Quantitative Anatomical Studies in Neurosurgery: A Systematic and Critical Review of Research Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Data Extraction
2.3. Outcomes
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results
3.1. Literature Review
3.2. Review Data and Outcomes
4. Discussion
- (1)
- Specimens:
- A minimum number of specimens equal to or greater than 5 so that the sample size of the data obtained allows the obtaining of statistically strong results;
- Better alcohol-fixed specimens, as they have a greater preservation of the anatomical tissues and the respect of the relationships between the neurovascular structures, they convert more over time.
- (2)
- Computed tomography scan:
- 1 × 1. frame with contiguous slices, both at 1 and 3 mm;
- Parameters: gantry of 0°, scan window diameter of at least 225 mm and pixel size of more than 0.44 × 0.44;
- Images recorded in DICOM format.
- (3)
- Surgical instruments and tools:
- Microscopes;
- Endoscope with 0° and angled optics (at least 30° and 45°);
- Straight and curved microscopic and endoscopic instruments.
- (4)
- Neuronavigation:
- Radiological software (e.g., RadiAnt, Philips, OsiriX, Horos);
- Navigation system composed by a navigation hardware and a dedicated navigation software (e.g., ApproachViewer, part of GTx-UHN—GuidedTherapeutics software developed at University Health Network—Toronto, Canada).
- (5)
- Quantification:
- 3D rendering software (e.g., ITK-Snap, 3D Slicer);
- Digital surface calculator (e.g., Autodesk Meshmixer);
- Software able to intersect surgical volume and target surface to derive the exposure area (e.g., ApproachViewer, part of GTx-UHN—GuidedTherapeutics software developed at University Health Network—Toronto, Canada).
- (6)
- Statistical analysis:
- Software for statistical analysis (e.g., R-Studio);
- Ideal is the collaboration and support of a biostatistician.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCulloch, P.; Cook, J.A.; Altman, D.G.; Heneghan, C.; Diener, M.K. IDEAL Framework for Surgical Innovation 1: The Idea and Development Stages. BMJ 2013, 346, f3012. [Google Scholar] [CrossRef]
- McCulloch, P.; Altman, D.G.; Campbell, W.B.; Flum, D.R.; Glasziou, P.; Marshall, J.C.; Nicholl, J.; Balliol Collaboration; Aronson, J.K.; Barkun, J.S.; et al. No Surgical Innovation without Evaluation: The IDEAL Recommendations. Lancet 2009, 374, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Ergina, P.L.; Barkun, J.S.; McCulloch, P.; Cook, J.A.; Altman, D.G.; IDEAL Group. IDEAL Framework for Surgical Innovation 2: Observational Studies in the Exploration and Assessment Stages. BMJ 2013, 346, f3011. [Google Scholar] [CrossRef]
- Cook, J.A.; McCulloch, P.; Blazeby, J.M.; Beard, D.J.; Marinac-Dabic, D.; Sedrakyan, A.; IDEAL Group. IDEAL Framework for Surgical Innovation 3: Randomised Controlled Trials in the Assessment Stage and Evaluations in the Long Term Study Stage. BMJ 2013, 346, f2820. [Google Scholar] [CrossRef] [PubMed]
- Doglietto, F.; Radovanovic, I.; Ravichandiran, M.; Agur, A.; Zadeh, G.; Qiu, J.; Kucharczyk, W.; Fernandez, E.; Fontanella, M.M.; Gentili, F. Quantification and Comparison of Neurosurgical Approaches in the Preclinical Setting: Literature Review. Neurosurg. Rev. 2016, 39, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Honeybul, S.; Neil-Dwyer, G.; Lees, P.D.; Evans, B.T.; Lang, D.A. The Orbitozygomatic Infratemporal Fossa Approach: A Quantitative Anatomical Study. Acta Neurochir. 1996, 138, 255–264. [Google Scholar] [CrossRef]
- Honeybul, S.; Neil-Dwyer, G.; Lang, D.A.; Evans, B.T.; Weller, R.O.; Gill, J. The Extended Transbasal Approach: A Quantitative Anatomical and Histological Study. Acta Neurochir. 1999, 141, 251–259. [Google Scholar] [CrossRef]
- Ammirati, M.; Bernardo, A. Analytical Evaluation of Complex Anterior Approaches to the Cranial Base: An Anatomic Study. Neurosurgery 1998, 43, 1398–1407; discussion 1407–1408. [Google Scholar] [CrossRef]
- Spencer, W.R.; Das, K.; Nwagu, C.; Wenk, E.; Schaefer, S.D.; Moscatello, A.; Couldwell, W.T. Approaches to the Sellar and Parasellar Region: Anatomic Comparison of the Microscope versus Endoscope. Laryngoscope 1999, 109, 791–794. [Google Scholar] [CrossRef]
- Spektor, S.; Anderson, G.J.; McMenomey, S.O.; Horgan, M.A.; Kellogg, J.X.; Delashaw, J.B. Quantitative Description of the Far-Lateral Transcondylar Transtubercular Approach to the Foramen Magnum and Clivus. J. Neurosurg. 2000, 92, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Horgan, M.A.; Anderson, G.J.; Kellogg, J.X.; Schwartz, M.S.; Spektor, S.; McMenomey, S.O.; Delashaw, J.B. Classification and Quantification of the Petrosal Approach to the Petroclival Region. J. Neurosurg. 2000, 93, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.J.; Hwang, Y.S.; Lee, J.H. Pre- versus Post-Anterior Clinoidectomy Measurements of the Optic Nerve, Internal Carotid Artery, and Opticocarotid Triangle: A Cadaveric Morphometric Study. Neurosurgery 2000, 46, 1018–1021; discussion 1021–1023. [Google Scholar]
- Das, K.; Spencer, W.; Nwagwu, C.I.; Schaeffer, S.; Wenk, E.; Weiss, M.H.; Couldwell, W.T. Approaches to the Sellar and Parasellar Region: Anatomic Comparison of Endonasal-Transsphenoidal, Sublabial-Transsphenoidal, and Transethmoidal Approaches. Neurol. Res. 2001, 23, 51–54. [Google Scholar] [CrossRef]
- Wanebo, J.E.; Chicoine, M.R. Quantitative Analysis of the Transcondylar Approach to the Foramen Magnum. Neurosurgery 2001, 49, 934–941; discussion 941–943. [Google Scholar] [CrossRef] [PubMed]
- Chanda, A.; Nanda, A. Partial Labyrinthectomy Petrous Apicectomy Approach to the Petroclival Region: An Anatomic and Technical Study. Neurosurgery 2002, 51, 147–159; discussion 159–160. [Google Scholar] [CrossRef]
- Nanda, A.; Vincent, D.A.; Vannemreddy, P.S.S.V.; Baskaya, M.K.; Chanda, A. Far-Lateral Approach to Intradural Lesions of the Foramen Magnum without Resection of the Occipital Condyle. J. Neurosurg. 2002, 96, 302–309. [Google Scholar] [CrossRef]
- Batay, F.; Vural, E.; Karasu, A.; Al-Mefty, O. Comparison of the Exposure Obtained by Endoscope and Microscope in the Extended Trans-Sphenoidal Approach. Skull Base 2002, 12, 119–124. [Google Scholar] [CrossRef]
- Gonzalez, L.F.; Crawford, N.R.; Horgan, M.A.; Deshmukh, P.; Zabramski, J.M.; Spetzler, R.F. Working Area and Angle of Attack in Three Cranial Base Approaches: Pterional, Orbitozygomatic, and Maxillary Extension of the Orbitozygomatic Approach. Neurosurgery 2002, 50, 550–555; discussion 555–557. [Google Scholar]
- Devlin, M.A.; Hoffmann, K.D.; Johnson, W.D. Comparison of Mandibular Surgical Techniques for Accessing Cranial Base Vascular Lesions. Skull Base 2003, 13, 65–72. [Google Scholar] [CrossRef]
- Suhardja, A.; Agur, A.M.R.; Cusimano, M.D. Anatomical Basis of Approaches to Foramen Magnum and Lower Clival Meningiomas: Comparison of Retrosigmoid and Transcondylar Approaches. Neurosurg. Focus 2003, 14, e9. [Google Scholar] [CrossRef] [PubMed]
- Mortini, P.; Roberti, F.; Kalavakonda, C.; Nadel, A.; Sekhar, L.N. Endoscopic and Microscopic Extended Subfrontal Approach to the Clivus: A Comparative Anatomical Study. Skull Base 2003, 13, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Andaluz, N.; Van Loveren, H.R.; Keller, J.T.; Zuccarello, M. Anatomic and Clinical Study of the Orbitopterional Approach to Anterior Communicating Artery Aneurysms. Neurosurgery 2003, 52, 1140–1148; discussion 1148–1149. [Google Scholar] [PubMed]
- Hsu, F.P.K.; Anderson, G.J.; Dogan, A.; Finizio, J.; Noguchi, A.; Liu, K.C.; McMenomey, S.O.; Delashaw, J.B. Extended Middle Fossa Approach: Quantitative Analysis of Petroclival Exposure and Surgical Freedom as a Function of Successive Temporal Bone Removal by Using Frameless Stereotaxy. J. Neurosurg. 2004, 100, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Youssef, A.S.; Abdel Aziz, K.M.; Kim, E.-Y.; Keller, J.T.; Zuccarello, M.; van Loveren, H.R. The Carotid-Oculomotor Window in Exposure of Upper Basilar Artery Aneurysms: A Cadaveric Morphometric Study. Neurosurgery 2004, 54, 1181–1187; discussion 1187–1189. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Shaya, M.; Kumar, R.; Caldito, G.C.; Nanda, A. Quantification of the Advantages of the Extended Frontal Approach to Skull Base. Skull Base 2004, 14, 133–142; discussion 141–142. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, N.; Ulm, A.J.; Rhoton, A.L.; Yasuda, A. Comparison of the Transvermian and Telovelar Approaches to the Fourth Ventricle. J. Neurosurg. 2004, 101, 484–498. [Google Scholar] [CrossRef]
