Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biology of Treg Cells
3. Treg Numbers and Balance in Atherosclerosis and Their Atheroprotective Roles
4. Emerging Clinical Evidence and the Rationale for Treg-Focused Therapies in Atherosclerosis
5. Adoptive Transfer of Treg Cells in Atherosclerosis: Advances and Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APCs | antigen-presenting cell |
CAR | chimeric antigen receptor |
CAR-T cells | chimeric antigen receptor T cells |
Cas9 | CRISPR-associated protein 9 |
CITE-seq | cellular indexing of transcriptomes and epitopes |
CRISPR | clustered, regularly interspaced, short palindromic repeats |
CTLA-4 | cytotoxic T-lymphocyte antigen-4 |
CyTOF | cytometry by Time-Of-Flight |
DAMPs | damage-associated molecular patterns |
DCs | dendritic cells |
FOXP3 | transcription factor forkhead box P3 |
GITR | glucocorticoid induced TNFR family-related gene |
G-CSF | granulocyte colony-stimulating factor |
HMGB1 | high-mobility group protein B1 |
HSP60/65 | heat shock 60 and 65kD proteins |
IL | interleukin |
IL2 | interleukin-2 |
IFNγ | interferon-γ |
LDLs | low-density lipoproteins |
LAG-3 | lymphocyte-activation gene 3 |
NKs | natural killer cells |
PBMCs | peripheral blood mononuclear cells |
PD-1 | programmed cell death-1 |
PDL-1/2 | programmed cell death 1 ligand 1 and 2 |
RORγt | retinoic acid-related orphan receptor γt |
STAT | signal transducer and activator of transcription |
scRNA-Seq | Single-cell RNA sequencing |
TCR-T cells | T cell receptor-engineered T cells |
TGF-β | transforming growth factor β |
Th | T helper cell |
Th1 | T helper 1 |
Th17 | T helper 17 |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
TNFα | tumor necrosis factor-α |
Treg | regulatory T cell |
T1D | type 1 diabetes mellitus |
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021, Erratum in J. Am. Coll. Cardiol. 2021, 77, 1958–1959. [Google Scholar] [CrossRef]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef]
- Spitz, C.; Winkels, H.; Bürger, C.; Weber, C.; Lutgens, E.; Hansson, G.K.; Gerdes, N. Regulatory T cells in atherosclerosis: Critical immune regulatory function and therapeutic potential. Cell. Mol. Life Sci. 2016, 73, 901–922. [Google Scholar] [CrossRef]
- Strassheim, D.; Karoor, V.; Stenmark, K.; Verin, A.; Gerasimovskaya, E. A current view of G protein-coupled receptor—Mediated signaling in pulmonary hypertension: Finding opportunities for therapeutic intervention. Vessel Plus 2018, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Mikami, N.; Kawakami, R.; Sakaguchi, S. New Treg cell-based therapies of autoimmune diseases: Towards antigen-specific immune suppression. Curr. Opin. Immunol. 2020, 67, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Kuan, R.; Agrawal, D.K.; Thankam, F.G. Treg cells in atherosclerosis. Mol. Biol. Rep. 2021, 48, 4897–4910. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, P.N.; Zhulai, G.A.; Churov, A.V.; Oleinik, E.K.; Oleinik, V.M.; Barysheva, O.Y.; Vezikova, N.N.; Marusenko, I.M. Subpopulations of regulatory T-lymphocytes in the peripheral blood of patients with rheumatoid arthritis. Ann. Russ. Acad. Med. Sci. 2016, 71, 148–153. [Google Scholar] [CrossRef]
- Skartsis, N.; Muller, Y.D.; Ferreira, L.M.R. Regulatory T cell homeostasis: Requisite signals and implications for clinical development of biologics. Clin. Immunol. 2023, 246, 109201. [Google Scholar] [CrossRef] [PubMed]
