetes, or Prediabetes, and Heart Failure with Reduced Ejection Fraction (SUGAR-DM-HF). Circulation 2021, 143, 516–525. [Google Scholar] [CrossRef]
- Santos-Gallego, C.G.; Requena-Ibanez, J.A.; San Antonio, R.; Ishikawa, K.; Watanabe, S.; Picatoste, B.; Flores, E.; Garcia-Ropero, A.; Sanz, J.; Hajjar, R.J.; et al. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. J. Am. Coll. Cardiol. 2019, 73, 1931–1944. [Google Scholar] [CrossRef] [PubMed]
- Omar, M.; Jensen, J.; Ali, M.; Frederiksen, P.H.; Kistorp, C.; Videbaek, L.; Poulsen, M.K.; Tuxen, C.D.; Moller, S.; Gustafsson, F.; et al. Associations of Empagliflozin with Left Ventricular Volumes, Mass, and Function in Patients with Heart Failure and Reduced Ejection Fraction: A Substudy of the Empire HF Randomized Clinical Trial. JAMA Cardiol. 2021, 6, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Shim, C.Y.; Seo, J.; Cho, I.; Lee, C.J.; Cho, I.J.; Lhagvasuren, P.; Kang, S.M.; Ha, J.W.; Han, G.; Jang, Y.; et al. Randomized, Controlled Trial to Evaluate the Effect of Dapagliflozin on Left Ventricular Diastolic Function in Patients with Type 2 Diabetes Mellitus: The IDDIA Trial. Circulation 2021, 143, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.S.S.; Mordi, I.R.; Vickneson, K.; Fathi, A.; Donnan, P.T.; Mohan, M.; Choy, A.M.J.; Gandy, S.; George, J.; Khan, F.; et al. Dapagliflozin Versus Placebo on Left Ventricular Remodeling in Patients with Diabetes and Heart Failure: The REFORM Trial. Diabetes Care 2020, 43, 1356–1359. [Google Scholar] [CrossRef]
- Soga, F.; Tanaka, H.; Tatsumi, K.; Mochizuki, Y.; Sano, H.; Toki, H.; Matsumoto, K.; Shite, J.; Takaoka, H.; Doi, T.; et al. Impact of dapagliflozin on left ventricular diastolic function of patients with type 2 diabetic mellitus with chronic heart failure. Cardiovasc. Diabetol. 2018, 17, 132. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Zamorano, J.L.; Domingo, M.; Morillas, H.; Nunez, J.; Cobo Marcos, M.; Riquelme-Perez, A.; Teis, A.; Santas, E.; Caro-Martinez, C.; et al. Impact of dapagliflozin on cardiac remodelling in patients with chronic heart failure: The DAPA-MODA study. Eur. J. Heart Fail. 2023. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Aimo, A.; Gaggin, H.K.; Barison, A.; Emdin, M.; Januzzi, J.L., Jr. Imaging, Biomarker, and Clinical Predictors of Cardiac Remodeling in Heart Failure with Reduced Ejection Fraction. JACC Heart Fail. 2019, 7, 782–794. [Google Scholar] [CrossRef]
- Yamanaka, S.; Sakata, Y.; Nochioka, K.; Miura, M.; Kasahara, S.; Sato, M.; Aoyanagi, H.; Fujihashi, T.; Hayashi, H.; Shiroto, T.; et al. Prognostic impacts of dynamic cardiac structural changes in heart failure patients with preserved left ventricular ejection fraction. Eur. J. Heart Fail. 2020, 22, 2258–2268. [Google Scholar] [CrossRef]
- Moady, G.; Ben Gal, T.; Atar, S. Sodium-Glucose Co-Transporter 2 Inhibitors in Heart Failure-Current Evidence in Special Populations. Life 2023, 13, 1256. [Google Scholar] [CrossRef] [PubMed]