- Figueiredo, E.G.; Deshmukh, P.; Zabramski, J.M.; Preul, M.C.; Crawford, N.R.; Siwanuwatn, R.; Spetzler, R.F. Quantitative Anatomic Study of Three Surgical Approaches to the Anterior Communicating Artery Complex. Neurosurgery 2005, 56, 397–405; discussion 397–405. [Google Scholar] [CrossRef]
- Post, N.; Russell, S.M.; Jafar, J.J. Role of Uncal Resection in Optimizing Transsylvian Access to the Basilar Apex: Cadaveric Investigation and Preliminary Clinical Experience in Eight Patients. Neurosurgery 2005, 56, 274–280; discussion 274–280. [Google Scholar] [CrossRef]
- Balasingam, V.; Anderson, G.J.; Gross, N.D.; Cheng, C.-M.; Noguchi, A.; Dogan, A.; McMenomey, S.O.; Delashaw, J.B.; Andersen, P.E. Anatomical Analysis of Transoral Surgical Approaches to the Clivus. J. Neurosurg. 2006, 105, 301–308. [Google Scholar] [CrossRef]
- Siwanuwatn, R.; Deshmukh, P.; Figueiredo, E.G.; Crawford, N.R.; Spetzler, R.F.; Preul, M.C. Quantitative Analysis of the Working Area and Angle of Attack for the Retrosigmoid, Combined Petrosal, and Transcochlear Approaches to the Petroclival Region. J. Neurosurg. 2006, 104, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.G.; Deshmukh, V.; Nakaji, P.; Deshmukh, P.; Crusius, M.U.; Crawford, N.; Spetzler, R.F.; Preul, M.C. An Anatomical Evaluation of the Mini-Supraorbital Approach and Comparison with Standard Craniotomies. Neurosurgery 2006, 59, 212–220; discussion 220. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, V.R.; Figueiredo, E.G.; Deshmukh, P.; Crawford, N.R.; Preul, M.C.; Spetzler, R.F. Quantification and Comparison of Telovelar and Transvermian Approaches to the Fourth Ventricle. Neurosurgery 2006, 58, 202–206; discussion 206–207. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.G.; Zabramski, J.M.; Deshmukh, P.; Crawford, N.R.; Preul, M.C.; Spetzler, R.F. Anatomical and Quantitative Description of the Transcavernous Approach to Interpeduncular and Prepontine Cisterns. Technical Note. J. Neurosurg. 2006, 104, 957–964. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.G.; Zabramski, J.M.; Deshmukh, P.; Crawford, N.R.; Spetzler, R.F.; Preul, M.C. Comparative Analysis of Anterior Petrosectomy and Transcavernous Approaches to Retrosellar and Upper Clival Basilar Artery Aneurysms. Neurosurgery 2006, 58, 13–21; discussion 13–21. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.K.; Fukushima, T.; Sameshima, T.; Al-Mefty, O.; Couldwell, W.T. Increasing Exposure of the Petrous Internal Carotid Artery for Revascularization Using the Transzygomatic Extended Middle Fossa Approach: A Cadaveric Morphometric Study. Neurosurgery 2006, 59, 309–318; discussion 318–319. [Google Scholar] [CrossRef] [PubMed]
- Tanriover, N.; Ulm, A.J.; Rhoton, A.L.; Kawashima, M.; Yoshioka, N.; Lewis, S.B. One-Piece versus Two-Piece Orbitozygomatic Craniotomy: Quantitative and Qualitative Considerations. Neurosurgery 2006, 58, 229–237; discussion 237. [Google Scholar] [CrossRef]
- Andaluz, N.; Beretta, F.; Bernucci, C.; Keller, J.T.; Zuccarello, M. Evidence for the Improved Exposure of the Ophthalmic Segment of the Internal Carotid Artery after Anterior Clinoidectomy: Morphometric Analysis. Acta Neurochir. 2006, 148, 971–975; discussion 975–976. [Google Scholar] [CrossRef]
- Beretta, F.; Hemida, S.A.; Andaluz, N.; Zuccarello, M.; Keller, J.T. Exposure of the Cervical Internal Carotid Artery: Surgical Steps to the Cranial Base and Morphometric Study. Neurosurgery 2006, 59, 25–34; discussion 25–34. [Google Scholar] [CrossRef]
- Catapano, D.; Sloffer, C.A.; Frank, G.; Pasquini, E.; D’Angelo, V.A.; Lanzino, G. Comparison between the Microscope and Endoscope in the Direct Endonasal Extended Transsphenoidal Approach: Anatomical Study. J. Neurosurg. 2006, 104, 419–425. [Google Scholar] [CrossRef]
- Sincoff, E.H.; Delashaw, J.B. Petroclival Surgery. J. Neurosurg. 2006, 104, 4–5; discussion 5–6. [Google Scholar] [CrossRef] [PubMed]
- Safavi-Abbasi, S.; Zabramski, J.M.; Deshmukh, P.; Reis, C.V.; Bambakidis, N.C.; Theodore, N.; Crawford, N.R.; Spetzler, R.F.; Preul, M.C. Moving toward the Petroclival Region: A Model for Quantitative and Anatomical Analysis of Tumor Shift. J. Neurosurg. 2007, 107, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, E.G.; Deshmukh, P.; Nakaji, P.; Crusius, M.U.; Crawford, N.; Spetzler, R.F.; Preul, M.C. The Minipterional Craniotomy: Technical Description and Anatomic Assessment. Neurosurgery 2007, 61, 256–264; discussion 264–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Lan, Q. Quantification of the Presigmoid Transpetrosal Keyhole Approach to Petroclival Region. Chin. Med. J. 2008, 121, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Jittapiromsak, P.; Little, A.S.; Deshmukh, P.; Nakaji, P.; Spetzler, R.F.; Preul, M.C. Comparative Analysis of the Retrosigmoid and Lateral Supracerebellar Infratentorial Approaches along the Lateral Surface of the Pontomesencephalic Junction: A Different Perspective. Neurosurgery 2008, 62, 279–287; discussion 287–288. [Google Scholar] [CrossRef] [PubMed]
- Fatemi, N.; Dusick, J.R.; Malkasian, D.; McArthur, D.L.; Emerson, J.; Schad, W.; Kelly, D.F. A Short Trapezoidal Speculum for Suprasellar and Infrasellar Exposure in Endonasal Transsphenoidal Surgery. Neurosurgery 2008, 62, 325–329; discussion 329–330. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, C.; Porras, L.; López-Sánchez, C.; Sicuri, G.M.; Lomonaco, I.; García-Martínez, V. The Partial Labyrinthectomy Petrous Apicectomy Approach to Petroclival Meningiomas. A Quantitative Anatomic Comparison with Other Approaches to the Same Region. Neurocirugia 2008, 19, 133–142. [Google Scholar] [CrossRef]
- Kuriakose, M.A.; Sorin, A.; Sharan, R.; Fishman, A.J.; Babu, R.; Delacure, M.D. Quantitative Evaluation of Transtemporal and Facial Translocation Approaches to Infratemporal Fossa. Skull Base 2008, 18, 17–27. [Google Scholar] [CrossRef]
- D’Ambrosio, A.L.; Mocco, J.; Hankinson, T.C.; Bruce, J.N.; van Loveren, H.R. Quantification of the Frontotemporal Orbitozygomatic Approach Using a Three-Dimensional Visualization and Modeling Application. Neurosurgery 2008, 62, 251–260; discussion 260–261. [Google Scholar] [CrossRef]
- Dzierzanowski, J.; Słoniewski, P.; Rut, M. Morphometry of the Pterional and Pterional-Orbitozygomatic Approaches to the Basilar Artery Bifurcation by the Use of Neuronavigation Systems: A New Technical Concept. Folia Morphol. 2008, 67, 267–272. [Google Scholar]
- Pillai, P.; Baig, M.N.; Karas, C.S.; Ammirati, M. Endoscopic Image-Guided Transoral Approach to the Craniovertebral Junction: An Anatomic Study Comparing Surgical Exposure and Surgical Freedom Obtained with the Endoscope and the Operating Microscope. Neurosurgery 2009, 64, 437–442; discussion 442–444. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Q.; Lan, Q. Microsurgical anatomy and quantitative assessment of suboccipital median transcerebellomedullary fissure keyhole approach. Zhonghua Yi Xue Za Zhi 2009, 89, 2754–2758. [Google Scholar] [PubMed]
- Jittapiromsak, P.; Deshmukh, P.; Nakaji, P.; Spetzler, R.F.; Preul, M.C. Comparative Analysis of Posterior Approaches to the Medial Temporal Region: Supracerebellar Transtentorial versus Occipital Transtentorial. Neurosurgery 2009, 64, 35–42; discussion 42–43. [Google Scholar] [CrossRef]
- Chang, S.W.; Wu, A.; Gore, P.; Beres, E.; Porter, R.W.; Preul, M.C.; Spetzler, R.F.; Bambakidis, N.C. Quantitative Comparison of Kawase’s Approach versus the Retrosigmoid Approach: Implications for Tumors Involving Both Middle and Posterior Fossae. Neurosurgery 2009, 64, 44–51; discussion 51–52. [Google Scholar] [CrossRef]
- Filipce, V.; Pillai, P.; Makiese, O.; Zarzour, H.; Pigott, M.; Ammirati, M. Quantitative and Qualitative Analysis of the Working Area Obtained by Endoscope and Microscope in Various Approaches to the Anterior Communicating Artery Complex Using Computed Tomography-Based Frameless Stereotaxy: A Cadaver Study. Neurosurgery 2009, 65, 1147–1152; discussion 1152–1153. [Google Scholar] [CrossRef] [PubMed]