- Dieckmann, D.; Plottner, H.; Berchtold, S.; Berger, T.; Schuler, G. Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J. Exp. Med. 2001, 193, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Taams, L.S.; Vukmanovic-Stejic, M.; Smith, J.; Dunne, P.J.; Fletcher, J.M.; Plunkett, F.J.; Ebeling, S.B.; Lombardi, G.; Rustin, M.H.; Bijlsma, J.W.; et al. Antigen-specific T cell suppression by human CD4+CD25+ regulatory T cells. Eur. J. Immunol. 2002, 32, 1621–1630. [Google Scholar]
- Fontenot, J.D.; Gavin, M.A.; Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003, 4, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Khattri, R.; Cox, T.; Yasayko, S.A.; Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 2003, 4, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Roncador, G.; Brown, P.J.; Maestre, L.; Hue, S.; Martínez-Torrecuadrada, J.L.; Ling, K.L.; Pratap, S.; Toms, C.; Fox, B.C.; Cerundolo, V.; et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur. J. Immunol. 2005, 35, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, P.; Charbonnier, L.M.; Chatila, T.A. Regulatory T Cells: The Many Faces of Foxp3. J. Clin. Immunol. 2019, 39, 623–640. [Google Scholar] [CrossRef]
- Linterman, M.A.; Pierson, W.; Lee, S.K.; Kallies, A.; Kawamoto, S.; Rayner, T.F.; Srivastava, M.; Divekar, D.P.; Beaton, L.; Hogan, J.J.; et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 2011, 17, 975–982. [Google Scholar] [CrossRef]
- Mackay, L.K.; Kallies, A. Transcriptional Regulation of Tissue-Resident Lymphocytes. Trends Immunol. 2017, 38, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Hori, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Putnam, A.L.; Xu-Yu, Z.; Szot, G.L.; Lee, M.R.; Zhu, S.; Gottlieb, P.A.; Kapranov, P.; Gingeras, T.R.; de St. Groth, B.F.; et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ Treg cells. J. Exp. Med. 2006, 203, 1701–1711. [Google Scholar] [CrossRef]
- Rohm, I.; Atiskova, Y.; Drobnik, S.; Fritzenwanger, M.; Kretzschmar, D.; Pistulli, R.; Zanow, J.; Krönert, T.; Mall, G.; Figulla, H.R.; et al. Decreased regulatory T cells in vulnerable atherosclerotic lesions: Imbalance between pro- and anti-inflammatory cells in atherosclerosis. Mediat. Inflamm. 2015, 2015, 364710. [Google Scholar] [CrossRef] [PubMed]
- Li, M.O.; Wan, Y.Y.; Sanjabi, S.; Robertson, A.K.; Flavell, R.A. Transforming growth factor-beta regulation of immune responses. Annu. Rev. Immunol. 2006, 24, 99–146. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Zhen, Y.; Jiang, L.; Zheng, J.; Zhao, Y. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T cells. Cell. Mol. Immunol. 2006, 3, 189–195. [Google Scholar] [PubMed]
- Wang, R.; Zhu, J.; Dong, X.; Shi, M.; Lu, C.; Springer, T.A. GARP regulates the bioavailability and activation of TGFβ. Mol. Biol. Cell 2012, 23, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Jin, H.; Li, H. GARP: A surface molecule of regulatory T cells that is involved in the regulatory function and TGF-β releasing. Oncotarget 2016, 7, 42826–42836. [Google Scholar] [CrossRef]
- Thornton, A.M.; Korty, P.E.; Tran, D.Q.; Wohlfert, E.A.; Murray, P.E.; Belkaid, Y.; Shevach, E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010, 184, 3433–3441. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, F.; Hu, X.; Hu, Y.; Wang, Y.; Zhang, W.; Peng, Y.; Cheng, L. Decreased Helios Expression in Regulatory T Cells in Acute Coronary Syndrome. Dis. Markers 2017, 2017, 7909407. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef]