- Dyck, J.R.B.; Sossalla, S.; Hamdani, N.; Coronel, R.; Weber, N.C.; Light, P.E.; Zuurbier, C.J. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J. Mol. Cell Cardiol. 2022, 167, 17–31. [Google Scholar] [CrossRef]
- Buchan, T.A.; Ching, C.; Foroutan, F.; Malik, A.; Daza, J.F.; Hing, N.N.F.; Siemieniuk, R.; Evaniew, N.; Orchanian-Cheff, A.; Ross, H.J.; et al. Prognostic value of natriuretic peptides in heart failure: Systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 645–654. [Google Scholar] [CrossRef]
- Nagarajan, V.; Hernandez, A.V.; Tang, W.H. Prognostic value of cardiac troponin in chronic stable heart failure: A systematic review. Heart 2012, 98, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.D.; Docherty, K.F.; Sattar, N.; Jarolim, P.; Welsh, P.; Jhund, P.S.; Anand, I.S.; Chopra, V.; de Boer, R.A.; Kosiborod, M.N.; et al. Serial Assessment of High-Sensitivity Cardiac Troponin and the Effect of Dapagliflozin in Patients with Heart Failure with Reduced Ejection Fraction: An Analysis of the DAPA-HF Trial. Circulation 2022, 145, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Yuan, X.; Zhang, S.; Zhao, X. Investigating the Effects of Dapagliflozin on Cardiac Function, Inflammatory Response, and Cardiovascular Outcome in Patients with STEMI Complicated with T2DM after PCI. Evid. Based Complement. Altern. Med. 2021, 2021, 9388562. [Google Scholar] [CrossRef] [PubMed]
- Kayano, H.; Koba, S.; Hirano, T.; Matsui, T.; Fukuoka, H.; Tsuijita, H.; Tsukamoto, S.; Hayashi, T.; Toshida, T.; Watanabe, N.; et al. Dapagliflozin Influences Ventricular Hemodynamics and Exercise-Induced Pulmonary Hypertension in Type 2 Diabetes Patients—A Randomized Controlled Trial. Circ. J. 2020, 84, 1807–1817. [Google Scholar] [CrossRef]
- Theofilis, P.; Antonopoulos, A.S.; Katsimichas, T.; Oikonomou, E.; Siasos, G.; Aggeli, C.; Tsioufis, K.; Tousoulis, D. The impact of SGLT2 inhibition on imaging markers of cardiac function: A systematic review and meta-analysis. Pharmacol. Res. 2022, 180, 106243. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Kansakar, U.; Varzideh, F.; Wilson, S.; Mone, P.; Lombardi, A.; Gambardella, J.; Santulli, G. Heart failure in diabetes. Metabolism 2021, 125, 154910. [Google Scholar] [CrossRef]
- Wee, C.F.; Teo, Y.H.; Teo, Y.N.; Syn, N.L.; See, R.M.; Leong, S.; Yip, A.S.Y.; Ong, Z.X.; Lee, C.H.; Chan, M.Y.; et al. Effects of Sodium/Glucose Cotransporter 2 (SGLT2) Inhibitors on Cardiac Imaging Parameters: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Cardiovasc. Imaging 2022, 30, 153–168. [Google Scholar] [CrossRef]
- Brown, A.J.M.; Gandy, S.; McCrimmon, R.; Houston, J.G.; Struthers, A.D.; Lang, C.C. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. Eur. Heart J. 2020, 41, 3421–3432. [Google Scholar] [CrossRef] [PubMed]