- Doglietto, F.; Lauretti, L.; Frank, G.; Pasquini, E.; Fernandez, E.; Tschabitscher, M.; Maira, G. Microscopic and Endoscopic Extracranial Approaches to the Cavernous Sinus: Anatomic Study. Neurosurgery 2009, 64, 413–421; discussion 421–422. [Google Scholar] [CrossRef] [PubMed]
- Baird, C.J.; Conway, J.E.; Sciubba, D.M.; Prevedello, D.M.; Quiñones-Hinojosa, A.; Kassam, A.B. Radiographic and Anatomic Basis of Endoscopic Anterior Craniocervical Decompression: A Comparison of Endonasal, Transoral, and Transcervical Approaches. Neurosurgery 2009, 65, 158–163; discussion 163–164. [Google Scholar] [CrossRef]
- Alvernia, J.E.; Lanzino, G.; Melgar, M.; Sindou, M.P.; Mertens, P. Is Exposure of the Superior Sagittal Sinus Necessary in the Interhemispheric Approach? Neurosurgery 2009, 65, 962–964; discussion 964–965. [Google Scholar] [CrossRef]
- Roth, J.; Singh, A.; Nyquist, G.; Fraser, J.F.; Bernardo, A.; Anand, V.K.; Schwartz, T.H. Three-Dimensional and 2-Dimensional Endoscopic Exposure of Midline Cranial Base Targets Using Expanded Endonasal and Transcranial Approaches. Neurosurgery 2009, 65, 1116–1128; discussion 1128–1130. [Google Scholar] [CrossRef]
- Wu, A.; Zabramski, J.M.; Jittapiromsak, P.; Wallace, R.C.; Spetzler, R.F.; Preul, M.C. Quantitative Analysis of Variants of the Far-Lateral Approach: Condylar Fossa and Transcondylar Exposures. Neurosurgery 2010, 66, 191–198; discussion 198. [Google Scholar] [CrossRef]
- Agrawal, A.; Cavalcanti, D.D.; Garcia-Gonzalez, U.; Chang, S.W.; Crawford, N.R.; Sonntag, V.K.H.; Spetzler, R.F.; Preul, M.C. Comparison of Extraoral and Transoral Approaches to the Craniocervical Junction: Morphometric and Quantitative Analysis. World Neurosurg. 2010, 74, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Chang, S.W.; Deshmukh, P.; Spetzler, R.F.; Preul, M.C. Through the Choroidal Fissure: A Quantitative Anatomic Comparison of 2 Incisions and Trajectories (Transsylvian Transchoroidal and Lateral Transtemporal). Neurosurgery 2010, 66, 221–228; discussion 228–229. [Google Scholar] [CrossRef] [PubMed]
- Safavi-Abbasi, S.; de Oliveira, J.G.; Deshmukh, P.; Reis, C.V.; Brasiliense, L.B.C.; Crawford, N.R.; Feiz-Erfan, I.; Spetzler, R.F.; Preul, M.C. The Craniocaudal Extension of Posterolateral Approaches and Their Combination: A Quantitative Anatomic and Clinical Analysis. Oper. Neurosurg. 2010, 66, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Beretta, F.; Andaluz, N.; Chalaala, C.; Bernucci, C.; Salud, L.; Zuccarello, M. Image-Guided Anatomical and Morphometric Study of Supraorbital and Transorbital Minicraniotomies to the Sellar and Perisellar Regions: Comparison with Standard Techniques. J. Neurosurg. 2010, 113, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Jittapiromsak, P.; Sabuncuoglu, H.; Deshmukh, P.; Spetzler, R.F.; Preul, M.C. Accessing the Recesses of the Fourth Ventricle: Comparison of Tonsillar Retraction and Resection in the Telovelar Approach. Neurosurgery 2010, 66, 30–39; discussion 39–40. [Google Scholar] [CrossRef] [PubMed]
- Boari, N.; Roberti, F.; Biglioli, F.; Caputy, A.J.; Mortini, P. Quantification of Clival and Paraclival Exposure in the Le Fort I Transmaxillary Transpterygoid Approach: A Microanatomical Study. J. Neurosurg. 2010, 113, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Zador, Z.; Lu, D.C.; Arnold, C.M.; Lawton, M.T. Deep Bypasses to the Distal Posterior Circulation: Anatomical and Clinical Comparison of Pretemporal and Subtemporal Approaches. Neurosurgery 2010, 66, 92–100; discussion 100–101. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, R.; Yu, W.; Zhong, P.; Tan, D. The Posterior Subtemporal Keyhole Approach Combined with the Transchoroidal Approach to the Ambient Cistern: Microsurgical Anatomy and Image-Guided Quantitative Analysis. Acta Neurochir. 2010, 152, 1933–1942. [Google Scholar] [CrossRef]
- Vince, G.H.; Herbold, C.; Coburger, J.; Westermaier, T.; Drenckhahn, D.; Schuetz, A.; Kunze, E.; Solymosi, L.; Roosen, K.; Matthies, C. An Anatomical Assessment of the Supracerebellar Midline and Paramedian Approaches to the Inferior Colliculus for Auditory Midbrain Implants Using a Neuronavigation Model on Cadaveric Specimens. J. Clin. Neurosci. 2010, 17, 107–112. [Google Scholar] [CrossRef]
- Seker, A.; Inoue, K.; Osawa, S.; Akakin, A.; Kilic, T.; Rhoton, A.L. Comparison of Endoscopic Transnasal and Transoral Approaches to the Craniovertebral Junction. World Neurosurg. 2010, 74, 583–602. [Google Scholar] [CrossRef]
- Cavalcanti, D.D.; García-González, U.; Agrawal, A.; Crawford, N.R.; Tavares, P.L.M.S.; Spetzler, R.F.; Preul, M.C. Quantitative Anatomic Study of the Transciliary Supraorbital Approach: Benefits of Additional Orbital Osteotomy? Neurosurgery 2010, 66, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Salma, A.; Ammirati, M. Posterior Interhemispheric Transfalx Transprecuneus Approach to the Atrium of the Lateral Ventricle: A Cadaveric Study. J. Neurosurg. 2010, 113, 949–954. [Google Scholar] [CrossRef]
- Salma, A.; Alkandari, A.; Sammet, S.; Ammirati, M. Lateral Supraorbital Approach vs Pterional Approach: An Anatomic Qualitative and Quantitative Evaluation. Neurosurgery 2011, 68, 364–372; discussion 371–372. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Zhao, G. A Comparative Anatomic Study of a Modified Temporal-Occipital Transtentorial Transpetrosal-Ridge Approach and a Transpetrosal Presigmoid Approach. World Neurosurg. 2011, 75, 495–502. [Google Scholar] [CrossRef]
- Sabuncuoğlu, H.; Jittapiromsak, P.; Cavalcanti, D.D.; Spetzler, R.F.; Preul, M.C. Accessing the Basilar Artery Apex: Is the Temporopolar Transcavernous Route an Anatomically Advantageous Alternative? Skull Base 2011, 21, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Nakada, M.; Tanaka, S.; Ozaki, N.; Hamada, J.; Hayashi, Y. Transcrusal Approach to the Retrochiasmatic Region with Special Reference to Temporal Lobe Retraction: An Anatomical Study. Acta Neurochir. 2011, 153, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.M.; Graziano, F.; Russo, A.; Albanese, E.; Ulm, A.J. High Anterior Cervical Approach to the Clivus and Foramen Magnum: A Microsurgical Anatomy Study. Neurosurgery 2011, 69, 103–114; discussion 115–116. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Tanaka, S.; Nakada, M.; Ozaki, N.; Hamada, J.-I.; Hayashi, Y. What Bone Part Is Important to Remove in Accessing the Suprachiasmatic Region with Less Frontal Lobe Retraction in Frontotemporal Craniotomies. World Neurosurg. 2012, 77, 342–348. [Google Scholar] [CrossRef]
- Yeremeyeva, E.; Salma, A.; Chow, A.; Ammirati, M. Microscopic and Endoscopic Anterior Communicating Artery Complex Anatomy as Seen through Keyhole Approaches. J. Clin. Neurosci. 2012, 19, 1422–1425. [Google Scholar] [CrossRef]
- Russo, V.M.; Graziano, F.; Quiroga, M.; Russo, A.; Albanese, E.; Ulm, A.J. Minimally Invasive Supracondylar Transtubercular (MIST) Approach to the Lower Clivus. World Neurosurg. 2012, 77, 704–712. [Google Scholar] [CrossRef]
- Tang, C.-T.; Kurozumi, K.; Pillai, P.; Filipce, V.; Chiocca, E.A.; Ammirati, M. Quantitative Analysis of Surgical Exposure and Maneuverability Associated with the Endoscope and the Microscope in the Retrosigmoid and Various Posterior Petrosectomy Approaches to the Petroclival Region Using Computer Tomograpy-Based Frameless Stereotaxy. A Cadaveric Study. Clin. Neurol. Neurosurg. 2013, 115, 1058–1062. [Google Scholar] [CrossRef]
- McLaughlin, N.; Ma, Q.; Emerson, J.; Malkasian, D.R.; Martin, N.A. The Extended Subtemporal Transtentorial Approach: The Impact of Trochlear Nerve Dissection and Tentorial Incision. J. Clin. Neurosci. 2013, 20, 1139–1143. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.; Wang, J.; Feng, D.; Fu, P.; Chen, L.; Li, M.; Zhang, Q.; Samii, A.; Samii, M.; Kong, F.; et al. Anatomical Study of Endoscope-Assisted Far Lateral Keyhole Approach to the Ventral Craniocervical Region with Neuronavigational Guidance. Chin. Med. J. 2013, 126, 1707–1713. [Google Scholar] [PubMed]
