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Abstract: Despite the well-documented role of biochar in promoting soil quality and crop productiv-
ity, the underlying biological mechanisms remain poorly understood. Here, we explored the effects
of straw biochar on soil microbiome in the rhizosphere from wheat using metagenomic sequencing.
Our results showed that straw return decreased the yields of wheat, while the straw biochar return in-
creased the wheat yields. Further, both the richness and community composition confirmed different
effects of the straw return and straw biochar return. The straw biochar return also resulted in greater
rhizosphere effects from wheat, represented by resource availability, including soil organic carbon,
soil total nitrogen, available phosphorus, and available potassium. The rhizosphere effects from
wheat, represented by microbial metabolism genes involved in carbon, nitrogen, phosphorus, and
potassium cycling, however, were decreased by straw biochar returning. In addition, the rhizosphere
effects from nitrogen content and the nitrogen cycling genes showed negative relationships with
wheat yields. Together, these results revealed that straw biochar enhanced soil resource availability
but suppressed microbial metabolism genes in the rhizosphere from wheat, supporting the idea that
straw biochar serves as a nutrient pool for crops.

Keywords: biodiversity; community composition; functional diversity; metagenome; rhizosphere
effects; straw biochar

1. Introduction

The rhizosphere is an active and dynamic interface essential for the well-being of
plants [1,2]. Plants take up water and nutrients from the rhizosphere, whereas their roots
secrete a variety of compounds into the interface, causing changes in the physiochemical
and biological properties of the surrounding bulk soil [3]. The corresponding differences
between the rhizosphere and bulk soil are known as “rhizosphere effects” that play crucial
roles in determining soil biogeochemical processes [4]. Despite the growing recognition
regarding the overall rhizosphere effects on soil biogeochemistry [5,6], little is known
about the rhizosphere effects on soil microbial genomes that are the base for soil nutrient
cycling [7].

Biochar is regularly used to improve soil quality and potentially mitigate global
change [8,9]. Straw biochar can promote crop productivity by not only enhancing the
uptake of soil available resources but also driving soil microbiome [10,11]. Despite the
enhancements of the metabolic potential and subsequent soil available resources after
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biochar application, the underlying mechanisms are yet unknown [12,13]. Therefore,
it is imperative to explore the shift of microbiomes in the rhizosphere, which helps to
understand the rhizosphere effects on soil nutrients in biochar-amended soils.

The effects of biochar on the diversity and community composition of soil and rhi-
zosphere microbiota were documented [14]. The underlying effects of biochar on the
microbial metagenome, however, were not clear. The microbial metagenome was the most
relevant part of the microbial functional traits in determining nutrient cycling, which might
be involved in the biochar effects. For example, a meta-analysis revealed that biochar
could increase the uptake of phosphorus for plants but the phosphorus cycling genes were
not elusive [11]. It is also noted that the metagame approach provides a holistic way to
analyze the microbial community without PCR bias [15], which might be a benefit for
understanding both microbial taxonomy and functions [16].

Here, we conducted a field experiment to investigate the rhizosphere effects of wheat
under straw biochar applications (See Supplementary Information for more details). Briefly,
three treatments were set up in triplicates, including no straw application (control, CK),
straw cut into 5 cm lengths and returned to the field (straw return, SR), and straw trans-
formed to biochar and returned to the field (straw biochar return, SBR). Bulk and rhi-
zosphere soil sampling, soil analyses, and metagenome sequencing followed [12]. The
rhizosphere effects were quantified as the magnitude of differences between the rhizo-
sphere and bulk soils relative to the bulk soil [4]. We hypothesized that straw biochar
application would stimulate the rhizosphere effects in both soil available resources and soil
microbiome, thus promoting the yields of wheat.

2. Materials and Methods
2.1. Site Description

The field experiment was located in Mengcheng County, Anhui Province, China
(32°13' N, 116°37’ E). This region has a mean annual temperature and precipitation of
about 16.5 °C and 822 mm, respectively. Lime concretion black soil is the dominant soil
type in this area with pH 5.80; organic matter, 14.20 g kg~!; total N, 0.98 g kg ~!; available
P, 23.8 mg kg~!; and available K, 98.0 mg kg~ !. A typical winter-wheat-summer-maize
rotation is the main cropping system at this site.