- Janwanishstaporn, S.; Cho, J.Y.; Feng, S.; Brann, A.; Seo, J.S.; Narezkina, A.; Greenberg, B. Prognostic Value of Global Longitudinal Strain in Patients with Heart Failure with Improved Ejection Fraction. JACC Heart Fail. 2022, 10, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Claggett, B.; Sweitzer, N.K.; Shah, S.J.; Anand, I.S.; Liu, L.; Pitt, B.; Pfeffer, M.A.; Solomon, S.D. Prognostic Importance of Impaired Systolic Function in Heart Failure with Preserved Ejection Fraction and the Impact of Spironolactone. Circulation 2015, 132, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.S.; Pei, Y.; Li, C.E.; Li, N.Y.; Guo, T.; Yu, J. Prognostic value of heart failure echocardiography index in HF patients with preserved, mid-ranged and reduced ejection fraction. BMC Cardiovasc. Disord. 2020, 20, 351. [Google Scholar] [CrossRef]
- Jariwala, P.; Jadhav, K.; Punjani, A.; Boorugu, H.; Mari, A.R. ADDition of DAPAgliflozin, Sodium-Glucose Cotransporter-2 Inhibitor to Angiotensin Receptor Blocker-Neprilysin Inhibitors Non-Responders in Patient with Refractory Heart Failure with Reduced Ejection Fraction (ADD DAPA trial). Indian. Heart J. 2021, 73, 605–611. [Google Scholar] [CrossRef]
- Oldgren, J.; Laurila, S.; Akerblom, A.; Latva-Rasku, A.; Rebelos, E.; Isackson, H.; Saarenhovi, M.; Eriksson, O.; Heurling, K.; Johansson, E.; et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes. Metab. 2021, 23, 1505–1517. [Google Scholar] [CrossRef]
- Eickhoff, M.K.; Olsen, F.J.; Frimodt-Moller, M.; Diaz, L.J.; Faber, J.; Jensen, M.T.; Rossing, P.; Persson, F. Effect of dapagliflozin on cardiac function in people with type 2 diabetes and albuminuria—A double blind randomized placebo-controlled crossover trial. J. Diabetes Complicat. 2020, 34, 107590. [Google Scholar] [CrossRef]
- Brown, A.; Gandy, S.; Mordi, I.R.; McCrimmon, R.; Ramkumar, P.G.; Houston, J.G.; Struthers, A.D.; Lang, C.C. Dapagliflozin Improves Left Ventricular Myocardial Longitudinal Function in Patients with Type 2 Diabetes. JACC Cardiovasc. Imaging 2021, 14, 503–504. [Google Scholar] [CrossRef]
- Tanaka, H.; Soga, F.; Tatsumi, K.; Mochizuki, Y.; Sano, H.; Toki, H.; Matsumoto, K.; Shite, J.; Takaoka, H.; Doi, T.; et al. Positive effect of dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients with chronic heart failure. Cardiovasc. Diabetol. 2020, 19, 6. [Google Scholar] [CrossRef]
- Bhatt, A.S.; Ambrosy, A.P.; Velazquez, E.J. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Curr. Cardiol. Rep. 2017, 19, 71. [Google Scholar] [CrossRef]
- Jaiswal, A.; Nguyen, V.Q.; Carry, B.J.; le Jemtel, T.H. Pharmacologic and Endovascular Reversal of Left Ventricular Remodeling. J. Card. Fail. 2016, 22, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.E.; Turner, N.A. Cardiac fibroblasts: At the heart of myocardial remodeling. Pharmacol. Ther. 2009, 123, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell Longev. 2017, 2017, 3920195. [Google Scholar] [CrossRef]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef]