- Joller, N.; Lozano, E.; Burkett, P.R.; Patel, B.; Xiao, S.; Zhu, C.; Xia, J.; Tan, T.G.; Sefik, E.; Yajnik, V.; et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 2014, 40, 569–581. [Google Scholar] [CrossRef]
- De Simone, M.; Arrigoni, A.; Rossetti, G.; Gruarin, P.; Ranzani, V.; Politano, C.; Bonnal, R.J.P.; Provasi, E.; Sarnicola, M.L.; Panzeri, I.; et al. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells. Immunity 2016, 45, 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jin, R.; Zhu, X.; Yan, J.; Li, G. Function of CD147 in atherosclerosis and atherothrombosis. J. Cardiovasc. Transl. Res. 2015, 8, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Salomon, B.L.; Potteaux, S.; Robertson, A.K.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J.L.; Fisson, S.; et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 2006, 12, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, R.; Gerdes, N.; Badeau, R.M.; Gisterå, A.; Strodthoff, D.; Ketelhuth, D.F.; Lundberg, A.M.; Rudling, M.; Nilsson, S.K.; Olivecrona, G.; et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Investig. 2013, 123, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- De Boer, O.J.; van der Meer, J.J.; Teeling, P.; van der Loos, C.M.; van der Wal, A.C. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2007, 2, e779. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Schwartzenberg, S.; Medvedovsky, D.; Jonas, M.; Charach, G.; Afek, A.; Shamiss, A. Regulatory T cells and IL-10 levels are reduced in patients with vulnerable coronary plaques. Atherosclerosis 2012, 222, 519–523. [Google Scholar] [CrossRef]
- Liu, Z.D.; Wang, L.; Lu, F.H.; Pan, H.; Zhao, Y.X.; Wang, S.J.; Sun, S.W.; Li, C.L.; Hu, X.L. Increased Th17 cell frequency concomitant with decreased Foxp3+ Treg cell frequency in the peripheral circulation of patients with carotid artery plaques. Inflamm. Res. 2012, 61, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Dietel, B.; Cicha, I.; Voskens, C.J.; Verhoeven, E.; Achenbach, S.; Garlichs, C.D. Decreased numbers of regulatory T cells are associated with human atherosclerotic lesion vulnerability and inversely correlate with infiltrated mature dendritic cells. Atherosclerosis 2013, 230, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Mailer, R.K.W.; Gisterå, A.; Polyzos, K.A.; Ketelhuth, D.F.J.; Hansson, G.K. Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population. Sci. Rep. 2017, 7, 15655. [Google Scholar] [CrossRef]
- Kologrivova, I.; Suslova, T.; Koshelskaya, O.; Kravchenko, E.; Haritonova, O.; Trubacheva, O.; Gusakova, A. FOXP3+ T-regulatory lymphocytes in hypertensive patients association with coronary atherosclerosis. J. Hypertens. 2019, 37, E153. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Li, H.; Shen, G.; Hu, S. Ox-LDL influences peripheral Th17/Treg balance by modulating Treg apoptosis and Th17 proliferation in atherosclerotic cerebral infarction. Cell. Physiol. Biochem. 2014, 33, 1849–1862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.C.; Wang, J.; Shu, Y.W.; Tang, T.T.; Zhu, Z.F.; Xia, N.; Nie, S.F.; Liu, J.; Zhou, S.F.; Li, J.J.; et al. Impaired thymic export and increased apoptosis account for regulatory T cell defects in patients with non-ST segment elevation acute coronary syndrome. J. Biol. Chem. 2012, 287, 34157–34166. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, R.; Brokopp, C.E.; Grivès, A.; Courtier, A.; Jaguszewski, M.; Pasqual, N.; Vlaskou Badra, E.; Lewandowski, A.; Gaemperli, O.; Hoerstrup, S.P.; et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur. Heart J. 2015, 36, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Butcher, M.J.; Filipowicz, A.R.; Waseem, T.C.; McGary, C.M.; Crow, K.J.; Magilnick, N.; Boldin, M.; Lundberg, P.S.; Galkina, E.V. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFNγ+ Th1/Tregs. Circ. Res. 2016, 119, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.F.; Meng, K.; Zhong, Y.C.; Qi, L.; Mao, X.B.; Yu, K.W.; Zhang, W.; Zhu, P.F.; Ren, Z.P.; Wu, B.W.; et al. Impaired circulating CD4+LAP+ regulatory T cells in patients with acute coronary syndrome and its mechanistic study. PLoS ONE 2014, 9, e88775. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, M.; Wang, Z.; He, S.; Ma, X.; Li, D. The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J. Lipid Res. 2010, 51, 1208–1217. [Google Scholar] [CrossRef]
- Foks, A.C.; Frodermann, V.; ter Borg, M.; Habets, K.L.; Bot, I.; Zhao, Y.; van Eck, M.; van Berkel, T.J.; Kuiper, J.; van Puijvelde, G.H. Differential effects of regulatory T cells on the initiation and regression of atherosclerosis. Atherosclerosis 2011, 218, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, W.; Yang, J.; Zhang, K.; Qin, W.; An, G.; Gao, F.; Wang, Y.; Zhang, C.; Zhang, Y. Regulatory T cells prevent plaque disruption in apolipoprotein E-knockout mice. Int. J. Cardiol. 2013, 168, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Gojova, A.; Brun, V.; Esposito, B.; Fournier, N.; Cottrez, F.; Tedgui, A.; Groux, H. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 2003, 108, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Frutkin, A.D.; Otsuka, G.; Stempien-Otero, A.; Sesti, C.; Du, L.; Jaffe, M.; Dichek, H.L.; Pennington, C.J.; Edwards, D.R.; Nieves-Cintrón, M.; et al. TGF-[beta]1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Baptista, D.; Mach, F.; Brandt, K.J. Follicular regulatory T cell in atherosclerosis. J. Leukoc. Biol. 2018, 104, 925–930. [Google Scholar] [CrossRef]
- Achour, A.; Simon, Q.; Mohr, A.; Séité, J.F.; Youinou, P.; Bendaoud, B.; Ghedira, I.; Pers, J.O.; Jamin, C. Human regulatory B cells control the TFH cell response. J. Allergy Clin. Immunol. 2017, 140, 215–222. [Google Scholar] [CrossRef]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-endocytosis of CD80 and CD86: A molecular basis for the cell-extrinsic function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Gotsman, I.; Grabie, N.; Dacosta, R.; Sukhova, G.; Sharpe, A.; Lichtman, A.H. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Investig. 2007, 117, 2974–2982. [Google Scholar] [CrossRef] [PubMed]
- Desreumaux, P.; Foussat, A.; Allez, M.; Beaugerie, L.; Hébuterne, X.; Bouhnik, Y.; Nachury, M.; Brun, V.; Bastian, H.; Belmonte, N.; et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 2012, 143, 1207–1217. [Google Scholar] [CrossRef]
- Marek-Trzonkowska, N.; Myśliwiec, M.; Dobyszuk, A.; Grabowska, M.; Derkowska, I.; Juścińska, J.; Owczuk, R.; Szadkowska, A.; Witkowski, P.; Młynarski, W.; et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—Results of one year follow-up. Clin. Immunol. 2014, 153, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Bluestone, J.A.; Buckner, J.H.; Fitch, M.; Gitelman, S.E.; Gupta, S.; Hellerstein, M.K.; Herold, K.C.; Lares, A.; Lee, M.R.; Li, K.; et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl. Med. 2015, 7, 315ra189. [Google Scholar] [CrossRef] [PubMed]
