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Abstract: This study focuses on improving healthcare quality by introducing an automated system
that continuously monitors patient pain intensity. The system analyzes the Electrodermal Activity
(EDA) sensor modality modality, compares the results obtained from both EDA and facial expressions
modalities, and late fuses EDA and facial expressions modalities. This work extends our previous
studies of pain intensity monitoring via an expanded analysis of the two informative methods. The
EDA sensor modality and facial expression analysis play a prominent role in pain recognition; the
extracted features reflect the patient’s responses to different pain levels. Three different approaches
were applied: Random Forest (RF) baseline methods, Long-Short Term Memory Network (LSTM), and
LSTM with the sample-weighting method (LSTM-SW). Evaluation metrics included Micro average
F1-score for classification and Mean Squared Error (MSE) and intraclass correlation coefficient (ICC
[3, 1]) for both classification and regression. The results highlight the effectiveness of late fusion for
EDA and facial expressions, particularly in almost balanced datasets (Micro average F1-score around
61%, ICC about 0.35). EDA regression models, particularly LSTM and LSTM-SW, showed superiority
in imbalanced datasets and outperformed guessing (where the majority of votes indicate no pain)
and baseline methods (RF indicates Random Forest classifier (RFc) and Random Forest regression
(RFr)). In conclusion, by integrating both modalities or utilizing EDA, they can provide medical
centers with reliable and valuable insights into patients’ pain experiences and responses.

Keywords: continuous pain intensity recognition; electrodermal activity; facial expressions; fusion;
long-short term memory network; random forest; sample weighting

1. Introduction

A reliable assessment of pain is crucial to determine proper and prompt treatment,
especially for vulnerable patients who cannot communicate their pain, such as those in
intensive care, people with dementia, or adults with cognitive impairment. To make
the clinical observations go well, it is promising to provide an automated system due
to its possibility for objective and robust measurements and the monitoring of pain [1].
The COVID-19 pandemic has further highlighted the importance of such systems. Many
countries like China adopted automated systems to effectively manage patients [2]. Thus,
this study aims to develop an automated system for clinical settings that can rapidly and
objectively monitor patients’ pain levels by analyzing the informative modalities in the
X-ITE Pain Dataset. Such a database has been made to complement existing databases and
provide valuable information for more advanced discriminating pain or pain intensities
versus no pain.
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Physical expressions of pain encompass visual cues (facial expressions and body
movements), vocalization cues (verbally and non-verbally), and physiological cues (electro-
cardiography (ECG), electromyography (EMG), Electrodermal Activity (EDA), and brain
activity) [3–5]; these cues play a significant role in assessing pain in individuals [5]. The
extracted features from EDA and facial expression modalities indicate the spontaneous
pain expression, stress, and anxiety caused by different pain levels; both modalities are
good measures for pain assessment [6,7]. This study presents the findings obtained from
analyzing two important modalities regarding classification and regression. Regarding
regression approaches, the pain intensity stimuli were handled as continuous labels and
normalized between 0 and 1 to fit using all regression approaches.

EDA records the changes in the skin’s electrical activity using two electrodes attached
to the index and ring fingers. It correlates significantly with pain intensity ratings, as
it reflects the intense body reactions after experiencing pain when a painful stimulus is
applied [8–10]. An increasing number of studies [11–15] explored physiological signals and
machine learning models for objective assessments of pain intensity; findings demonstrated
that EDA signals tend to outperform other physiological signals in terms of accurate pain
assessment. Thus, many studies [16–18] focused on EDA for pain assessment. Further,
the temporal integration of EDA features were investigated to improve the performance
of pain assessment [14,19,20]. The temporal integration was represented as a time series
statistics descriptor (EDA-D) that was calculated from several statistical measures along
with their first and second derivatives per time series.

Ekman and Friesen [21] decomposed facial expressions into individual facial Action
Units (AUs) with the Facial Action Coding System (FACS). A combination of some of these
AUs expresses pain behaviors [22]. Prior studies [13,14,23–27] using facial expressions
have explored machine learning approaches to recognize pain intensity. Regarding the
use of the temporal integration of frame-level features represented by the Facial Activity
Descriptor (FAD), RF showed superior performance compared to linear Support Vector
Machine (SVM) and Radial Basis Function kernel (RBF-SVM) [24]; thus, it was used in [27]
and this study as baseline approach regarding classification and regression. Approaches
that use FAD to recognize pain intensity showed better results than those that used facial
features [24], which relied on independently extracted facial features from each frame of a
given sequence. FAD is good at describing dynamics among neighboring frames.

Machines are much better than human observers at recognizing pain intensity via
facial expression [26]. As mentioned earlier, the X-ITE Pain Database was used in this
work, Walter et al. [20], Werner et al. [14], and Gruss et al. [28] used it as a recent and
valuable database. These studies reported the results of using phasic (short) and tonic
(long) stimulation samples from a frontal RGB camera, as well as audio and psychological
data (ECG, EMG, and EDA) of 7 s, which have been cut out from the continuous recording
of the main stimulation phase in the X-ITE Pain Database. Our work in [27] goes beyond
their study. We reported the first continuous pain monitoring results based on analyzing
facial expressions on the same database. We used the continuous recording of the facial
expressions of most of the experiment, which is about 1 h and a half per subject. This
study extends our work in [27] by investigating the same proposed methods but with EDA
modality regarding classification and regression, then comparing the results with the facial
expressions modality results.