2.2. Experimental Design

This study employed a randomized complete block design with three replicates. The
randomization of experimental plots was carried out via the RANDBETWEEN function in
excel. Each plot had 6 m (length) x 5 m (width) (30 m?) dimensions. Three treatments were
implemented at the research station including (1) no straw application (CK), (2) straw was
cut into 5 cm and returned to the field (SR), and (3) straw was transformed into biochar
and returned to the field (SBR). In straw amendment treatment, wheat straw and maize
straw were applied in maize and wheat seasons at the rates of 6000 and 7500 kg ha~1,
respectively. Biochar was prepared from wheat and maize straws by pyrolysis at 450 °C for
4 h in a N, atmosphere (it was anticipated that 30% by mass of the crop straw would be
converted to biochar). Biochar was applied in maize and wheat seasons at the rates of 2000
and 2500 kg ha~!, respectively. Details of the chemical NPK fertilization are summarized
in Table 1.

Soil samples were taken after the wheat heading stage. Loose soil was removed from
the roots by kneading and shaking, as well as by patting the roots on the back of a gloved
hand. The firmly adhered soil to the roots was referred to as rhizosphere soil. For individual
plots, representative bulk soils composed of five subsamples were collected at a depth of
0~15 cm. All non-rhizosphere and rhizosphere soil samples were air-dried in darkness at
room temperature and then crushed manually to determine soil properties. Further, fresh
soil samples were stored at —80 °C for metagenomics analysis.



Life 2023, 13, 1843

30f10

Table 1. Rates of NPK fertilization for each plot.

P—Diammonium

Growth Period Crop N—Urea (46%) Phosphate (18-46%) K—KClI (60%)
kgha™! kgha™! kgha™!
Sowing Wheat 183.3 130.0 100.0
Sowing Maize 253.3 96.7 150.0
Jointing Wheat 156.7
Tasseling Maize 196.7

For each treatment, the panicles at three different locations with an area of 1 m? were
counted to measure the number of panicles per square meter. The panicles were then
harvested to determine the yield.

2.3. Soil Physicochemical and Metagenomics Analyses

Soil organic carbon was determined by the K,Cr,O7-H;SO4 oxidation method [17].
Soil total nitrogen was determined by the Kjeldahl method following sample digestion [18].
Soil-available phosphorus was extracted by 0.5 M sodium bicarbonate and determined
by the molybdenum blue method [19]. The soil content of potassium was determined by
flame photometry (6400A, INESA, Shanghai, China) after extraction with 1 M ammonium
acetate [20].

DNA was extracted from the soil samples in duplicate using the MoBio PowerSoil kit
(MOBIO) according to the manufacturer’s protocol. DNA yields of the 10 samples were
between 1.0 and 2.5 mg, as quantified using the Quant-iT Picogreen dsDNA HS assay
kit (Invitrogen, Waltham, MA, USA). Sequencing was performed using HiSeq 3000/4000
SBS Kits (Illumina) at Majorbio, Inc., Shanghai, China. Raw reads (150 bp in length) were
trimmed to remove low-quality reads that contained ambiguous nucleotides or had a Phred
score lower than 30 [21]. In total, 1,227,013,238 clean reads were generated with an average
of 68,167,402 reads per sample (Table S1). Raw sequences were deposited in NCBI with the
accession number PRJNA898266.

The clean reads were assembled using MEGAHIT [22]. Contigs with lengths longer
than 800 bps were selected for downstream analysis. Prodigal was used for gene prediction.
Then, the non-redundant gene catalog was constructed using CD-HIT (identity 95%, cov-
erage 90%) [23,24]. Bowtie2 was used to map the clean reads to each gene (95% identity)
for the calculation of the relative abundance of each gene. Taxonomic annotation was
performed using DIAMOND based on the NCBI NR database [25]. Functional annotation
was performed using DIAMOND based on the databases of KEGG, eggNOG, and CAZy.

2.4. Data Processing and Analysis

We calculated the rhizosphere effect as the difference in each soil variable between
rhizosphere soil and bulk soil according to Ding et al. [26]:

Rhizosphere effect = (Crhizosphere_soil - Cbulk_soil)/ Cbulk_soil (1)

where Cihizosphere_soil Tepresents the total soil gene, archaea, bacteria, viruses, soil resources,
and soil biogeochemical cycling genes in the rhizosphere soils; and Cpyjx_soil T€presents the
corresponding index in the bulk soils.