- Ambekar, S.; Amene, C.; Sonig, A.; Guthikonda, B.; Nanda, A. Quantitative Comparison of Retrosigmoid Intradural Suprameatal Approach and Retrosigmoid Transtentorial Approach: Implications for Tumors in the Petroclival Region. J. Neurol. Surg. B Skull Base 2013, 74, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-T.; Baidya, N.B.; Ammirati, M. Endoscope-Assisted Neurovascular Decompression of the Trigeminal Nerve: A Cadaveric Study. Neurosurg. Rev. 2013, 36, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-M.; Noguchi, A.; Dogan, A.; Anderson, G.J.; Hsu, F.P.K.; McMenomey, S.O.; Delashaw, J.B. Quantitative Verification of the Keyhole Concept: A Comparison of Area of Exposure in the Parasellar Region via Supraorbital Keyhole, Frontotemporal Pterional, and Supraorbital Approaches. J. Neurosurg. 2013, 118, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.A.; Williamson, R.W.; Preul, M.C.; Little, A.S. Comparative Analysis of Surgical Freedom and Angle of Attack of Two Minimal-Access Endoscopic Transmaxillary Approaches to the Anterolateral Skull Base. World Neurosurg. 2014, 82, e487–e493. Available online: https://pubmed.ncbi.nlm.nih.gov/23395852/ (accessed on 8 June 2023). [CrossRef]
- De Notaris, M.; Prats-Galino, A.; Enseñat, J.; Topczewski, T.; Ferrer, E.; Cavallo, L.M.; Cappabianca, P.; Solari, D. Quantitative Analysis of Progressive Removal of Nasal Structures during Endoscopic Suprasellar Approach. Laryngoscope 2014, 124, 2231–2237. [Google Scholar] [CrossRef]
- Jacquesson, T.; Simon, E.; Berhouma, M.; Jouanneau, E. Anatomic Comparison of Anterior Petrosectomy versus the Expanded Endoscopic Endonasal Approach: Interest in Petroclival Tumors Surgery. Surg. Radiol. Anat. 2015, 37, 1199–1207. [Google Scholar] [CrossRef]
- Jacquesson, T.; Berhouma, M.; Tringali, S.; Simon, E.; Jouanneau, E. Which Routes for Petroclival Tumors? A Comparison Between the Anterior Expanded Endoscopic Endonasal Approach and Lateral or Posterior Routes. World Neurosurg. 2015, 83, 929–936. [Google Scholar] [CrossRef]
- Tripathi, M.; Deo, R.C.; Suri, A.; Srivastav, V.; Baby, B.; Kumar, S.; Kalra, P.; Banerjee, S.; Prasad, S.; Paul, K.; et al. Quantitative Analysis of the Kawase versus the Modified Dolenc-Kawase Approach for Middle Cranial Fossa Lesions with Variable Anteroposterior Extension. J. Neurosurg. 2015, 123, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-D.; Elhadi, A.M.; Mendes, G.A.C.; Maramreddy, N.; Agrawal, A.; Kalb, S.; Nakaji, P.; Spetzler, R.F.; Preul, M.C. Quantitative Study of the Opticocarotid and Carotid-Oculomotor Windows for the Interpeduncular Fossa, before and after Internal Carotid Artery Mobilization and Posterior Communicating Division. Neurosurgery 2015, 11 (Suppl. 2), 162–179; discussion 179–180. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, F.; Xu, A.; Li, H.; Ding, Z. Comparison of Surgical Exposure and Maneuverability Associated with Microscopy and Endoscopy in the Retrolabyrinthine and Transcrusal Approaches to the Retrochiasmatic Region: A Cadaveric Study. Acta Neurochir. 2016, 158, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Scerrati, A.; Zhang, J.; Ammirati, M. Quantitative Analysis of Surgical Exposure and Surgical Freedom to the Anterosuperior Pons: Comparison of Pterional Transtentorial, Orbitozygomatic, and Anterior Petrosal Approaches. Neurosurg. Rev. 2016, 39, 599–605. [Google Scholar] [CrossRef]
- Jägersberg, M.; Brodard, J.; Qiu, J.; Mansouri, A.; Doglietto, F.; Gentili, F.; Kucharczyk, W.; Fasel, J.; Schaller, K.; Radovanovic, I. Quantification of Working Volumes, Exposure, and Target-Specific Maneuverability of the Pterional Craniotomy and Its Minimally Invasive Variants. World Neurosurg. 2017, 101, 710–717.e2. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Ferrari, M.; Rampinelli, V.; Doglietto, F.; Belotti, F.; Lancini, D.; Ravanelli, M.; Rodella, L.F.; Fontanella, M.M.; Nicolai, P. Modular Endoscopic Medial Maxillectomies: Quantitative Analysis of Surgical Exposure in a Preclinical Setting. World Neurosurg. 2017, 100, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Vitorino Araujo, J.L.; Veiga, J.C.E.; Wen, H.T.; de Andrade, A.F.; Teixeira, M.J.; Otoch, J.P.; Rhoton, A.L.; Preul, M.C.; Spetzler, R.F.; Figueiredo, E.G. Comparative Anatomical Analysis of the Transcallosal-Transchoroidal and Transcallosal-Transforniceal-Transchoroidal Approaches to the Third Ventricle. J. Neurosurg. 2017, 127, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Belotti, F.; Doglietto, F.; Schreiber, A.; Ravanelli, M.; Ferrari, M.; Lancini, D.; Rampinelli, V.; Hirtler, L.; Buffoli, B.; Bolzoni Villaret, A.; et al. Modular Classification of Endoscopic Endonasal Transsphenoidal Approaches to Sellar Region: Anatomic Quantitative Study. World Neurosurg. 2018, 109, e281–e291. [Google Scholar] [CrossRef]
- Doglietto, F.; Ferrari, M.; Mattavelli, D.; Belotti, F.; Rampinelli, V.; Kheshaifati, H.; Lancini, D.; Schreiber, A.; Sorrentino, T.; Ravanelli, M.; et al. Transnasal Endoscopic and Lateral Approaches to the Clivus: A Quantitative Anatomic Study. World Neurosurg. 2018, 113, e659–e671. [Google Scholar] [CrossRef]
- Muhanna, N.; Chan, H.; Qiu, J.; Daly, M.; Khan, T.; Doglietto, F.; Kucharczyk, W.; Goldstein, D.P.; Irish, J.C.; de Almeida, J.R. Volumetric Analysis of Endoscopic and Maxillary Swing Surgical Approaches for Nasopharyngectomy. J. Neurol. Surg. B Skull Base 2018, 79, 466–474. [Google Scholar] [CrossRef]
- Peraio, S.; Chumas, P.; Nix, P.; Phillips, N.; Tyagi, A. From above or from below? That Is the Question. Comparison of the Supraorbital Approach with the Endonasal Approach. A Cadaveric Study. Br. J. Neurosurg. 2018, 32, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Colasanti, R.; Lee, J.; Scerrati, A.; Ercan, S.; Zhang, J.; Ammirati, M. Quantitative Evaluation of Different Far Lateral Approaches to the Cranio-Vertebral Junction Using the Microscope and the Endoscope: A Cadaveric Study Using a Tumor Model. Acta Neurochir. 2018, 160, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Di Somma, A.; Torales, J.; Cavallo, L.M.; Pineda, J.; Solari, D.; Gerardi, R.M.; Frio, F.; Enseñat, J.; Prats-Galino, A.; Cappabianca, P. Defining the Lateral Limits of the Endoscopic Endonasal Transtuberculum Transplanum Approach: Anatomical Study with Pertinent Quantitative Analysis. J. Neurosurg. 2018, 130, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Yağmurlu, K.; Belykh, E.; Tayebi Meybodi, A.; Staren, M.S.; Aklinski, J.L.; Preul, M.C.; Grande, A.W.; Nakaji, P.; Lawton, M.T. Quantitative Anatomic Analysis of the Transcallosal-Transchoroidal Approach and the Transcallosal-Subchoroidal Approach to the Floor of the Third Ventricle: An Anatomic Study. World Neurosurg. 2018, 118, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Belykh, E.; Yağmurlu, K.; Lei, T.; Safavi-Abbasi, S.; Oppenlander, M.E.; Martirosyan, N.L.; Byvaltsev, V.A.; Spetzler, R.F.; Nakaji, P.; Preul, M.C. Quantitative Anatomical Comparison of the Ipsilateral and Contralateral Interhemispheric Transcallosal Approaches to the Lateral Ventricle. J. Neurosurg. 2018, 128, 1492–1502. [Google Scholar] [CrossRef] [PubMed]
- Doglietto, F.; Belotti, F.; Qiu, J.; Roca, E.; Radovanovic, I.; Agur, A.; Kucharczyk, W.; Schreiber, A.; Villaret, A.B.; Nicolai, P.; et al. Endonasal and Transoral Approaches to the Craniovertebral Junction: A Quantitative Anatomical Study. Acta Neurochir. Suppl. 2019, 125, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Schreiber, A.; Mattavelli, D.; Lombardi, D.; Rampinelli, V.; Doglietto, F.; Rodella, L.F.; Nicolai, P. Surgical Anatomy of the Parapharyngeal Space: Multiperspective, Quantification-Based Study. Head Neck 2019, 41, 642–656. [Google Scholar] [CrossRef]
- Da Silva, S.A.; Yamaki, V.N.; Solla, D.J.F.; de Andrade, A.F.; Teixeira, M.J.; Spetzler, R.F.; Preul, M.C.; Figueiredo, E.G. Pterional, Pretemporal, and Orbitozygomatic Approaches: Anatomic and Comparative Study. World Neurosurg. 2019, 121, e398–e403. [Google Scholar] [CrossRef]
- Agosti, E.; Saraceno, G.; Qiu, J.; Buffoli, B.; Ferrari, M.; Raffetti, E.; Belotti, F.; Ravanelli, M.; Mattavelli, D.; Schreiber, A.; et al. Quantitative Anatomical Comparison of Transnasal and Transcranial Approaches to the Clivus. Acta Neurochir. 2020, 162, 649–660. [Google Scholar] [CrossRef]
- Saraceno, G.; Agosti, E.; Qiu, J.; Buffoli, B.; Ferrari, M.; Raffetti, E.; Belotti, F.; Ravanelli, M.; Mattavelli, D.; Schreiber, A.; et al. Quantitative Anatomical Comparison of Anterior, Anterolateral and Lateral, Microsurgical and Endoscopic Approaches to the Middle Cranial Fossa. World Neurosurg. 2020, 134, e682–e730. [Google Scholar] [CrossRef]