In this study, we applied three distinct approaches, utilizing 11 proposed datasets
from the X-ITE Pain Database. The objective was to discriminate between no pain and
various pain intensities scenarios regarding sequence classification and regression. These
scenarios encompassed scenarios involving “no pain” (indicating the absence of painful
stimuli), three levels of pain intensity (low, moderate, and severe), as well as variations in
pain qualities (heat and electrical stimuli) for two types of pain stimuli (phasic and tonic).
Those methods are Random Forest (RF) as baseline methods (Random Forest classifier
(RFc) and Random Forest regression (RFr)), Long Short-Term Memory (LSTM), and LSTM
using the sample-weighting method (called LSTM-SW). The LSTM [29] was used because
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it is good for handling time series prediction to improve the continuous monitoring of
pain intensity. Both EDA-D and FAD were represented by summarizing four statistics
(minimum, maximum, mean, and standard deviation) of the time series itself and its first
and second derivatives. The EDA-D we used was at the same frame rate (1/25 s = 25 fps)
as that used with FAD in [27]; we used 25 fps because it is the most common and standard
frame rate of the video. Further, we used a sliding window of ten seconds ago with the
label of three seconds after.

In addition, recent studies [6,13–15,30] have motivated us to combine the EDA and
facial expressions modalities to improve continuous pain intensity monitoring. The combi-
nation of behavioral and physiological pain responses holds the potential for developing
objective pain assessment, as discussed by Odhner et al. [31]. The late fusion method,
known as Decision Fusion (DF), employs a fixed mapping (mean-score mapping), wherein
individual RF, LSTM, and LSTM-SW models are applied to two modalities (FAD and EDA).
This study compares the results of the individual modalities (EDA and facial expressions)
and the fused modality of these two approaches, aiming to introduce the optimal auto-
mated system for the objective and continuous monitoring of pain intensity. Such a system
could offer significant benefits for reliable and cost-effective pain intensity assessment.

2. Related Work

Several studies of pain have focused on physiological signals because of the strong
correlation between these signals and pain [32–34]. In [5,14,15], it was reported that the EDA
signal obtained the best performance compared to other single physiological signals. Thus,
EDA has gained attention in automatic pain recognition systems. EDA records changes in
the electrical activity of the skin of the hands, which is controlled by the autonomic nervous
system [35,36]. The sweat on the skin’s surface changes the electrical conductivity of the
skin (e.g., people sweat when they are scared, nervous, and in pain). EDA is composed of
phasic and tonic signals. The phasic signal is a quick response caused by external stimuli
such as pain stimuli. The tonic signal is a slower component of the signal, including the
baseline of the signal due to unconscious activities [37].

Recent studies have focused on deep-learning methods due to their success in classify-
ing pain using EDA, such as 1D convolutional neural networks [CNNs] [13], a multi-task
learning method based on neural networks [38], and the Recurrent Convolutional Neural
Network [RCNN] [12]. These deep-learning methods were utilized because of their ability
to mine the sequential relationships between different periods of EDA signals. Posada et
al. [17] presented classification and regression machine learning models to estimate pain
sensation in healthy subjects using EDA. They computed the extracted features of EDA
based on time-domain decomposition, spectral analysis, and differential features. The
maximum macro-averaged geometric mean scores of the models were 69.7% and 69.2%,
respectively. Kong et al. [18] analyzed the spectral characteristics of EDA to obtain reliable
performance because it is more sensitive and reproducible for the assessment of sympa-
thetic arousal than traditional indices (tonic and phasic signals). Bhatkar et al. [16] reported
a successful novel method to discriminate the reduction in pain with clinically effective
analgesics by combining self-reports with continuous physiological data in a structured
and specific-to-pain protocol.

A common knowledge is that pain databases have a significant impact on the perfor-
mance of automatic pain assessment systems. The above-mentioned studies of EDA signals
for pain intensity recognition used databases that include fewer variants of quality and
duration. By analyzing pain in terms of quality and length, additional valuable information
is provided for more advanced discrimination between pain or pain intensity versus no
pain. Thus, the X-ITE Pain Database [28] is designed to complement existing databases.
The X-ITE Pain Database includes behavioral and physiological data that were recorded
when healthy participants (subjects) were exposed to different qualities and durations of
pain stimuli. The use of healthy subjects in a medical study has always played a vital role
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in evaluating safety and tolerability without interference from concomitant pathological
conditions [39].