- Salah, H.M.; Verma, S.; Santos-Gallego, C.G.; Bhatt, A.S.; Vaduganathan, M.; Khan, M.S.; Lopes, R.D.; Al’Aref, S.J.; McGuire, D.K.; Fudim, M. Sodium-Glucose Cotransporter 2 Inhibitors and Cardiac Remodeling. J. Cardiovasc. Transl. Res. 2022, 15, 944–956. [Google Scholar] [CrossRef]
- Marketou, M.; Kontaraki, J.; Maragkoudakis, S.; Danelatos, C.; Papadaki, S.; Zervakis, S.; Plevritaki, A.; Vardas, P.; Parthenakis, F.; Kochiadakis, G. Effects of Sodium-Glucose Cotransporter-2 Inhibitors on Cardiac Structural and Electrical Remodeling: From Myocardial Cytology to Cardiodiabetology. Curr. Vasc. Pharmacol. 2022, 20, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Scisciola, L.; D’Onofrio, N.; Maiello, C.; Trotta, M.C.; Sardu, C.; Panarese, I.; Ferraraccio, F.; Capuano, A.; Barbieri, M.; et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol. Res. 2022, 184, 106448. [Google Scholar] [CrossRef]
- Seferovic, P.M.; Fragasso, G.; Petrie, M.; Mullens, W.; Ferrari, R.; Thum, T.; Bauersachs, J.; Anker, S.D.; Ray, R.; Cavusoglu, Y.; et al. Sodium-glucose co-transporter 2 inhibitors in heart failure: Beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1495–1503. [Google Scholar] [CrossRef]
- Correale, M.; Lamacchia, O.; Ciccarelli, M.; Dattilo, G.; Tricarico, L.; Brunetti, N.D. Vascular and metabolic effects of SGLT2i and GLP-1 in heart failure patients. Heart Fail. Rev. 2023, 28, 733–744. [Google Scholar] [CrossRef]
- Arow, M.; Waldman, M.; Yadin, D.; Nudelman, V.; Shainberg, A.; Abraham, N.G.; Freimark, D.; Kornowski, R.; Aravot, D.; Hochhauser, E.; et al. Sodium-glucose cotransporter 2 inhibitor Dapagliflozin attenuates diabetic cardiomyopathy. Cardiovasc. Diabetol. 2020, 19, 7. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Coronel, R.; Hollmann, M.W.; Weber, N.C.; Zuurbier, C.J. Direct cardiac effects of SGLT2 inhibitors. Cardiovasc. Diabetol. 2022, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.S.; Singh, T.; Newby, D.E.; Singh, J. Sodium-glucose co-transporter 2 inhibitor therapy: Mechanisms of action in heart failure. Heart 2021, 107, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
Variable | Dapa (+) (n = 60) | Dapa (−) (n = 58) | p Value |
---|---|---|---|
Clinical characteristics | |||
Age (years) | 67.00 (62.25–73.00) | 73.50 (66.50–78.25) | 0.006 |
Sex (females, %) | 9 (15%) | 12 (20.7%) | 0.476 |
Body mass index (kg/m2) | 27.69 (25.34–31.65) | 27.76 (26.17–30.09) | 0.715 |
Heart rate (bpm) | 69.50 (65.00–75.00) | 74.00 (66.50–82.25) | 0.099 |
Systolic blood pressure (mmHg) | 125.50 (113.25–139.75) | 128.00 (111.50–142.75) | 0.998 |
Diastolic blood pressure (mmHg) | 75.50 (69.25–85.00) | 75.00 (67.25–84.00) | 0.705 |
Laboratory work up | |||
Hemoglobin (g/dL) | 13.15 (11.40–14.67) | 13.2 (11.30–14.40) | 0.854 |
Hematocrit (%) | 41.15 (35.82–45.40) | 39.75 (38.80–43.20) | 0.854 |
Red blood cell distribution width (%) | 14.60 (13.52–17.10) | 14.50 (13.60–16.82) | 0.854 |