All statistical analyses were performed using R 4.1.1 [27]. The difference in rhizo-
sphere effects on the diversity of total soil genes, archaea, bacteria, viruses, soil resources,
and soil biogeochemical cycling genes was tested using one-way ANOVA. The effects
of different rates of straw application on the average rhizosphere were explored via an
independent-sample t-test. The relationship between the microbial community dissimilar-
ity and the straw application was evaluated using non-metric multidimensional scaling
analyses (NMDS) in the vegan package. A permutation multivariate analysis of variance
(PerMANOVA) using Bray-Curtis distances was applied to examine the differences in the
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contributions of compartments (bulk vs. rhizosphere) and straw application (CK, SR, and
SBR).

3. Results

Compared with the CK treatment, straw returning decreased the yields of wheat by
6%, with the average values changing from 6930 to 6545 kg/hm?, while the straw biochar
returning increased the yields to 7405 kg/ hm?, with the increment near 7% (Table 2). The
difference in taxonomic richness between bulk and rhizosphere soil was significant in
the CK treatment, while the difference was not significant for SR and SBR treatments
(Figure 1A). In addition, the community composition was mainly driven by the bulk and
rhizosphere compartment, followed by the straw application methods (Figure 1B).

Table 2. The effect of straw application methods on the yield of wheat.

Treatment CK SR SBR
Wheat yields (kg/ hm?) 6930 +£151b 6545 + 53 ¢ 7405 + 130 a

Note: Each value in is the mean =+ SD of three replicates. Numbers followed by different lowercase letters in
the same column are significantly different at p < 0.05. The wheat yield was calculated as kilograms per hectare
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Figure 1. Soil diversity and community composition in thizosphere and bulk soil. In panel (A), is the
richness. Different letters indicate significant differences (p < 0.05) tested by ANOVA. In panel (B),
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the biplot of NMDS for community compositions, the contributions of compartments (bulk vs.
rhizosphere) and straw application (CK, SR, and SBR) were tested by permANOVA, *, p < 0.05;
% p < 0.001.

Straw biochar led to the greatest rhizosphere effects on soil organic carbon (SOC,
Figure 2A), soil total nitrogen (TN, Figure 2B), soil available phosphorus (AP, Figure 2C),
and soil available potassium (AK, Figure 2D). In terms of the content of soil resources
including carbon, nitrogen, phosphorus, and potassium, straw biochar resulted in the
greatest values (Figure 2A-D).
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Figure 2. Resource availability in rhizosphere and bulk soil. (A) SOC, soil organic carbon; (B) TN, soil
total nitrogen; (C) AP, soil available phosphorus; (D) AK, soil available potassium; Different letters
indicate significant differences, p < 0.05 tested by ANOVA. The average rhizosphere effects annotated
with * were significantly (p < 0.05) different from zero tested by the ¢-test.
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Straw biochar resulted in the lowest rhizosphere effects on soil carbon genes (Figure 3A),
soil nitrogen genes (Figure 3B), phosphorus genes (Figure 3C), and potassium genes
(Figure 3D). With the negative values of rhizosphere effects for carbon, nitrogen, and phos-
phorus genes, the rhizosphere effects were positive for potassium genes (Figure 3A-D).
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Figure 3. Metabolism genes in rhizosphere and bulk soil. (A) C gene, soil carbon metabolism genes;

(B) N gene, soil nitrogen metabolism genes; (C) P gene, soil phosphorus metabolism genes; (D) K

gene, soil potassium metabolism genes. Different letters indicate significant differences (p < 0.05)
tested by ANOVA. The average rhizosphere effects annotated with * were significantly (p < 0.05)

different from zero tested by the t-test.

The relationships between crop yields and rhizosphere effects, represented by the
nutrient contents and metabolism genes involved in nitrogen cycling, were mainly signifi-
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cant (Figure 4). Negative relationships were found for both nitrogen contents and nitrogen

genes, with the R values both greater than 0.8.