Werner et al. [24] introduced a novel feature set for describing facial actions and their
dynamics, which we call facial activity descriptors [FAD]. They trained FAD (extracted from
the BioVid Heat Pain Dataset) with SVM and RFc, and the results showed that RFc with
100 trees outperformed SVM. They focused on the video-level using temporal integration
for pain recognition because it was more effective in describing the dynamic information
beneficial for pain intensity recognition [23]. This approach often involves the temporal
integration of frame-level features. For example, video content can be condensed to high-
level features using a time series statistics descriptor that consists of several statistical
measures of the time series. In [14], the same RFc was trained using the extracted features
from facial expressions, audio, ECG, EMG, and EDA that were introduced in [28] to
recognize pain levels. They classified the pre-segmented time windows (7 s) cut out from the
continuous recording of the main stimulation phase in the X-ITE Pain Database. According
to the ability of Random Forest (RF) [40] for pain detection using facial expressions [14,23],
we introduced RFc using temporal information of facial expressions by representing time-
series statistics descriptor (FAD) [25,26]. FAD was represented by calculating several
statistical measures with their first and second derivatives per time series. The performances
of reduced MobileNetV2 and simple Convolutional Neural Network (CNN) were better
than RFc. CNN accuracy improved when using the sample weighting method by about 1%.
The sample weighting method was suggested to reduce the weight of misclassified samples
by duplicating some training samples with more facial responses if their classification
scores are above 0.3 to improve the pain intensity recognition performance [26].

In [5,6,13,14,20,23,28,30,38], the authors reported that fusing modalities could improve
the results of pain recognition. After investigating these studies, it was found that some
fused physiological modalities, while others fused both behavioral and physiological
modalities. The models combining the fused modalities of EMG and EDA were the most
successful in the majority of the aforementioned studies for developing pain recognition
systems. However, physiological signals could also be indicative of other pathological
conditions unrelated to pain. In the study by Werner et al. [14], fusion was applied
with multiple modalities (frontal RGB camera, audio, ECG, EMG, and EDA). Firstly, they
individually trained random forests (RF) using the features of each modality. Secondly, they
concatenated the feature vectors of all modalities and trained and tested the RF (referred to
as feature fusion). Thirdly, they applied decision fusion by training the RF on individual
modalities and then aggregating the RF scores into final decisions. They employed two
types of aggregation: fixed mapping and trained mapping approaches.

In this study, we recognized pain intensity by utilizing Long Short-Term Memory
(LSTM) [29]. LSTM was designed to learn long-term dependencies over extended time
periods by retaining information from previous segments. LSTM, when applied with
sample weighting (LSTM-SW), exhibited significantly superior performance compared
to RFr for recognizing continuous pain intensity when employing facial expressions for
regression [27]. Furthermore, the same methods were applied for classification in [41]. The
exceptions were the small datasets, for which RFr was the best, but the performance of
the models was still poor. Additionally, the results obtained from the facial expressions
modality were juxtaposed with the EDA modality results. In alignment with [14], this study
uses late fusion with the fused mapping method on two modalities (EDA and facial expres-
sions), a technique referred to as Decision Fusion (DF). We suggest fusing facial expressions
(the most informative behavioral modality) and EDA (the most informative physiological
modality). We believe that utilizing a combination of behavioral and physiological modali-
ties with appropriate machine learning methods could enhance the performance of pain
intensity recognition.

In contrast to [14,14], we used the most continuous recording of facial expressions
and EDA signals for classification and regression tasks in this study. This study introduces
RFc and RFr as baseline methods for continuously monitoring pain intensity using the
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X-ITE Pain Database. In our recent study [42], we presented the results of investigations
involving multiple modalities (frontal RGB camera, audio, ECG, EMG, and EDA). This
work represents a further investigation into analyzing only the two most informative
modalities (facial expression and EDA signal), which are then fused using Decision Fusion
(DF) on both balanced and imbalanced datasets.

3. Materials and Methods

This section introduces the structure of our system designed to automatically recognize
continuous pain intensity using the EDA and facial expressions modalities from the X-ITE
Pain Database (see Figure 1). The primary focus of this study is on the EDA and the fused
modality (EDA and facial expressions) to recognize continuous pain intensity. The analysis
of facial expressions was previously described in detail in [27,41]. Firstly, we determined
the temporal integration of the extracted features from the EDA and facial expressions
modalities, referred to as EDA descriptor (EDA-D) and Facial Activity Descriptor (FAD),
respectively. Secondly, we shifted the labels three seconds forward and applied a sliding
window with a time length of ten seconds. Thirdly, we used Random Forest (RF) as the
baseline method, along with two Long Short-Term Memory (LSTM) methods (one using the
sample weighting method and the other without) for recognizing continuous pain intensity.
Fourthly, we applied the late fusion method (Decision Fusion (DF)), in which individual RF,
LSTM, and LSTM-SW models were trained with EDA-D and FAD. Finally, we evaluated
the performance of the models in terms of classification using the Micro average F1-score
(Micro avg. F1-score), which is particularly useful when datasets vary in size. Furthermore,
the Mean Squared Error (MSE) and the intraclass correlation coefficient (ICC (3, 1)) [43]
were computed to compare the performances of classification versus regression models
after normalizing the output to a range between 0 and 1. When dealing with continuous
data, MSE is a common measure used, and ICC assesses interrater reliability by determining
the correlation between two measurements conducted on the same subject.
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Figure 1. Overview of continuous pain intensity monitoring system.
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3.1. Database Prepossessing