Glucose (mg/dL) | 151.50 (127.00–194.50) | 156.00 (129.50–178.00) | 0.581 |
HBA1c (%) | 7.45 (7.10–8.30) | 6.80 (6.37–7.62) | 0.009 |
Urea (mg/dL) | 45.00 (37.25–57.75) | 55.00 (40.00–78.50) | 0.010 |
Creatinine (mg/dL) | 1.01 (0.80–1.24) | 1.16 (0.91–1.50) | 0.099 |
eGFR (mL/min/1.73 m2) | 73.48 (56.83–97.27) | 61.10 (47.77–77.69) | 0.197 |
Sodium (mmol/L) | 140.00 (137.25–142.00) | 139.00 (138.00–142.00) | 0.740 |
Potassium (mmol/L) | 4.20 (4.00–4.57) | 4.15 (3.77–4.50) | 0.977 |
Troponin (ng/mL) | 0.04 (0.04–0.05) | 0.04 (0.04–0.04) | 0.453 |
BNP (pg/mL) | 166.20 (98.50–342.25) | 207.00 (104.25–494.75) | 0.581 |
Risk factors/comorbidities * | |||
Coronary artery disease (%) | 55 | 56 | 0.261 |
Hypertension (%) | 52 | 54 | 0.247 |
Dyslipidemia (%) | 56 | 56 | 0.426 |
Atrial fibrillation (%) | 15 | 20 | 0.260 |
Valvular heart disease (%) | 5 | 6 | 0.707 |
Peripheral arterial disease (%) | 14 | 14 | 0.918 |
Stroke (%) | 7 | 10 | 0.389 |
Smoking (%) | 23 | 16 | 0.215 |
Medications | |||
Beta-blockers (%) | 56 | 54 | 0.960 |
ACEi/ARBs (%) | 45 | 44 | 0.913 |
Sacubitril/Valsartan (%) | 13 | 11 | 0.716 |
Mineralocorticoid receptor antagonists (%) | 41 | 37 | 0.602 |
Furosemide (%) | 40 | 39 | 0.947 |
Dipeptidyl Peptidase IV (DPP IV) Inhibitors (%) | 24 | 30 | 0.201 |
Metformin | 54 | 50 | 0.524 |
Thiazolidinediones (%) | 1 | 3 | 0.293 |
Sulfonylureas (%) | 3 | 5 | 0.434 |
Insulin (%) | 21 | 25 | 0.367 |
Variable | Baseline | 6 Months | 12 Months | p Value | 95% Confidence Interval of p Value |
---|---|---|---|---|---|
Heart rate (beats per minute) | |||||
Dapa (+) | 69.50 (65.00–75.00) | 68.00 (65.00–72.00) | 64.50 (62.00–69.00) | <0.001 | 0.000–0.000 |
Dapa (−) | 74.00 (66.50–82.25) | 74.00 (69.00–78.50) | 71.00 (64.00–77.50) | 0.024 | 0.020–0.028 |
Systolic blood pressure (mm Hg) | |||||
Dapa (+) | 125.50 (113.25–139.75) | 125.00 (112.00–132.00) | 123.00 (111.75–130.00) | <0.001 | 0.000–0.000 |
Dapa (−) | 128.00 (111.50–142.75) | 129.00 (112.00–135.00) | 125.00 (110.00–132.50) | 0.010 | 0.007–0.012 |
Diastolic blood pressure (mm Hg) | |||||
Dapa (+) | 75.50 (69.25–85.00) | 74.00 (68.75–82.00) | 71.00 (68.00–76.00) | 0.056 | 0.050–0.062 |
Dapa (−) | 75.00 (67.25–84.00) | 74.00 (69.00–84.5) | 71.00 (64.00–79.50) | 0.131 | 0.122–0.139 |
Troponin (ng/mL) | |||||
Dapa (+) | 0.04 (0.04–0.05) | 0.04 (0.04–0.04) | 0.04 (0.04–0.04) | <0.001 | 0.000–0.000 |
Dapa (−) | 0.04 (0.04–0.04) | 0.04 (0.04–0.04) | 0.04 (0.04–0.04) | 0.119 | 0.110–0.127 |
Brain Natriuretic Peptide (pg/mL) | |||||
Dapa (+) | 166.20 (98.50–342.25) | 108.00 (67.25–218.00) | 92.50 (55.50–152.25) | <0.001 | 0.000–0.000 |
Dapa (−) | 207.00 (104.25–494.75) | 152.00 (75.35–478.00) | 156.00 (69.50–607.50) | 0.143 | 0.134–0.152 |
Variable | Baseline | 6 Months | 12 Months | p Value | 95% Confidence Interval of p Value |
---|---|---|---|---|---|
Left ventricular end-diastolic volume index (mL/m2) | |||||