- Topczewski, T.E.; Di Somma, A.; Pineda, J.; Ferres, A.; Torales, J.; Reyes, L.; Morillas, R.; Solari, D.; Cavallo, L.M.; Cappabianca, P.; et al. Endoscopic Endonasal and Transorbital Routes to the Petrous Apex: Anatomic Comparative Study of Two Pathways. Acta Neurochir. 2020, 162, 2097–2109. [Google Scholar] [CrossRef]
- Martínez-Pérez, R.; Albonette-Felicio, T.; Hardesty, D.A.; Prevedello, D.M. Comparative Anatomical Analysis between the Minipterional and Supraorbital Approaches. J. Neurosurg. 2020, 134, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Agosti, E.; Turri-Zanoni, M.; Saraceno, G.; Belotti, F.; Karligkiotis, A.; Rocca, G.; Buffoli, B.; Raffetti, E.; Hirtler, L.; Rezzani, R.; et al. Quantitative Anatomic Comparison of Microsurgical Transcranial, Endoscopic Endonasal, and Transorbital Approaches to the Spheno-Orbital Region. Oper. Neurosurg. 2021, 21, E494–E505. [Google Scholar] [CrossRef] [PubMed]
- Agosti, E.; Saraceno, G.; Rampinelli, V.; Raffetti, E.; Veiceschi, P.; Buffoli, B.; Rezzani, R.; Giorgianni, A.; Hirtler, L.; Alexander, A.Y.; et al. Quantitative Anatomic Comparison of Endoscopic Transnasal and Microsurgical Transcranial Approaches to the Anterior Cranial Fossa. Oper. Neurosurg. 2022, 23, e256–e266. [Google Scholar] [CrossRef] [PubMed]
- Houlihan, L.M.; Abramov, I.; Loymak, T.; Jubran, J.H.; Staudinger Knoll, A.J.; Farhadi, D.S.; Naughton, D.; Howshar, J.T.; O’Sullivan, M.G.J.; Lawton, M.T.; et al. Volumetric 3-Dimensional Analysis of the Supraorbital vs Pterional Approach to Paramedian Vascular Structures: Comprehensive Assessment of Surgical Maneuverability. Oper. Neurosurg. 2022, 22, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Serioli, S.; Agosti, E.; Buffoli, B.; Raffetti, E.; Alexander, A.Y.; Salgado-López, L.; Hirtler, L.; Rezzani, R.; Maroldi, R.; Draghi, R.; et al. Microsurgical Transcranial Approaches to the Posterior Surface of Petrosal Portion of the Temporal Bone: Quantitative Analysis of Surgical Volumes and Exposed Areas. Neurosurg. Rev. 2023, 46, 48. [Google Scholar] [CrossRef] [PubMed]
- Martins Coelho, V.d.P.; Saquy Rassi, M.; Colli, B.O. Retrosigmoid versus Retrolabyrinthine Posterior Petrosal Route to the Petroclival Area: Quantitative Assessment of Endoscope-Assisted Approaches and Correlations with Morphometric Features. World Neurosurg. 2023, 173, e462–e471. [Google Scholar] [CrossRef]
- Alexander, A.Y.; Agosti, E.; Leonel, L.C.P.C.; Lanzino, G.; Peris-Celda, M. Comparison Between the Supracerebellar Infratentorial and Precuneal Interhemispheric, Transtentorial Approaches to the Cerebellomesencephalic Fissure: An Anatomoradiological Study and Illustrative Cases. Oper. Neurosurg. 2023, 25, e6–e14. [Google Scholar] [CrossRef]
- Lin, B.-J.; Ju, D.-T.; Tseng, K.-Y.; Liu, W.-H.; Tang, C.-T.; Hueng, D.-Y.; Chen, Y.-H.; Hsia, C.-C.; Chen, G.-J.; Ma, H.-I.; et al. Endoscopically Assisted Presigmoid Retrolabyrinthine Approach to the Lateral Mesencephalic Sulcus: A Cadaveric Study with Comparison to the Variant Supracerebellar Infratentorial Approaches. Neurosurg. Rev. 2023, 46, 73. [Google Scholar] [CrossRef]
- Revuelta Barbero, J.M.; Porto, E.; Prevedello, D.M.; Noiphithak, R.; Yanez-Siller, J.C.; Martinez-Perez, R.; Pradilla, G. Quantitative Comparative Analysis of the Endoscope-Assisted Expanded Retrosigmoid Approach and the Far-Lateral Approach to the Inframeatal Area: An Anatomic Study With Surgical Implications. Oper. Neurosurg. 2023, 24, e187–e200. [Google Scholar] [CrossRef]
- Schwartz, M.S.; Anderson, G.J.; Horgan, M.A.; Kellogg, J.X.; McMenomey, S.O.; Delashaw, J.B. Quantification of Increased Exposure Resulting from Orbital Rim and Orbitozygomatic Osteotomy via the Frontotemporal Transsylvian Approach. J. Neurosurg. 1999, 91, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- İçke, S.; Erbayraktar, S.; Ösün, A.; Kirişoğlu, Ü.; Güner, M. Anatomo-Radiological Comparison of the Cloward’s Technique and Medial Facetectomy. Turk. Neurosurg. 1998, 8, 13–21. [Google Scholar]
- Chanda, A.; Nanda, A. Anatomical Study of the Orbitozygomatic Transsellar-Transcavernous-Transclinoidal Approach to the Basilar Artery Bifurcation. J. Neurosurg. 2002, 97, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Ulm, A.J.; Tanriover, N.; Kawashima, M.; Campero, A.; Bova, F.J.; Rhoton, A. Microsurgical Approaches to the Perimesencephalic Cisterns and Related Segments of the Posterior Cerebral Artery: Comparison Using a Novel Application of Image Guidance. Neurosurgery 2004, 54, 1313–1327; discussion 1327–1328. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Rhoton, A.L.; Matsushima, T. Comparison of Posterior Approaches to the Posterior Incisural Space: Microsurgical Anatomy and Proposal of a New Method, the Occipital Bi-Transtentorial/Falcine Approach. Neurosurgery 2008, 62, 1136–1149. [Google Scholar] [CrossRef] [PubMed]
- Couldwell, W.T. Microsurgical anatomy of membranous layers of the pituitary gland and the expression of extracellular matrix collagenous proteins. Acta Neurochir. 2011, 153, 2443. [Google Scholar] [CrossRef]
- Doglietto, F.; Qiu, J.; Ravichandiran, M.; Radovanovic, I.; Belotti, F.; Agur, A.; Zadeh, G.; Fontanella, M.; Kucharczyk, W.; Gentili, F. Quantitative Comparison of Cranial Approaches in the Anatomy Laboratory: A Neuronavigation Based Research Method. World J. Methodol. 2017, 7, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Raju, B.; Jumah, F.; Ashraf, O.; Narayan, V.; Gupta, G.; Sun, H.; Hilden, P.; Nanda, A. Big Data, Machine Learning, and Artificial Intelligence: A Field Guide for Neurosurgeons. J. Neurosurg. 2020, 1–11. [Google Scholar] [CrossRef]
- Houlihan, L.M.; Naughton, D.; O’Sullivan, M.G.J.; Lawton, M.T.; Preul, M.C. Toward “Bigger” Data for Neurosurgical Anatomical Research: A Single Centralized Quantitative Neurosurgical Anatomy Platform. Neurosurg. Rev. 2022, 46, 22. [Google Scholar] [CrossRef]
- Rampinelli, V.; Agosti, E.; Saraceno, G.; Ferrari, M.; Taboni, S.; Mattavelli, D.; Schreiber, A.; Tomasoni, M.; Gualtieri, T.; Ravanelli, M.; et al. Endoscopic Subtemporal Epidural Key-Hole Approach: Quantitative Anatomic Analysis of Three Surgical Corridors. World Neurosurg. 2021, 152, e128–e137. [Google Scholar] [CrossRef]
AUTHOR, JOURNAL | YEAR | QUANTIFIED FEATURES (Details) | SURGICAL APPROACHES |
---|---|---|---|
Honeybul, [7] Acta Neurochir | 1996 | Surgical corridor (angle of view, surgical freedom, surgical window) | Orbitozygomatic infratemporal fossa approach |
Honeybul, [8] Acta Neurochir | 1996 | Surgical corridor (angle of view) | Extended transbasal approach |
Ammirati, [9] Neurosurgery | 1998 | Target exposure (visualization) | Le Fort 1 approach with splitting or down-fracturing of the hard palate, extended maxillectomy, median mandibulotomy with glossotomy, mandibular swing transcervical approach |
Spencer, [10] Laryngoscope | 1999 | Target exposure (visualization) | Transethmoidal, endonasal-trans-sphenoidal, sublabial-trans-sphenoidal approaches |
Spektor, [11] J Neurosurg | 2000 | Target exposure (area) | Far-lateral transcondylar transtubercular approach |
Horgan, [12] J Neurosurg | 2000 | Surgical corridor (surgical freedom, surgical window); target exposure (area, line) | Petrosal approach to the upper and middle clivus |
Evans, [13] Neurosurgery | 2000 | Target exposure (line) | Pre- and post-anterior clinoidectomy measurements of the optic nerve, internal carotid artery, and opticocarotid triangle |
Das, [14] Neurol Res | 2001 | Surgical corridor (volume) | Endonasal-trans-sphenoidal, sublabial-transsphenoidal, transethmoidal approaches to the sellar and parasellar region |
Wanebo, [15] Neurosurgery | 2001 | Surgical corridor (angle of view) | Transcondylar approach to the foramen magnum |
Chanda, [16] Neurosurgery | 2002 | Surgical corridor (angle of view); target exposure (line) | Partial labyrinthectomy petrous apicectomy approach to the petroclival region |
Nanda, [17] J Neurosurg | 2002 | Target exposure (line) | Far-lateral approach to intradural lesions of the foramen magnum without resection of the occipital condyle |
Batay, [18] Skull Base | 2002 | Target exposure (line) | Extended trans-sphenoidal approach by endoscope and microscope |
Gonzalez, [19] Neurosurgery | 2002 | Surgical corridor (angle of view) | Pterional, orbitozygomatic, maxillary extension of the orbitozygomatic approach |