In this section, we provide an overview of the multimodal Experimentally Induced
Thermal and Electrical (X-ITE) Pain Database [28], which we used to validate the perfor-
mance of various automatic methods for continuous pain intensity recognition. Within
this database, only a subset of 127 participants (aged between 18 and 50 years) has data
available from all sensors (frontal RGB camera, audio, ECG: electrocardiogram, EMG: sur-
face electromyography, EDA: electrodermal activity). Alongside Werner et al. [14] and our
studies [26,27,41], we focused on this subset and analyzed the EDA and facial expressions
data from time series involving both phasic and tonic pain intensities at three levels (low,
medium, and high). These pain intensities were experienced during the application of
thermal pain stimuli (Medoc PATHWAY Model ATS) and electrical pain stimuli (Digitimer
DS7A), as well as during periods of no pain. The 5 s phasic stimuli of each modality (heat
and electrical pain) and intensity were repeated 30 times in randomized order with pauses
of 8–12 s. The tonic stimuli were applied once for one minute per intensity and modality,
followed by a pause of five minutes. For further details regarding the data collection
experiment, refer to the work of Gruss et al. [28]

Automatic methods should be capable of recognizing pain intensity from facial ex-
pressions in frontal RGB videos and EDA data time series. However, we observed that the
distribution of samples for pain intensity labels is extremely unbalanced. To address this
issue, undersampling, clustering, and oversampling techniques were used to overcome
such problem [44]. In alignment with our recent studies [27,41], we addressed the problem
of imbalanced data using similar processing steps but with EDA data. We used the results
of investigating the intensity of facial expressions for most samples when expressing pain
intensity. Firstly, we utilized the same four categories of subjects, categorized according
to their expression of pain intensity. Secondly, we used the same splits of the database,
which were 80% of data for training (100 subjects = 572,696 samples), 10% for validation
(13 subjects = 75,537 samples), and 10% for testing (14 subjects = 79,485 samples); each
split contains samples from all intensity categories. The subjects were selected randomly
from each category based on the proposed percentage, Figure 2 shows the subjects in each
category. Thirdly, we processed the database into 11 datasets based on two pain stimulus
types (phasic and tonic) and two qualities (heat and electrical stimuli) to reduce the impact
of the imbalanced database problem. The distribution of samples for pain intensity labels
within each dataset is detailed in Table 1. The reason why we do not use all samples with
the testing set (without splitting it into 11 datasets) is that the model would be biased
towards the majority and fail to recognize pain intensity in samples of minority classes. The
size of the tonic samples is very small compared to that of the phasic samples. Additionally,
the size of the heat samples size is smaller than that of electrical samples for both pain
qualities (phasic and tonic).

Table 1. Samples’ distribution based on labels.

Subsets No Pain Reduced Subsets No Pain
Pain Intensities Pain Intensities

PD Phasic Dataset 77.7% 22.3% RPD Reduced Phasic Dataset 50.0% 50.0%
HPD Heat Phasic Dataset 78.5% 21.5% RHPD Reduced Heat Phasic Dataset 50.1% 49.9%
EPD Electrical Phasic Dataset 86.1% 13.9% REPD Reduced Electrical Phasic Dataset 50.0% 50.0%

TD Tonic Dataset 70.3% 29.7% RTD Reduced Tonic Dataset 38.1% 61.9%
HTD Heat Tonic Dataset 20.0% 80.0%
ETD Electrical Tonic Dataset 82.0% 18.0% RETD Reduced Electrical Tonic Dataset 49.0% 51.0%
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Figure 2. Assignment of subjects to categories of facial response intensities. Intensity 1 = lack of
facial responses to pain. Intensity 2, 3 = moderate intensity of facial responses to pain. Intensity
4 = intensive facial responses to pain.

Table 1 presents the 11 suggested datasets, which are as follows:

• Phasic Dataset (PD): Excludes tonic samples and no-pain samples both before and
after the samples, including those labeled -10 and -11 (indicating experimental issues
like false starts, restarts of stimuli, overlap between heat or electrical stimulation,
unbalanced phasic estimation, short pauses, short tonic electrical stimulus, single heat
stimulus in front, additional stimulus, or subject interaction during the experiment).

• Heat Phasic Dataset (HPD): Excludes electrical samples from PD and no-pain samples
before these frames.

• Electrical Phasic Dataset (EPD): Excludes heat samples from PD and no-pain frames
before these frames.

• Tonic Dataset (TD): Excludes phasic samples and no-pain samples both before and
after the samples, including those labeled −10 and −11.

• Heat Tonic Dataset (HTD): Excludes electrical samples from TD and no-pain frames
before these frames.

• Electrical Tonic Dataset (ETD): Excludes heat samples from TD and no-pain frames
before these frames.

Additionally, the Reduced Subsets are:

• Reduced Phasic Dataset (RPD): Reduces the no-pain frames in PD to approximately 50%.
• Reduced Heat Phasic Dataset (RHPD): Reduces the no-pain frames in HPD to approx-

imately 50%.
• Reduced Electrical Phasic Dataset (REPD): Reduces the no-pain frames in EPD to

approximately 50%.
• Reduced Tonic Dataset (RTD): Reduces the no-pain frames in TD to approximately 38%.
• Reduced Electrical Tonic Dataset (RETD): Reduces the no-pain frames in ETD to

approximately 49%.