Dapa (+) | 56.17 (49.65–63.17) | 55.27 (49.88–63.02) | 53.78 (49.58–61.83) | <0.001 | 0.000–0.000 |
Dapa (−) | 55.91 (46.09–61.19) | 56.34 (46.98–68.28) | 58.29 (47.5–69.70) | <0.001 | 0.000–0.000 |
Left ventricular end-systolic volume index (mL/m2) | |||||
Dapa (+) | 35.71 (29.78–41.28) | 33.51 (28.47–40.09) | 32.56 (27.79–39.59) | <0.001 | 0.000–0.000 |
Dapa (−) | 36.80 (27.70–43.26) | 35.54 (28.73–47.04) | 34.74 (28.41–48.25) | <0.001 | 0.000–0.000 |
Left ventricular ejection fraction (%) | |||||
Dapa (+) | 35 (25–40) | 40 (30–45) | 40 (30–45) | 0.001 | 0.000–0.000 |
Dapa (−) | 35 (30–40) | 35 (30–40) | 35 (30–40) | 0.279 | 0.267–0.290 |
Global longitudinal strain (%) | |||||
Dapa (+) | –13.70 (–14.63 to –9.98) | –14.15 (–15.35 to –10.95) | –14.50 (–15.70 to –11.1) | <0.001 | 0.000–0.000 |
Dapa (−) | –13.70 (–14.90 to –11.3) | –12.90 (–14.75 to –10.75) | –13.2 (–14.65 to –10.15) | 0.021 | 0.017–0.025 |
Left atrial volume index (mL/m2) | |||||
Dapa (+) | 42.06 (38.8–49.99) | 40.22 (37.36–48.12) | 39.51 (35.55–46.57) | <0.001 | 0.000–0.000 |
Dapa (−) | 41.35 (38.36–46.03) | 41.98 (38.26–47.34) | 42.54 (38.15–49.25) | 0.114 | 0.106–0.122 |
Left ventricular mass index (g/m2) | |||||
Dapa (+) | 94.60 (89.46–105.82) | 96.66 (89.62–106.17) | 97.12 (89.83–107.23) | 0.003 | 0.001–0.004 |
Dapa (−) | 90.47 (86.37–106.59) | 91.68 (87.34–107.64) | 96.41 (86.70–106.65) | 0.001 | 0.000–0.000 |
Independent Variable | Odds Ratio (OR) | 95% Confidence Interval of OR | p |
---|---|---|---|
Treatment with dapagliflozin | 57.05 | 10.65–305.51 | <0.001 |
Age | 0.87 | 0.79–0.95 | 0.002 |
Baseline glycated hemoglobin | 0.41 | 0.20–0.87 | 0.020 |
Baseline urea | 0.98 | 0.944–1.13 | 0.199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xanthopoulos, A.; Katsiadas, N.; Skoularigkis, S.; Magouliotis, D.E.; Skopeliti, N.; Patsilinakos, S.; Briasoulis, A.; Triposkiadis, F.; Skoularigis, J. Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure. Life 2023, 13, 1778. https://doi.org/10.3390/life13081778
Xanthopoulos A, Katsiadas N, Skoularigkis S, Magouliotis DE, Skopeliti N, Patsilinakos S, Briasoulis A, Triposkiadis F, Skoularigis J. Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure. Life. 2023; 13(8):1778. https://doi.org/10.3390/life13081778
Chicago/Turabian StyleXanthopoulos, Andrew, Nikolaos Katsiadas, Spyridon Skoularigkis, Dimitrios E. Magouliotis, Niki Skopeliti, Sotirios Patsilinakos, Alexandros Briasoulis, Filippos Triposkiadis, and John Skoularigis. 2023. "Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure" Life 13, no. 8: 1778. https://doi.org/10.3390/life13081778
APA StyleXanthopoulos, A., Katsiadas, N., Skoularigkis, S., Magouliotis, D. E., Skopeliti, N., Patsilinakos, S., Briasoulis, A., Triposkiadis, F., & Skoularigis, J. (2023). Association between Dapagliflozin, Cardiac Biomarkers and Cardiac Remodeling in Patients with Diabetes Mellitus and Heart Failure. Life, 13(8), 1778. https://doi.org/10.3390/life13081778