- Bullenkamp, J.; Dinkla, S.; Kaski, J.C.; Dumitriu, I.E. Targeting T cells to treat atherosclerosis: Odyssey from bench to bedside. Eur. Heart J. Cardiovasc. Pharmacother. 2016, 2, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Van Leuven, S.I.; van Wijk, D.F.; Volger, O.L.; de Vries, J.P.; van der Loos, C.M.; de Kleijn, D.V.; Horrevoets, A.J.; Tak, P.P.; van der Wal, A.C.; de Boer, O.J.; et al. Mycophenolate mofetil attenuates plaque inflammation in patients with symptomatic carotid artery stenosis. Atherosclerosis 2010, 211, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chapman, N.M.; Karmaus, P.W.; Zeng, H.; Chi, H. mTOR and metabolic regulation of conventional and regulatory T cells. J. Leukoc. Biol. 2015, 97, 837–847. [Google Scholar] [CrossRef]
- Huang, K.; Li, S.Q.; Wang, W.J.; Liu, L.S.; Jiang, Y.G.; Feng, P.N.; Wang, Y.Q.; Wang, S.M. Oral FTY720 administration induces immune tolerance and inhibits early development of atherosclerosis in apolipoprotein E-deficient mice. Int. J. Immunopathol. Pharmacol. 2012, 25, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yuan, Z.; Liu, Y.; Liu, W.; Zhang, W.; Xue, J.; Shen, Y.; Liang, X.; Chen, T.; Kishimoto, C. Pioglitazone modulates the balance of effector and regulatory T cells in apolipoprotein E deficient mice. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Yamashita, T.; Sasaki, N.; Nakajima, K.; Kita, T.; Shinohara, M.; Ishida, T.; Hirata, K. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Maganto-García, E.; Tarrio, M.L.; Grabie, N.; Bu, D.X.; Lichtman, A.H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 2011, 124, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Jiagang, D.; Li, C.; Wang, H.; Hao, E.; Du, Z.; Bao, C.; Lv, J.; Wang, Y. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells. Biochem. Biophys. Res. Commun. 2011, 411, 523–529. [Google Scholar] [CrossRef]
- Kita, T.; Yamashita, T.; Sasaki, N.; Kasahara, K.; Sasaki, Y.; Yodoi, K.; Takeda, M.; Nakajima, K.; Hirata, K. Regression of atherosclerosis with anti-CD3 antibody via augmenting a regulatory T-cell response in mice. Cardiovasc. Res. 2014, 102, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, K.; Sasaki, N.; Yamashita, T.; Kita, T.; Yodoi, K.; Sasaki, Y.; Takeda, M.; Hirata, K. CD3 antibody and IL-2 complex combination therapy inhibits atherosclerosis by augmenting a regulatory immune response. J. Am. Heart Assoc. 2014, 3, e000719. [Google Scholar] [CrossRef]
- Uchiyama, R.; Hasegawa, H.; Kameda, Y.; Ueda, K.; Kobayashi, Y.; Komuro, I.; Takano, H. Role of regulatory T cells in atheroprotective effects of granulocyte colony-stimulating factor. J. Mol. Cell. Cardiol. 2012, 52, 1038–1047. [Google Scholar] [CrossRef] [PubMed]
- Kobiyama, K.; Saigusa, R.; Ley, K. Vaccination against atherosclerosis. Curr. Opin. Immunol. 2019, 59, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Van Puijvelde, G.H.; van Es, T.; van Wanrooij, E.J.; Habets, K.L.; de Vos, P.; van der Zee, R.; van Eden, W.; van Berkel, T.J.; Kuiper, J. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2677–2683. [Google Scholar] [CrossRef] [PubMed]
- Mathew, J.M.; Voss, J.H.; McEwen, S.T.; Konieczna, I.; Chakraborty, A.; Huang, X.; He, J.; Gallon, L.; Kornbluth, R.S.; Leventhal, J.R. Generation and Characterization of Alloantigen-Specific Regulatory T Cells for Clinical Transplant Tolerance. Sci. Rep. 2018, 8, 1136. [Google Scholar] [CrossRef]
- Kim, Y.C.; Zhang, A.H.; Yoon, J.; Culp, W.E.; Lees, J.R.; Wucherpfennig, K.W.; Scott, D.W. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 2018, 92, 77–86. [Google Scholar] [CrossRef]