Our reduction strategy focuses on minimizing some no-pain samples preceding each
pain intensity sequence while retaining varying numbers of no-pain samples immediately
adjacent to each pain intensity sequence. This number is determined based on the sample
count within each pain intensity sequence. For instance, for a sequence of phasic electrical
pain intensity that comprises five samples, we retain the preceding five no-pain samples
and discard the remainder.
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3.2. Processing of Electrodermal Activity (EDA) and Facial Expressions Data

After preprocesssing database (see the section above), we processed the data of both
modalities (EDA and facial expressions) to extract features for continuous recognising pain
intensity. In line with the facial expressions analysis process in our study [27], we used only
the EDA signal (without filtering) at the same time series sampling rate (1/25 s). The Facial
Features (FF) were extracted from each frame for each video (subject) using OpenFace [45];
the average length of videos was about one and a half hours. OpenFace detected the face
and facial landmarks, extracted Action Units (AUs), and estimated head pose. The FF
were recorded at 25 frames per second (fps). The FF we used include 21 features: 3 head
pose (Yaw, Pitch, and Roll), AU1 (binary occurrence output), and 17 AU intensity outputs
of OpenFace, which are AU1, AU2, AU4, AU5, AU6, AU7, AU9, AU10, AU12, AU14,
AU15, AU17, AU20, AU23, AU25, AU26, and AU45. Temporal integration features were
computed from the 1-dimensional EDA time series and the 21-dimensional facial expression
time series. Each time series was summarized using four statistics derived from the time
series itself and its first and second derivatives: minimum, maximum, mean, and standard
deviation. The obtained descriptors (Facial Activity Descriptor (FAD) and EDA Descriptor
(EDA-D)) yield a 12 × 1-dimensional and 12 × 21-dimensional descriptor per time series for
EDA and FF features, respectively. A person-specific standardization of the features [24]
was applied with both descriptors in order to focus on the within-subject response variation
rather than the differences between subjects. For each subject, we calculated the mean and
standard deviation. Subsequently, we subtracted the mean from each feature value and
divided it by the standard deviation of the same subject. The labels for each subject were
shifted by 3 s because facial pain responses typically exhibit a delay of 2–3 s compared
to the stimulus. Additionally, we applied a sliding time window with a duration of 10 s,
utilized once per second. This involved combining the FAD and EDA-D from ten seconds
prior to predict the pain intensity labels for the next time step. The initial ten seconds of
data were excluded due to the absence of prior observations.

3.3. Classification, Regression, and Fusion

The EDA-D and FAD were used as features for continuous pain intensity recognition
(no pain, low, moderate, and severe) and for modality classification (heat and electrical
pain stimuli) using RF, LSTM, and LSTM-SW. In alignment with Werner et al. [14] and
Othman et al. [26,41], we trained the Random Forest classifier (RFc) and the Random Forest
regression (RFr) with 100 trees and a maximum depth of 10 nodes for classification and
regression tasks. Both RFc and RFr were the baseline methods to compare them with LSTM
and LSTM-SW methods in this study. Figure 3 shows the six LSTM architectures used in
this work: four for classification (A(c), B(c), C(c), and D(c)) and two for regression (A(r) and
B(r)). EDA-D or FAD was used as input but not both.

The input size for EDA-D is 10 × 12, and for FAD, it is 10 × 252, where 10 represents
timesteps, and 10 × 252 represents features. The classification architectures A(c) and C(c)
consist of a single LSTM layer with 4 units activated via ReLU, followed by a flatten layer,
and then a dense layer with 128 neurons activated via ReLU. The final dense output layer
has 7 neurons in A(c) and 4 neurons in C(c). The classification architectures B(c) and
D(c) include a single LSTM layer with 8 units activated via ReLU, followed by a flatten
layer, and then a dense layer with 64 neurons activated via ReLU. The final dense output
layer has 7 neurons in B(c) and 4 neurons in D(c). The output layer was activated using
the Softmax function, and the loss function employed was Categorical Cross-Entropy
(CCE). The LSTM with this loss is referred to as LSTM-CCE. The configurations of the
regression architecture A(r) are similar to those of A(c) and C(c), and the configurations
of the regression architecture B(r) are similar to those of B(c) and D(c), with the exception
of the final dense output layer, which has 1 neuron. The output layer was activated using
the Sigmoid function, and the loss function used was Binary Cross-Entropy (BCE). The
LSTM with this loss is known as LSTM-BCE. The models were trained for 2000 epochs with
learning rates of 10−4, 10−5, or 10−6, with a batch size of 512 and using the Adam optimizer.
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In LSTM-SW, the samples were trained on LSTM after augmenting some training samples
using the sample weighting method [25]. RFc with FAD was used to identify samples with
prediction scores higher than 0.3 in training datasets, and these samples were duplicated
once. LSTM-SW using CCE is referred to as LSTM-SW-CCE, and LSTM-SW using BCE is
called LSTM-SW-BCE.
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Figure 3. Architectures configurations for classification and regression methods.