7800

R=0.29, P=0.49 =-0.05, P=0.91 *
7500
®
L) (] 7400
] e
w ol - -=" (]
- ™ T o] TS mmmm ool
o | T o
> o
6500 ° ° 5500 L]
°
.
004 0,02 0.0 005 0.00 005 010
C gene SOC
° R=-0.88, P=0.004
7500
7500
” 7000
O o0
Qo
s 6500
6500
6000
-0.050 -0.025 0.000 00258 -01 0.0 01 02 0.3
N gene TN
8000
8000 =-0.31, P=0.42 | =-0.54, P=0.14
° 7500 .
7500 L] | = b
o S~a .
=~ 7000 PN
o) V) TSmea ¢ Teel
% 7000 ~‘;-._‘_.~.'~. ° *~\‘~\‘
>—_ N 6500 hd ®
[}
6500 L4
° 6000
0025 0.000 0025 00 02 04
P gene AP
8000
R=-0.13, P=0.74 =-0.12, P=0.75
L] 7600
7500 [ ] 1
L °
o 7200 °
% 7000 _—--"'“'--.—. ______________________
g 6800
e
6500 f .
. O
6400 he
0.00 0.05 0.10 0.15 00 0.1 02 0.3 04 05
K gene AK

Figure 4. Relationships between rhizosphere effect (RE) and wheat yields. Linear regressed R

and p values were denoted. The solid and dashed lines represent significant and nonsignificant

relationships, respectively.

4. Discussion

Our results that straw biochar-driven amplification of rhizosphere effects on the diver-
sity and community composition of the microbiome supported our hypothesis. Meanwhile,
our results showed that straw biochar enhanced the rhizosphere effects on taxonomic
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and functional diversities in control and straw-returning treatments, with the net effects
transferred from negative to positive. These results together explained the positive effects
of biochar on the availability of soil resources, such as TN and AK, which showed the same
trend in the present study. Biochar can increase soil microbial diversity and metabolic
activities [12,28], thus resulting in positive effects on the diversity of both microbial taxa
and functional genes. In addition, increases in the soil available resources might diversify
the bacteria or archaea communities hosting and diversifying the virus communities [29,30].
These results highlight the comprehensive effects of biochar on the diversity of all com-
ponents in soil biota. Simultaneously, the rhizosphere effects contributed to the major
variation in community composition for the total gene, archaea, bacteria, and virus.

Our results showed that soil resources and metabolism genes exhibited different
responses to straw biochar application. In accordance, the positive rhizosphere effects
occurred for the soil resources, but the negative took place for the metabolism genes.
Typically, biochar directly functions as a nutrient source and indirectly alters the contents
of soil nutrients for plant roots [31]. In the present study, the straw biochar increased the
contents of AP, AK, and SOC by 20~50% in the rhizosphere, which presumably benefits
plant growth [32]. However, biochar application resulted in negative rhizosphere effects on
nitrogen gene abundance. This might be attributed to the significant increase in biochar-
driven nitrogen genes in the bulk soils compared to the rhizosphere. Higher supplies of
nutrients in biochar-amended soils might suppress the abundance of microbial metabolism
genes [12].

Our results that straw return resulted in a decrease in wheat yields, while the straw
biochar return increased the wheat yields, indicate that there is a great advantage for
the straw biochar application in agricultural ecosystems in the form of waste straw re-
cycling [33]. We also noted that the effects of straw biochar were mainly exerted on soil
resources and not on the metabolism genes. This suggests that the straw biochar might
serve as a resource pool providing resources for crops in the field. It is documented that
biochar is valuable as a fertilizer when resource deficiency is a major constraint on crop
productivity [34]. The pyrolysis step of biochar production produces more available re-
sources, such as potassium, in the present study. We found that the rhizosphere effects of
potassium were positive while other resources were negative for biochar returning treat-
ment. Plant roots prefer to live in biochar-amended soils, as the rhizosphere contains more
biochar particles than the bulk soil [31]. Thus, the greater content of available nutrients, i.e.,
potassium in the present study, would be taken up by the plants and, therefore, enhance
plant performance including crop yields.

5. Conclusions

In conclusion, using PCR-bias-free metagenomics sequencing, we found that straw
biochar amendments enhanced the rhizosphere effects from wheat on soil available re-
sources, although it suppressed the abundance of microbial metabolism genes. These
microbiome variations suggest that biochar functions as a direct nutrient source rather
than an indirect method of biological soil engineering in a wheat-growing agroecosystem.
Thus, our study provides new insights for understanding the mechanisms of biochar as an
alternative to agricultural waste recycling and a method to promote environmental safety.

Supplementary Materials: The following supporting information can be downloaded at: https:/ /www.
mdpi.com/article/10.3390/1ife13091843 /51, Table S1: Raw and clean sequence number of each sample.
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