- Adair, P.R.; Kim, Y.C.; Zhang, A.-H.; Yoon, J.; Scott, D.W. Human Tregs Made Antigen Specific by Gene Modification: The Power to Treat Autoimmunity and Antidrug Antibodies with Precision. Front. Immunol. 2017, 8, 1117. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lu, W.; Liang, C.-L.; Chen, Y.; Liu, H.; Qiu, F.; Dai, Z. Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Front. Immunol. 2018, 9, 2359. [Google Scholar] [CrossRef]
- Bonacina, F.; Martini, E.; Garetto, S.; Roselli, G.; Pellegatta, F.; Locatelli, S.; Cremonesi, M.; Catapano, A.L.; Kallikourdis, M.; Norata, G.D. Engineered Regulatory T Cell Adoptive Therapy As A Novel Tool For The Treatment Of Atherosclerosis. Atherosclerosis 2019, 287, e18. [Google Scholar] [CrossRef]
- Putnam, A.L.; Safinia, N.; Medvec, A.; Laszkowska, M.; Wray, M.; Mintz, M.A.; Trotta, E.; Szot, G.L.; Liu, W.; Lares, A.; et al. Clinical grade manufacturing of human alloantigen-reactive regulatory T cells for use in transplantation. Am. J. Transpl. 2013, 13, 3010–3020. [Google Scholar] [CrossRef]
- Ovcinnikovs, V.; Ross, E.M.; Petersone, L.; Edner, N.M.; Heuts, F.; Ntavli, E. CTLA-4–mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Sci. Immunol. 2019, 4, eaaw0902. [Google Scholar] [CrossRef]
- Boardman, D.; Maher, J.; Lechler, R.; Smyth, L.; Lombardi, G. Antigen-specificity using chimeric antigen receptors: The future of regulatory T-cell therapy? Biochem. Soc. Trans. 2016, 44, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.D.; Davila, M.L. Concise review: Emerging principles from the clinical application of chimeric antigen receptor T cell therapies for B cell malignancies. Stem Cells 2018, 36, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, J.; Yakoub-Agha, I. Chimeric antigen-receptor T-cell therapy for hematological malignancies and solid tumors: Clinical data to date, current limitations and perspectives. Curr. Res. Transl. Med. 2017, 65, 93–102. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 2017, 8, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef] [PubMed]
- Van Zeebroeck, L.; Arroyo Hornero, R.; Côrte-Real, B.F.; Hamad, I.; Meissner, T.B.; Kleinewietfeld, M. Fast and Efficient Genome Editing of Human FOXP3+ Regulatory T Cells. Front. Immunol. 2021, 12, 655122. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Kanamori, M.; Someya, K.; Nakatsukasa, H.; Yoshimura, A. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells. Epigenet. Chromatin 2017, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, L.; Qiao, M.; Zhao, T.; Zhang, R.; Dong, H. A Single-Cell Atlas of the Atherosclerotic Plaque in the Femoral Artery and the Heterogeneity in Macrophage Subtypes between Carotid and Femoral Atherosclerosis. J. Cardiovasc. Dev. Dis. 2022, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.M.; Giannarelli, C. Immune cell profiling in atherosclerosis: Role in research and precision medicine. Nat. Rev. Cardiol. 2022, 19, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, D.M.; Rahman, A.H.; Fernandez, N.F.; Chudnovskiy, A.; Amir, E.D.; Amadori, L.; Khan, N.S.; Wong, C.K.; Shamailova, R.; Hill, C.A.; et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 2019, 25, 1576–1588. [Google Scholar] [CrossRef] [PubMed]
- Depuydt, M.A.C.; Prange, K.H.M.; Slenders, L.; Örd, T.; Elbersen, D.; Boltjes, A.; de Jager, S.C.A.; Asselbergs, F.W.; De Borst, G.J.; Aavik, E.; et al. Microanatomy of the Human Atherosclerotic Plaque by Single-Cell Transcriptomics. Circ. Res. 2020, 127, 1437–1455. [Google Scholar] [CrossRef] [PubMed]