In this work, we applied late fusion, known as Decision Fusion (DF), on the outputs
from individually trained models that utilize both EDA and facial expressions modalities.
The classification models (RFc, LSTM, and LSTM-SW) yield scores for each potential class,
while the regression models (RFr, LSTM, and LSTM-SW) predict continuous values. We ag-
gregated the classifier scores and regression outputs individually into a final decision using
a fixed mapping method. Regarding classification, DF was implemented by calculating
the mean of output scores per class of both models (one using EDA-D and the other using
FAD), then the class with the highest score was selected. Regarding regression, all RFr,
LSTM, and LSTM-SW predictions were averaged individually in terms of calculating DF.
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4. Results

This section presents the results of pain intensity recognition using EDA-D, FAD, and
DF. It includes two types of pain stimuli (P = phasic and T = tonic) for each modality
variant (H = heat and E = electrical) across three intensities (1 = low, 2 = moderate, and
3 = severe). A seven-class pain intensity recognition was considered as follows, where BL
represents no pain: (1) BL, PH1, PH2, PH3, PE1, PE2, and PE3, and (2) BL, TH1, TH2, TH3,
TE1, TE2, and TE3. Additionally, four-class pain intensity recognition was considered as
follows: (1) BL, PH1, PH2, and PH3; (2) BL, PE1, PE2, and PE3; (3) BL, TH1, TH2, and
TH3; and (4) BL, TE1, TE2, and TE3. LSTM and LSTM-SW were compared to the guessing
approach (Trivial = majority of the vote, corresponding to no pain labels in the X-ITE Pain
Database) and baseline methods (RFc and RFr) across 11 datasets for classification and
regression tasks. The results indicate that most LSTM and LSTM-SW models outperformed
the Trivial and most RF (RFc and RFr) models. Regarding classification, RFc showed the
best performance with small dataset sizes (such as tonic datasets), while DF performed
the best across most datasets. In contrast, the regression models demonstrated better
performances than classification models on all imbalanced datasets when utilizing EDA,
as indicated in the MSE and ICC measures, except with RTD. In the case of the almost
balanced dataset (HTD), classification performed the best when using DF. See the sections
below for details.

4.1. Classification

Figure 4 and Table 2 present the comparison of the performance between RFc, LSTM-
CCE, and LSTM-SW-CCE for continuous pain intensity monitoring in terms of the Micro
avg. F1-score measure. All RFc, LSTM-CCE, and LSTM-SW-CCE models significantly
outperformed the Trivial. Additionally, LSTM-SW-CCE using EDA-D and DF demonstrated
similar performances, both significantly outperforming RFc with phasic Subsets (PD, HPD,
and EPD) at approximately 50%, 51%, and 66%, respectively. LSTM-CCE and LSTM-SW-
CCE using DF with Reduced Subsets (RPD, RHPD, and REPD) improved the performance
compared to most EDA and FAD models, with both models performing quite similarly.
With HPD, LSTM-SW-CCE using FAD, EDA-D, and DF performed about 16%. Furthermore,
RFc using DF with the imbalanced tonic dataset (TD, ETD, RTD, and RETD) performed
about 8%, 8%, 23%, and 30%, respectively. With the almost balanced dataset (HTD), LSTM-
CCE using DF obtained the highest performance (about 61%). Figure 4 shows how DF
improved the performance with the almost balanced dataset (HTD) and the datasets after
reducing the imbalanced problem.
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Figure 4. The best results from RFc, LSTM, and LSTM-SW when using FAD, EDA-D, and DF in terms
of Micro avg. F1-score (%) measure. FAD: Facial Activity Description, EDA-D: EDA Description, and
DF: Decision Fusion. All results are shown in Table 2.
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Table 2. Comparison of Trivial, baseline (RFc), LSTM-CCE and LSTM-SW-CCE models in terms of
Micro avg. F1-score measure (%). The best results were highlighted with cyan (FAD), yellow (EDA-D),
and orange (DF) colors. Trivial: guessing (majority of vote = no pain), FAD: Facial Activity Description,
EDA-D: EDA Description, DF: Decision Fusion, and CCE: Categorical Cross-Entropy loss.

Models

Datasets n-Class Trivial RFc
FAD EDA-D DF

Subsets

PD 7 0 6 9 7
HPD 4 0 10 12 4
EPD 4 0 10 15 13
TD 7 0 6 7 8
HTD 4 0 38 46 53
ETD 4 0 4 8 8

Reduced Subsets

RPD 7 0 15 20 24
RHPD 4 0 24 28 30
REPD 4 0 28 36 44
RTD 7 0 13 20 23
RETD 4 0 17 26 30

Models

Datasets n-Class Archit. LSTM-CCE LSTM-SW-CCE lr
FAD EDA-D DF FAD EDA-D DF

Subsets

PD 7 A(c) 10 10 8 12 13 13
10−5HPD 4 C(c) 16 13 13 16 16 16

EPD 4 C(c) 15 16 14 16 20 20
TD 7 A(c) 3 3 0.5 6 7 4

10−6HTD 4 C(c) 47 56 61 48 56 58
ETD 4 C(c) 6 4 4 6 3 0.7

Reduced Subsets

RPD 7 A(c) 35 26 50 32 29 50
10−4RHPD 4 C(c) 45 39 52 44 37 51

REPD 4 C(c) 46 39 67 46 45 66
RTD 7 B(c) 8 15 11 12 14 15

10−6RETD 4 D(c) 12 22 20 11 22 21

4.2. Classification vs. Regression

This section presents a comparison among the Trivial, RF, LSTM, and LSTM-SW
models concerning both classification and regression. The Mean Squared Error (MSE) and
the Intraclass Correlation Coefficient (ICC) [43] were utilized to evaluate the performance
of classification models in contrast to regression models. See the following sections: seven-
class and four-class pain intensity recognition. Figure 5 shows the results after comparing
the performance between classification and regression models.