Devlin, [20] Skull Base | 2003 | Target exposure (area) | Anterior distraction of the mandible without violation of the temporomandibular joint capsule, vertical ramus osteotomy of the mandible with distraction of the proximal and distal segment |
Suhardja, [21] Neurosurg Focus | 2003 | Target exposure (area) | Retrosigmoid and transcondylar approaches to foramen magnum and lower clival meningiomas |
Mortini, [22] Skull Base | 2003 | Target exposure (line) | Endoscopic and microscopic extended subfrontal approach to the clivus |
Andaluz, [23] Neurosurgery | 2003 | Surgical corridor (angle of view) | Orbitopterional approach to anterior communicating artery aneurysms |
Hsu, [24] J Neurosurg | 2004 | Target exposure (area) | Extended middle fossa approach |
Youssef, [25] Neurosurgery | 2004 | Target exposure (line) | Frontotemporal-orbitozygomatic craniotomy with conventional trans-sylvian exposure of the upper basilar artery through the carotid-oculomotor window, added anterior clinoidectomy, ICA mobilization, and posterior clinoidectomy |
Acharya, [26] J Neurol Surg B Skull Base | 2004 | Surgical corridor (angle of view) | Bilateral frontal craniotomy followed by fronto-orbital osteotomy |
Tanriover, [27] J Neurosurg | 2004 | Surgical corridor (angle of view) | Transvermian and telovelar approaches to the fourth ventricle |
Figueiredo, [28] Neurosurgery | 2005 | Surgical corridor (angle of view); target exposure (area) | Pterional, orbitopterional, and orbitozygomatic approaches to the anterior communicating artery complex before and after gyrus rectus resection |
Post, [29] Neurosurgery | 2005 | Target exposure (line) | Trans-sylvian trans-uncal approach for upper basilar trunk aneurysm |
Balasingam, [30] J Neurosurg | 2005 | Surgical corridor (surgical freedom); target exposure (area) | Simple transoral, transoral with a palate split, Le Fort I osteotomy, and median labioglossomandibulotomy approaches to the extracranial periclival region |
Siwanuwatn, [31] J Neurosurg | 2006 | Surgical corridor (angle of view); target exposure (area) | Retrosigmoid, combined petrosal, transcochlear approaches to the petroclival region |
Figueiredo, [32] Neurosurgery | 2006 | Surgical corridor (angle of view); target exposure (area) | Pterional, orbitozygomatic, mini-supraorbital approaches |
Deshmukh, [33] Neurosurgery | 2006 | Surgical corridor (angle of view); target exposure (area) | Telovelar and transvermian approaches to the fourth ventricle |
Figueiredo, [34] Neurosurgery | 2006 | Surgical corridor (angle of view); target exposure (area) | Transcavernous approach to interpeduncular and prepontine cisterns |
Figueiredo, [35] Neurosurgery | 2006 | Target exposure (visualization, line, area) | Anterior petrosectomy and transcavernous approaches to retrosellar and upper clival basilar artery aneurysms |
Liu, [36] Neurosurgery | 2006 | Surgical corridor (angle of view, surgical window); target exposure (line) | Transzygomatic extended middle fossa approach to petrous internal carotid artery |
Tanriover, [37] Neurosurgery | 2006 | Target exposure (line) | One-piece versus two-piece orbitozygomatic approaches |
Andaluz, [38] Acta Neurochir (Wien) | 2006 | Target exposure (line) | Pterional approaches with anterior clinoidectomy to the ophthalmic segment of the internal carotid artery |
Beretta, [39] Neurosurgery | 2006 | Target exposure (line) | Anterior sternocleidomastoid approach, retroparotid dissection and division of the digastric muscle, section of the styloid apparatus, and mandibulotomy to expose the distal cervical internal carotid artery |
Catapano, [40] J Neurosurg | 2006 | Target exposure (visualization) | Microscopic and endoscopic direct endonasal extended trans-sphenoidal approach |
Sincoff, [41] J Neurosurg | 2006 | Surgical corridor (surgical freedom) | Retrosigmoid, combined petrosal, transcochlear approaches to the petroclival region |
Safavi-Abbasi, [42] J Neurosurg | 2007 | Surgical corridor (angle of view, surgical freedom); target exposure (area) | Retrosigmoid approach |
Figueiredo, [43] Neurosurgery | 2007 | Surgical corridor (angle of view, surgical freedom); target exposure (area) | Minipterional approach |
Wu, [44] Chin Med J (Engl) | 2008 | Target exposure (area) | Presigmoid transpetrosal keyhole approach to petroclival region |
Jittapiromsak, [45] Neurosurgery | 2008 | Surgical corridor (angle of view); target exposure (area) | Retrosigmoid and lateral supracerebellar infratentorial approaches along the lateral surface of the pontomesencephalic junction |
Fatemi, [46] Neurosurgery | 2008 | Target exposure (line) | Endonasal trans-sphenoidal approach to the suprasellar and infrasellar region |
Mandelli, [47] J Neurosurg | 2008 | Surgical corridor (angle of view); target exposure (line) | Partial labyrinthectomy petrous apicectomy approach to petroclival meningiomas |
Kuriakose, [48] J Neurol Surg B Skull Base | 2008 | Surgical corridor (angle of view); target exposure (line) | Transtemporal and facial translocation approaches to infratemporal fossa |
D’Ambrosio, [49] Neurosurgery | 2008 | Surgical corridor (angle of view) | Frontotemporal orbitozygomatic approach |
Dzierzanowski, [50] Folia Morphol (Warsz) | 2008 | Surgical corridor (angle of view) | Pterional and pterional-orbitozygomatic approaches to the basilar artery bifurcation |
Pillai, [51] Neurosurgery | 2009 | Surgical corridor (angle of view); target exposure (area) | Endoscopic and microscopic transoral approach to the craniovertebral junction |
Li, [52] Zhonghua yi xue za zhi | 2009 | Surgical corridor (angle of view); target exposure (line, area) | Suboccipital median transcerebellomedullary fissure keyhole approach |
Jittapiromsak, [53] Neurosurgery | 2009 | Target exposure (area) | Supracerebellar transtentorial and occipital transtentorial approaches to the medial temporal region |
Chang, [54] Neurosurgery | 2009 | Surgical corridor (surgical freedom); target exposure (area) | Kawase’s approach and retrosigmoid approach to tumors involving both middle and posterior fossae |
Filipce, [55] Neurosurgery | 2009 | Target exposure (area) | Endoscopic and microscopic mini-supraorbital, pterional, orbitozygomatic approaches to the anterior communicating artery complex |
Doglietto, [56] Neurosurgery | 2009 | Target exposure (visualization) | Endonasal microscopic trans-sphenoidal, sublabial microscopic trans-sphenoidal, transmaxillary microscopic, paraseptal endoscopic trans-sphenoidal, transethmoid-pterygoid-sphenoidal endoscopic approaches to the cavernous sinus |
Baird, [57] Neurosurgery | 2009 | Surgical corridor (angle of view) | Endoscopic endonasal, transoral, and transcervical approaches to the craniocervical junction |
Alvernia, [58] Neurosurgery | 2009 | Surgical corridor (angle of view) | Anterior interhemispheric approach with and without complete exposure and retraction of the superior sagittal sinus |
Roth, [59] Neurosurgery | 2009 | Target exposure (area) | Multiple endoscopic expanded endonasal and transcranial approaches to midline cranial base targets |
Wu, [60] Operative Neurosurgery | 2010 | Surgical corridor (angle of view); target exposure (area) | Variants of the far-lateral approach with condylar fossa and transcondylar exposures |
Agrawal, [61] World Neurosurg | 2010 | Surgical corridor (angle of view); target exposure (area) | Extraoral and transoral approaches to the craniocervical junction |
Wu, [62] Neurosurgery | 2010 | Surgical corridor (angle of view); target exposure (visualization, area) | Trans-sylvian transchoroidal and lateral transtemporal approaches |
Safavi-Abbasi, [63] Oper Neurosurg (Hagerstown) | 2010 | Surgical corridor (angle of view); target exposure (area) | Retrosigmoid, far-lateral approaches, and their combination |
Beretta, [64] J Neurosurg | 2010 | Surgical corridor (angle of view); target exposure (area) | Supraorbital and transorbital minicraniotomies to the sellar and perisellar regions |
Jittapiromsak, [65] Neurosurgery | 2010 | Surgical corridor (angle of view); target exposure (line, area) | Telovelar approach to the recesses of the fourth ventricle |
Boari, [66] J Neurosurg | 2010 | Surgical corridor (surgical window); target exposure (line, area) | Clival and paraclival exposure in the Le Fort I transmaxillary transpterygoid approach |