Marker | Description and Function | References |
---|---|---|
CD25high | IL-2 receptor α-chain, which is involved in Treg cell activation and proliferation. | [5] |
FOXP3 | Transcription factor (forkhead box P3), expressed by all Treg cells and regulates their activation and/or differentiation for the development and function. | [17] |
CD127low | IL-7 receptor α-chain, is down-regulated on Treg cells, also correlates with FOXP3 and the suppressive function of human CD4+ Treg cells. | [18] |
CD39 | The co-expression of CD39 and CD73 ectoenzymes induces the hydrolysis of ATP to produce adenosine, which has a suppressive effect on T-cells. | [5] |
CD45RO | Memory T cell-associated marker (isoforms of the leukocyte common antigen), plays an important role in TCR signal transduction. | [5] |
HLA-DR | Major histocompatibility antigen (MHC) class II. Up-regulated through activation of Treg cells. | [5,19] |
CTLA-4 | Cytotoxic T-lymphocyte antigen-4 (CTLA-4), acts as a potent negative regulator of immune responses and controls the suppressor activity of Treg cells. Modulates T-regulatory, T-follicular regulatory and T-follicular helper cells to control B-cells responses. | [3,5] |
LAG-3 | Lymphocyte-activation gene 3, is involved in the cell-contact dependent mechanism of Treg-mediated suppressive activity. | [14] |
GITR | Glucocorticoid induced TNFR family-related gene, has a high surface expression on activated Treg cells and low quantities on naive and memory T cells. Inhibits the immunosuppressive activity of Treg cells. | [5] |
CD62L | L-selectin, a cell adhesion molecule, decelerates lymphocytes and is involved in the homing of T cells to secondary lymphoid organs. | [5] |
TGF-β1 | Transforming growth factor β. Pleiotropic immunoregulatory cytokine, regulates the functional activity of Treg cells. | [20,21] |
GARP | Glycoprotein A Repetitions Predominant (GARP), also known as Leucine Rich Repeat Containing 32 (LRRC32). GARP is related to the bioavailability and activation of TGF-β and mediates upregulation of Foxp3. | [22,23] |
Helios | The zinc finger transcription factor, mediator in T lymphocyte immune homeostasis and a marker of T cell immune tolerance, which regulates the expression of IL-2 in Treg cells. | [24,25] |
PD-1 (CD279) | Programmed cell death-1, regulates the balance between Treg cell activation/tolerance/exhaustion, and also controls antigen-specific T cell responses. | [26] |
TIGIT | TIGIT is a T cell immunoreceptor with Ig and ITIM domains, which is highly expressed on Treg cells and inhibits T cell activation and proliferation. | [27,28] |
Basigin/ Emmprin (CD147) | Is involved in T cell activation and proliferation, plays a key role in the cytotoxicity to human neurons, as well as negatively regulates T cell responses by selective inhibition of specific downstream elements of the Vav1/Rac1 route. | [29] |
Function | Treg-Mediated Mechanism | Effect |
---|---|---|
Regulation of macrophage cholesterol metabolism | Treg cells downregulate the expression of scavenger receptor class A (SR-A) and CD36 preventing the accumulation of lipids in macrophages [43,44]. | Inhibition of foam cell formation |
Regulation of macrophage polarisation toward M2 phenotype | Treg cells may favor the differentiation of pro-inflammatory M1 macrophages to M2 macrophages by releasing IL-10 [43,44]. | Reduction in inflammation and pro-inflammatory cytokine production |