4.2.1. Heat and Electrical Pain Intensity Recognition (Seven-Class)

In terms of MSE and ICC measures, Table 3 shows the results of classifying all seven
available classes using phasic datasets (PD and RPD) and tonic datasets (TD and RTD)
while considering various pain stimulus intensities and modalities. All automatic models
utilizing EDA-D and DF demonstrated superior performances in both classification and
regression compared to models employing FAD. In line with our recent study [27,41], the
models with EDA-D and DF outperformed the Trivial and baseline methods (RFr and RFc).
DF exhibited a significant enhancement in performance compared to the best FAD models.
Further, most EDA-D models outperformed those using DF to recognize continuous pain
intensity. The most remarkable outcomes were achieved via (1) LSTM-BCE models using
EDA-D with PD and TD datasets, yielding an MSE of 0.06 and 0.08, and an ICC of 0.43 and
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0.12, respectively; (2) LSTM-SW-BCE models using EDA-D with RPD dataset, resulting in
an MSE of 0.04 and an ICC of 0.84; and (3) LSTM-SW-CCE models using EDA-D with RTD
dataset, yielding an MSE of 0.11 and an ICC of 0.31.
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PD HPD EPD TD HTD ETD RPD RHPD REPD RTD RETD

EDA-D DF EDA-D EDA-D/DF DF EDA-D EDA-D

MSE ICC

Figure 5. The best results from RFc, LSTM, and LSTM-SW when using FAD, EDA-D, and DF in terms
of MSE and ICC measures. EDA-D: EDA Description, and DF: Decision Fusion. All results are shown
in Table 3.

4.2.2. Heat Pain Intensity Recognition (Four-Class)

Due to the results from the seven-class pain intensity recognition discussed in the
previous section, the four-class models were trained to simplify the problem and enhance
performance by focusing on the samples that were exposed to heat stimuli. The HPD
and RHPD datasets were obtained by excluding samples related to electrical phasic pain
intensities, while the HTD dataset was obtained by excluding samples associated with
electrical tonic pain intensities; see Table 3. The top four-class models results are as follows:
(1) LSTM-BCE-SW models using DF with HPD, which yielded the highest ICC value of
0.33 along with an MSE of 0.08; furthermore, LSTM-BCE models using EDA-D achieved an
ICC of 0.31 and the lowest MSE of 0.07; (2) LSTM-CCE models using EDA and DF with
HTD showed good performance with ICC values of 0.33 and 0.35 along with MSE values of
0.15 and 0.16, respectively; and (3) LSTM-BCE models using EDA-D with RHPD achieved
the highest ICC value of 0.81, along with the lowest MSE of 0.05.

4.2.3. Electrical Pain Intensity Recognition (Four-Class)

The results of the four-class models trained with electrical phasic pain datasets (EPD
and REPD) and electrical tonic pain datasets (ETD and RETD) were presented in Table 3.
Samples related to heat pain intensities were excluded from PD, RPD, TD, and RTD. The
electrical pain recognition models using EDA-D and DF showed superior performances
compared to the Trivial approach and baseline methods (RFr and RFc). LSTM-SW-BCE
models using EDA-D with EPD, ETD, and REPD performed the best, achieving the highest
ICC values (0.53, 0.21, and 0.88) along with MSE values of 0.05, 0.07, and 0.03, respectively.
Additionally, LSTM-BCE models using EDA-D with RETD yielded the highest ICC value
(0.49) and the lowest MSE value (0.10).
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Table 3. Comparison of Trivial, baseline (RFc), LSTM-CCE, LSTM-SW-CCE, LSTM-BCE, and LSTM-SW-BCE models with MSE and ICC measures. The top results
were highlighted with cyan (FAD), yellow (EDA-D), and orange (DF) colors. FAD: Facial Activity Description, EDA-D: EDA Description, DF: Decision Fusion, CCE:
Categorical Cross-Entropy loss, Meas.:Measurements, Trivial: guessing (majority of vote = no pain), Red. Subset: Reduced Subset, Archit.: Architecture, and lr:
learning rate.
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5. Discussion

In this work, we conducted several experiments to compare the performance of three
different methods for the automatic monitoring of continuous pain intensity using the
X-ITE Pain Database. We used EDA and facial expressions as individual modalities, as
well as the fused modality obtained by combining these two modalities. The results in
both phasic and tonic datasets show that it is possible to monitor continuous pain intensity;
see Figures 4 and 5 and Tables 2 and 3. The analysis of facial expression features has been
previously reported in our recent study [27,41], and we use them here for comparison.
For both classification and regression tasks, we trained RF (RFc and RFr), LSTM, and
LSTM-SW models using the EDA and facial expression modalities, as well as the late fusion
of these modalities (fused modality). We applied a sliding window approach to obtain
input samples of 10-s length, and the labels for each subject were shifted by 3 s. All models
were trained using 11 datasets derived from the X-ITE Pain Database. This dataset splitting
strategy aimed to address the imbalanced problem of the database, improve the results,
and ensure the generalizability of the proposed system’s capabilities.