Zador, [67] Neurosurgery | 2010 | Target exposure (line, area) | Pretemporal and subtemporal approaches |
Wang, [68] Acta Neurochir (Wien) | 2010 | Target exposure (line) | Posterior subtemporal keyhole approach combined with the transchoroidal approach to the ambient cistern |
Vince, [69] J Clin Neurosci | 2010 | Target exposure (visualization, line) | Supracerebellar midline and paramedian approaches to the inferior colliculus |
Seker, [70] World Neurosurg | 2010 | Target exposure (line) | Endoscopic transnasal and transoral approaches to the craniovertebral junction |
Cavalcanti, [71] Neurosurgery | 2010 | Surgical corridor (angle of view) | Transciliary supraorbital approach |
Wang, [72] J Neurosurg | 2010 | Surgical corridor (surgical freedom) | Posterior interhemispheric transfalx transprecuneus approach to the atrium of the lateral ventricle |
Salma, [73] Neurosurgery | 2011 | Surgical corridor (surgical freedom, volume); target exposure (visualization) | Lateral supraorbital approach and pterional approaches |
Lin, [74] World Neurosurgery | 2011 | Target exposure (area) | Modified temporal-occipital transtentorial transpetrosal-ridge and transpetrosal presigmoid approaches |
Sabuncuoğlu, [75] Skull Base | 2011 | Target exposure (line, area) | Temporopolar transcavernous approach to the basilar artery apex |
Kinoshita, [76] Acta Neurochir (Wien) | 2011 | Target exposure (line) | Transcrusal approach to the retrochiasmatic region |
Russo, [77] Neurosurgery | 2011 | Target exposure (visualization, line) | High anterior cervical approach to the clivus and foramen magnum |
Kinoshita, [78] World Neurosurg | 2012 | Target exposure (line) | Pterional craniotomy, with and without the removal of the supraorbital bar and the lateral orbital wall along with the sphenoid wing to access the suprachiasmatic region |
Yeremeyeva, [79] J Clin Neurosci | 2012 | Target exposure (visualization) | Keyhole approaches to the anterior communicating artery complex |
Russ, [80] World Neurosurg | 2012 | Target exposure (visualization, line) | Minimally invasive supracondylar transtubercular approach to the lower clivus |
Tang, [81] Clin Neurol Neurosurg | 2013 | Surgical corridor (angle of view); target exposure (area) | Endoscopic and microscopic retrosigmoid and posterior petrosectomy approaches to the petroclival region |
McLaughlin, [82] J Clin Neurosci | 2013 | Target exposure (line) | Extended subtemporal transtentorial approach |
Guan, [83] Chin Med J (Engl) | 2013 | Target exposure (line) | Endoscope-assisted far lateral keyhole approach to the ventral craniocervical region |
Ambekar, [84] J Neurol Surg B Skull Base | 2013 | Target exposure (line) | Retrosigmoid intradural suprameatal and retrosigmoid transtentorial approaches to the petroclival region |
Tang, [85] Neurosurg Rev | 2013 | Target exposure (visualization) | Endoscopic and microscopic approaches for neurovascular decompression of the trigeminal nerve |
Cheng, [86] J Neurosurg | 2013 | Target exposure (area) | Supraorbital keyhole, frontotemporal pterional, and supraorbital approaches to the parasellar region |
Wilson, [87] World Neurosurg | 2014 | Surgical corridor (angle of view, surgical freedom) | Minimal-access endoscopic transmaxillary approaches to the anterolateral skull base |
de Notaris, [88] Laryngoscope | 2014 | Surgical corridor (surgical freedom); target exposure (area) | Endoscopic suprasellar approach |
Jacquesson, [89] Surg Radiol Anat | 2015 | Target exposure (area) | Anterior petrosectomy and expanded endoscopic endonasal approach to petroclival tumors |
Jacquesson, [90] World Neurosurg | 2015 | Target exposure (visualization) | Anterior expanded endoscopic endonasal, retrosigmoid, anterior petrosectomy approaches to the petroclival region |
Tripathi, [91] J Neurosurg | 2015 | Surgical corridor (angle of view, surgical freedom); target exposure (area) | Kawase versus the modified Dolenc-Kawase approaches to the middle cranial fossa |
Kim, [92] Neurosurgery | 2015 | Target exposure (area) | Supraorbital modified orbitozygomatic approach to the opticocarotid and carotid-oculomotor windows before and after internal carotid artery mobilization and posterior communicating division |
Yang, [93] Acta Neurochir (Wien) | 2016 | Surgical corridor (surgical freedom); target exposure (area) | Microscopic and endoscopic retrolabyrinthine and transcrusal approaches to the retrochiasmatic region |
Lee, [94] Neurosurg Rev | 2016 | Target exposure (area) | Pterional transtentorial, orbitozygomatic, and anterior petrosal approaches to the anterosuperior pons |
Jägersberg, [95] World Neurosurg | 2017 | Surgical corridor (volume); target exposure (area) | Pterional approach and its minimally invasive variants |
Schreiber, [96] World Neurosurg | 2017 | Surgical corridor (volume); target exposure (area) | Modular endoscopic medial maxillectomies |
Araujo, [97] J Neurosurg | 2017 | Surgical corridor (angle of view, volume); target exposure (area) | Transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches to the third ventricle |
Belotti, [98] World Neurosurg | 2018 | Surgical corridor (volume); target exposure (area) | Modular endoscopic endonasal trans-sphenoidal approaches to sellar region |
Doglietto, [99] World J Methodol | 2018 | Surgical corridor (volume); target exposure (area) | Transnasal endoscopic and lateral approaches to the clivus |
Muhanna, [100] J Neurol Surg B | 2018 | Surgical corridor (volume); target exposure (area) | Endoscopic and maxillary swing surgical approaches for nasopharyngectomy |
Peraio, [101] Br J Neurosurg | 2018 | Surgical corridor (surgical freedom) | Supraorbital and endonasal approaches |
Wu, [102] Acta Neurochir (Wien) | 2018 | Surgical corridor (surgical freedom); target exposure (area) | Microscopic and endoscopic far lateral approaches to the cranio-vertebral junction |
Di Somma, [103] J Neurosurg | 2018 | Surgical corridor (surgical freedom); target exposure (area) | Endoscopic endonasal transtuberculum transplanum approach |
Bozkurt, [104] World Neurosurg | 2018 | Surgical corridor (angle of view, surgical freedom) | Transcallosal-transchoroidal and transcallosal-subchoroidal approaches to the floor of the third ventricle |
Belykh, [105] World Neurosurg | 2018 | Surgical corridor (angle of view, volume); target exposure (area) | Ipsilateral and contralateral interhemispheric transcallosal approaches to the lateral ventricle |
Doglietto, [106] Acta Neurochir (Wien) | 2019 | Surgical corridor (volume); target exposure (area) | Endonasal and transoral approaches to the craniovertebral Junction |
Ferrari, [107] Head Neck | 2019 | Surgical corridor (volume); target exposure (area) | Transnasal, sublabial, transoral, transcervical, and infratemporal approaches to the parapharyngeal space |
da Silva, [108] World Neurosurg | 2019 | Surgical corridor (angle of view); target exposure (line, area) | Pterional, pretemporal, orbitozygomatic approaches |
Agosti, [109] Acta Neurochir (Wien) | 2020 | Surgical corridor (volume); target exposure (area) | Endoscopic transnasal, and microsurgical supraorbital, minipterional, pterional, pterional transzygomatic, fronto-temporal-orbito-zygomatic, subtemporal, retrosigmoid, far-lateral, retrolabyrinthine, translabyrinthine, transcochlear approaches to the clivus |
Saraceno, [110] World Neurosurg | 2020 | Surgical corridor (volume); target exposure (area) | Microsurgical supraorbital, minipterional, pterional, pterional-transzygomatic, fronto-temporal-orbito-zygomatic, subtemporal, and endoscopic transnasal, transorbital, transmaxillary approaches to the middle cranial fossa |
Topczewski, [111] Acta Neurochir (Wien) | 2020 | Target exposure (area) | Endoscopic endonasal and transorbital approaches to the petrous apex |
Martínez-Pérez, [112] J Neurosurg | 2020 | Surgical corridor (surgical freedom); target exposure (area) | Minipterional and supraorbital approaches |
Agosti, [113] Oper Neurosurg (Hagerstown) | 2021 | Surgical corridor (volume); target exposure (area) | Multiple microsurgical transcranial, endoscopic endonasal, and transorbital approaches to the spheno-orbital region |