Treg cells may increase the stability of plaques by inducing M2-macrophages mediated collagen synthesis and vascular smooth muscle cell proliferation [45]. | Improving the stability of atherosclerotic plaques. | |
Regulation of pro-inflammatory T cell subsets | Treg cells suppress Th1- and Th17-mediated immune responses by various direct or indirect inhibitory mechanisms, including secretion of cytokines [34,44,46,47]. | Reduction of activation, proliferation, and induction of apoptosis of pro-atherogenic T cells. |
Regulation of pro-inflammatory and regulatory B cell subsets * | Treg cells may attenuate follicular B2 cell responses by diminishing their maturation, survival and by inhibiting antibody production [48]. | Reduction of antibody production. Decreased pro-inflammatory cytokine activity. |
Follicular Treg cells may activate B regulatory cells and facilitate their suppressive function [48,49]. | Diminishing the differentiation of pro-inflammatory CD4+ cells into atherogenic follicular T cells. | |
Regulation of APCs | Treg cells modulate APCs maturation and function by cytokines (IL-10 and TGF-β) and by surface molecules (PDL-1/2, CTLA-4, LAG-3) [50,51]. | Inhibition of APCs co-stimulatory potential and subsequent reduction in activation of effector cells. |
Approach | Examples | Therapeutic Effect |
---|---|---|
Modulation of Treg function by drugs [45,55,56,57,58,59] | Mycophenolate mofetil Rapamycin Fingolimod Pioglitazone Statins | Increase in Treg numbers; Treg/T effector ratio restoration |
Diet and nutrients [60,61,62] | Low cholesterol diet Vitamin D3 supplementation Vitamin B17 supplementation | Increase in Treg numbers; Treg/T effector ratio restoration |
Antibodies and cytokines to control Treg cells [63,64,65] | IL-2 CD3 antibody Granulocyte colony-stimulating factor (G-CSF) | Treg expansion and increased Treg-associated cytokine production |
Treg-inducing vaccines [66,67] | HSP60/65 and LDL-based Treg-inducing vaccines | Reduction in atherosclerotic lesions and induction of Treg cell numbers in the spleen and lymph nodes |
Adoptive therapy with conventional Treg cells * | Infusions of ex vivo expanded polyclonally activated Treg cells [53,54] | Increase in circulating polyclonal Treg cells with unknown antigen specificity |
Infusions of in vitro stimulated antigen-specific Treg cells * [68] | Increase in circulating antigen-specific Treg cells | |
Adoptive therapy with engineered Treg cells [69,70,71,72] | TCR-engineered Treg cells * CAR-modified Treg cells * Plaque-homing Treg cells | An increase in the number of antigen-specific cells or cells with desired characteristics. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churov, A.V.; Chegodaev, Y.S.; Khotina, V.A.; Ofitserov, V.P.; Orekhov, A.N. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life 2023, 13, 1931. https://doi.org/10.3390/life13091931
Churov AV, Chegodaev YS, Khotina VA, Ofitserov VP, Orekhov AN. Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life. 2023; 13(9):1931. https://doi.org/10.3390/life13091931
Chicago/Turabian StyleChurov, Alexey V., Yegor S. Chegodaev, Victoria A. Khotina, Vladimir P. Ofitserov, and Alexander N. Orekhov. 2023. "Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible?" Life 13, no. 9: 1931. https://doi.org/10.3390/life13091931
APA StyleChurov, A. V., Chegodaev, Y. S., Khotina, V. A., Ofitserov, V. P., & Orekhov, A. N. (2023). Regulatory T Cells in Atherosclerosis: Is Adoptive Cell Therapy Possible? Life, 13(9), 1931. https://doi.org/10.3390/life13091931