The results indicate that models using the A(c), A(r), and C(c) architectures outper-
formed those utilizing the B(c), B(r), and D(c) architectures. Furthermore, both LSTM
and LSTM-SW models utilizing the EDA modality and fused modality demonstrated
significantly superior performance compared to guessing (Trivial). The Trivial approach
consistently votes for the majority class (no pain in our experiment). Consistent with the
findings of Werner et al. [14,20], the classification LSTM model (LSTM-CCE) using the fused
modality with the HTD dataset improved performance compared to individual modalities
(EDA and facial expressions), as shown in Tables 2 and 3.

Furthermore, RFc using DF with EPD performed worse because most of the no pain
samples were labeled with pain after the fusion of the FAD and EDA-D modalities. The
possible reason behind this result is that RTD is a combination of HTD and RETD datasets;
RTD contains less imbalanced data due to the influence of the almost balanced HTD dataset
(which accounts for only 20% of samples experiencing no pain, as shown in Table 1).

Fused modality performed the best with the phasic Reduced Subsets (RPD, RHPD,
and REPD) compared to using EDA and facial expressions modalities individually. See the
results for EDA-D, FAD, and DF (which indicates the fused modality) in Table 2. LSTM-
SW-CCE outperformed LSTM-SW when using the EDA modality with phasic Subsets,
but the fused modality did not improve the performance. Furthermore, RFc using the
fused modality performed the best with the tonic datasets (TD, ETD, RTD, and RETD).
The possible reason is that RFc performs well with small data sizes. After comparing
classification and regression results, we found that regression was better than classification
with most imbalanced datasets (see Figure 5 and Table 3). Additionally, most of the LSTM
and LSTM-SW models using the EDA modality achieved the best performance. They
outperformed the models that used FAD and the fused modality, except with the HPD
dataset. LSTM-SW-BCE using the fused modality with the HPD dataset improved the ICC
performance from 0.32 to 0.33 (as shown in Table 3); however, the improvement was not
significant. The best performance in terms of the ICC measure was achieved via LSTM-BCE
using the EDA modality with the REPD dataset (ICC approximately 0.88, indicating very
good performance). This improvement might be due to reducing noise or outlier data and
including more data of pain intensities.

LSTM-SW increased the performance compared to LSTM in several models. LSTM-SW-
CCE performed the best when using EDA-D with PD, HPD, EPD, and ETD datasets in terms
of the Micro avg. F1-score measure (see Table 2), and LSTM-SW-BCE outperformed LSTM-
CCE when using EDA-D with EPD, ETD, RPD, and REPD datasets in terms of the ICC
measure (see Table 3). This leads to the hypothesis that the success of LSTM-SW is based on
downweighting samples in the training set with a lower facial response using the sample
weighting method [26]. These samples might negatively affect the model’s performance.
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6. Conclusions

This study advances the recognition of continuous pain intensity using EDA and
facial expressions modalities with the X-ITE Pain Database. Unlike prior works [14,20]
that focused on specific time windows from the database, we utilized most of the data
from the complete continuous recording phase. Three methods, namely RF (RFc and RFr),
LSTM, and LSTM-SW, were applied to individual modalities (EDA and facial expressions)
as well as a fused modality (both modalities combined). To address the data imbalance
and outliers, the database was split into six datasets based on different qualities of pain
stimuli. The performance increased by reducing the noise in EDA and facial expressions
data. We removed some no-pain samples prior to pain intensity samples in a time series
for each subject in every six datasets due to inconsistencies between plenty no pain labels
and the facial expressions responses [27,41]. This study’s findings suggest that for balanced
or almost balanced datasets, the classification using the fused modality of EDA and facial
expressions is preferable for pain intensity recognition. However, with imbalanced datasets,
regression using the EDA modality performs best. RFc and RFr are the best with the small
size of datasets; however, the performance is still poor. LSTM and LSTM-SW performed
well with big sizes of datasets. This study confirms that it is possible to continuously
monitor pain intensity using machine learning models with facial expression and EDA
signal only.

Although the results of this work are promising, some limitations have been identified
that need to be addressed for the further advancement of this system. These limitations
include the fact that the X-ITE Pain Database is based on healthy participants, the relatively
small size of the training data, and the requirement for extracting informative features.
Several suggested ways to overcome these limitations such as the following: the proposed
system should be applied on real patients before it can be considered ready for clinical
studies; acquiring a larger dataset with more pain intensities is necessary for more reliable
automatic monitoring of continuous pain intensity; more statistical measures of the time
series should be used to improve system performance (using the remaining of the statistical
measures in the Werner et al. [24] study).
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