Agosti, [114] Oper Neurosurg (Hagerstown) | 2022 | Surgical corridor (volume); target exposure (area) | Endoscopic endonasal transcribriform, transtuberculum, transplanum, and microsurgical transfrontal sinus interhemispheric, frontobasal interhemispheric, subfrontal, supraorbital, minipterional, pterional, frontotemporal orbitozygomatic approaches to the anterior cranial fossa |
Houlihan, [115] Oper Neurosurg (Hagerstown) | 2022 | Surgical corridor (angle of view, surgical freedom) | Supraorbital and pterional approaches to paramedian vascular structures |
Serioli, [116] Neurosurg Rev | 2023 | Surgical corridor (volume); target exposure (area) | Microsurgical transcranial approaches to the posterior surface of petrosal portion of the temporal bone |
Martins Coelho, [117] World Neurosurg | 2023 | Surgical corridor (surgical freedom); target exposure (area) | Retrosigmoid and retrolabyrinthine posterior petrosal approaches to the petroclival region |
Alexander, [118] Oper Neurosurg (Hagerstown) | 2023 | Target exposure (visualization) | Supracerebellar infratentorial, precuneal interhemispheric, transtentorial approaches to the cerebellomesencephalic fissure |
Lin, [119] Neurosurg Rev | 2023 | Surgical corridor (angle of view); target exposure (area) | Endoscopic presigmoid retrolabyrinthine approach to the lateral mesencephalic sulcus |
Revuelta Barbero, [120] Oper Neurosurg (Hagerstown) | 2023 | Surgical corridor (angle of view, surgical freedom); target exposure (area) | Endoscopic expanded retrosigmoid and far-lateral approaches to the inframeatal area |
SURGICAL CORRIDOR | METHOD | TOOLS | PROS | CONS |
---|---|---|---|---|
Volume | Direct measurements | Filling the surgical cavity with dyed fat post-dissection CT, and volume quantification [73] | Provides visualization and quantification of the whole surgical volume | Requires post-CT; filling material characteristics might influence results |
Coordinates recording with fixed points | Frameless stereotactic device [95,96,98,100,106,107,109,110,113,114,116] | Provides visualization and quantification of the whole surgical volume | Requires navigation and dedicated software | |
Surgical Freedom/Maneuverability | Inverted cone concept | Virtual [49,50,121] | Multiple calculations are feasible | Requires virtual model; only for one target |
Frameless stereotactic device [7,12,30,41,42,54,71,72,122] | Multiplanar evaluation for a single target | Requires navigation and dedicated software; fixed distance (10 or 15 cm) or at craniotomy level | ||
Surgical Window | Direct measurements | Guide wires and ruler [5,12] | Simple | Positioning of guide wires might not always be feasible, and it simplifies actual anatomy |
Graduated scales and calipers [66] | Simple | Positioning of guide wires might not always be feasible, and it simplifies actual anatomy | ||
NS [48] | Simple | Positioning of guide wires might not always be feasible, and it simplifies actual anatomy | ||
Indirect measurements | Coordinates recording and elaboration [5] | Possible for deep targets | Requires navigation and dedicated software | |
Angle of View | Indirect measurements | CT images analysis [15,23,64] | Possible also for deep targets; provides visualization on CT after dissection | Requires CT scan |
Guide wires and ruler (with Pythagorean theorem or tangent formula) [7,8,26,58] | Simple | Indirect (i.e., minimal error increased) | ||
Malleable wire and protractor [48] | Simple | Indirect (i.e., minimal error increased) | ||
MRI stealth visualization of trajectory intersecting plane [27] | Immediate rendering of data | Requires navigation and dedicated software and MRI | ||
Coordinates recording and elaboration [28,32,45,51,52,60,61,62,65,71,81] | Possible for deep targets | Requires navigation and dedicated software | ||
Direct measurements | Robotic microscope in the spherical mode [19,28,31,33,35,42,43,63] | Feasible for deep targets | Requires dedicated microscope; connected to a computer | |
Goniometer [36,47,123] | No calculations | No feasible for deep targets | ||
Virtual [49,50,57] | Multiple calculations are feasible | Requires virtual model; not real |
TARGET EXPOSURE | METHOD | TOOLS | PROS | CONS |
---|---|---|---|---|
Visualization | Ordinal scale | Kawashima grading [34,62,80] | Simple | Semi-quantitative |
Counting critical structures encountered [69,77] | Simple | Partial evaluation | ||
Modification of the Ammirati and Bernardo grading system [38,56,73,79,85] | Simple, includes grading of surgical maneuverability | Operator-dependent inter-variability | ||
Distance visualization from a reference point | Wire cube with mm markings [14] | Simple | It does not grade exposure but visualization if different visualizing tools are used (i.e., microscope vs. endoscope) | |
Ruler [40] | Simple | It does not grade exposure but visualization if different visualizing tools are used (i.e., microscope vs. endoscope) | ||
Line | Indirect measurements | Barium injection of arteries, clip positioning, X-ray, and distance measurement [25] | Virtual angiography | Requires barium injection and X-ray |
Mm2 graph paper and digital imaging software [37] | Post-dissection analysis | Requires dedicated software | ||
Direct measurements | Graduated scales and calipers [66] | Simple | Not always feasible for deep targets | |
NS [36,39,48,69,70,77,78,84] | Simple | Not always feasible for deep targets | ||
Digital caliper [47,67] | Simple | Not always feasible for deep targets | ||
Ruler [13,17,18,25,29] | Simple | Not always feasible for deep targets | ||
Mm paper [22,46,76] | Simple | Not always feasible for deep targets | ||
Malleable surgical wire [38] | Simple | Not always feasible for deep targets | ||
Limits of exposure | A frameless stereotactic device with MRI [33,43,65,68,124] | Possible also for deep targets | Requires navigation and dedicated software and MRI | |
Coordinates recording with fixed points | Frameless stereotactic device [12,34,52,68,75,82,83,125] | Possible for deep targets | Requires navigation and dedicated software | |
Area | Indirect measurements | CT images analysis [100,101,102,103,104,105] | Provides visualization on CT after dissection | Requires CT |
Indirect measurements | Image analysis software [20,66] | Post-dissection analysis | Requires dedicated software | |
Direct measurements | Digital caliper [67] | Simple; low-cost | Only for dural and bony targets; not always feasible | |
Beaded pins and ruler [21] | Simple; low-cost | Only for dural and bony targets; not always feasible | ||
Coordinates recording with fixed points | Frameless stereotactic device [11,12,24,28,30,31,32,33,34,35,42,43,44,45,51,52,53,54,55,60,61,62,63,64,65,75,81,95,96,98,99,100,106,107,108,109,110,111,112,113,114,115,116,117,119,120] | Possible for deep targets | Requires navigation and dedicated software | |
Coordinates recording with MRI visualization | A frameless stereotactic device with MRI or CT | Provides visualization of the quantified area in 3D reconstruction | Multiplanar evaluation for a single target; Requires MRI or CT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agosti, E.; De Maria, L.; Mattogno, P.P.; Della Pepa, G.M.; D’Onofrio, G.F.; Fiorindi, A.; Lauretti, L.; Olivi, A.; Fontanella, M.M.; Doglietto, F. Quantitative Anatomical Studies in Neurosurgery: A Systematic and Critical Review of Research Methods. Life 2023, 13, 1822. https://doi.org/10.3390/life13091822
Agosti E, De Maria L, Mattogno PP, Della Pepa GM, D’Onofrio GF, Fiorindi A, Lauretti L, Olivi A, Fontanella MM, Doglietto F. Quantitative Anatomical Studies in Neurosurgery: A Systematic and Critical Review of Research Methods. Life. 2023; 13(9):1822. https://doi.org/10.3390/life13091822
Chicago/Turabian StyleAgosti, Edoardo, Lucio De Maria, Pier Paolo Mattogno, Giuseppe Maria Della Pepa, Ginevra Federica D’Onofrio, Alessandro Fiorindi, Liverana Lauretti, Alessandro Olivi, Marco Maria Fontanella, and Francesco Doglietto. 2023. "Quantitative Anatomical Studies in Neurosurgery: A Systematic and Critical Review of Research Methods" Life 13, no. 9: 1822. https://doi.org/10.3390/life13091822
APA StyleAgosti, E., De Maria, L., Mattogno, P. P., Della Pepa, G. M., D’Onofrio, G. F., Fiorindi, A., Lauretti, L., Olivi, A., Fontanella, M. M., & Doglietto, F. (2023). Quantitative Anatomical Studies in Neurosurgery: A Systematic and Critical Review of Research Methods. Life, 13(9), 1822. https://doi.org/10.3390/life13091822