Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer
Abstract
:1. Introduction
2. Methods
3. Molecular Biology of Differentiated Thyroid Cancer
4. Radioactive Iodine Treatment (RAI) and Radioactive Iodine Refractory (RAIR) Disease
5. Localized Treatment and Timing of Initiation of Systemic Therapy for RAIR DTC
6. Chemotherapy for RAIR DTC
7. Multikinase Tyrosine Kinase Inhibitors and Treatment of RAIR DTC
8. Other Targeted Therapies for DTC
8.1. Targeted Therapies for RET Fusions
8.2. Targeted Therapies for Patients with NTRK Fusions
8.3. Targeted Therapies for BRAF Mutant DTC
9. Management of Toxicity of Kinase Inhibitors
10. Redifferentiation Therapy for Radioactive Iodine Refractory (RAIR) Differentiated Thyroid Cancer
11. Targeted Therapies of the PI3K/Akt Pathway
12. Optimal First-Line Therapy and Sequencing of Therapies in Patients with Targetable Genetic Alterations
13. Other Therapeutic Options
13.1. Peptide Receptor Radionuclide Therapy (PRRT)
13.2. Immunotherapy for RAIR DTC
14. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef]
- Noone, A.M.; Cronin, K.A.; Altekruse, S.F.; Howlader, N.; Lewis, D.R.; Petkov, V.I.; Penberthy, L. Cancer Incidence and Survival Trends by Subtype Using Data from the Surveillance Epidemiology and End Results Program, 1992–2013. Cancer Epidemiol Biomark. Prev. 2017, 264, 632–641. [Google Scholar] [CrossRef]
- Schlumberger, M.J. Diagnostic follow-up of well-differentiated thyroid carcinoma: Historical perspective and current status. J. Endocrinol. Investig. 1999, 22, 3–7. [Google Scholar]
- Mazzaferri, E.L.; Kloos, R.T. Clinical review 128: Current approaches to primary therapy for papillary and follicular thyroid cancer. J. Clin. Endocrinol. Metab. 2001, 86, 1447–1463. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Schlumberger, M.J. Papillary and follicular thyroid carcinoma. N. Engl. J Med. 1998, 338, 297–306. [Google Scholar] [CrossRef]
- Wang, W.; Shen, C.; Yang, Z. Nomogram individually predicts the risk for distant metastasis and prognosis value in female differentiated thyroid cancer patients: A SEER-based study. Front. Oncol. 2022, 12, 800639. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Nikiforova, M.N. Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrinol. 2011, 7, 569–580. [Google Scholar] [CrossRef]
- Agrawal, N.; Akbani, R.; Aksoy, B.A.; Ally, A.; Arachchi, H.; Asa, S.L.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef]
- Marotta, V.; Sciammarella, C.; Colao, A.; Faggiano, A. Application of molecular biology of differentiated thyroid cancer for clinical prognostication. Endocr. Relat. Cancer 2016, 23, 499–515. [Google Scholar] [CrossRef]
- Xing, M.; Westra, W.H.; Tufano, R.P.; Cohen, Y.; Rosenbaum, E.; Rhoden, K.J.; Carson, K.A.; Vasko, V.; Larin, A.; Tallini, G.; et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2005, 90, 6373–6379. [Google Scholar] [CrossRef]
- Yip, L.; Nikiforova, M.N.; Carty, S.E.; Yim, J.H.; Stang, M.T.; Tublin, M.J.; Lebeau, S.O.; Hodak, S.P.; Ogilvie, J.B.; Nikiforov, Y.E. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery 2009, 146, 1215–1223. [Google Scholar] [CrossRef]
- Howell, G.M.; Carty, S.E.; Armstrong, M.J.; Lebeau, S.O.; Hodak, S.P.; Coyne, C.; Stang, M.T.; McCoy, K.L.; Nikiforova, M.N.; Nikiforov, Y.E.; et al. Both BRAF V600E mutation and older age (≥ 65 years) are associated with recurrent papillary thyroid cancer. Ann. Surg. Oncol. 2011, 18, 3566–3571. [Google Scholar] [CrossRef]
- Kimura, E.T.; Nikiforova, M.N.; Zhu, Z.; Knauf, J.A.; Nikiforov, Y.E.; Fagin, J.A. High prevalence of BRAF mutations in thyroid cancer: Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003, 63, 1454–1457. [Google Scholar]
- Knauf, J.A.; Fagin, J.A. Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Curr. Opin. Cell Biol. 2009, 21, 296–303. [Google Scholar] [CrossRef]
- Soares, P.; Trovisco, V.; Rocha, A.S.; Lima, J.; Castro, P.; Preto, A.; Máximo, V.; Botelho, T.; Seruca, R.; Sobrinho-Simões, M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 2003, 22, 4578–4580. [Google Scholar] [CrossRef]
- Nikiforova, M.N.; Nikiforov, Y.E. Molecular diagnostics and predictors in thyroid cancer. Thyroid 2009, 19, 1351–1361. [Google Scholar] [CrossRef]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Zhu, Z.; Ciampi, R.; Nikiforova, M.N.; Gandhi, M.; Nikiforov, Y.E. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: Effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab. 2006, 91, 3603–3610. [Google Scholar] [CrossRef]
- Witt, R.L.; Ferris, R.L.; Pribitkin, E.A.; Sherman, S.I.; Steward, D.L.; Nikiforov, Y.E. Diagnosis and management of differentiated thyroid cancer using molecular biology. Laryngoscope 2013, 123, 1059–1064. [Google Scholar] [CrossRef]
- Nikiforov, Y.E.; Rowland, J.M.; Bove, K.E.; Monforte-Munoz, H.; Fagin, J.A. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res. 1997, 57, 1690–1694. [Google Scholar]
- Abdullah, M.I.; Junit, S.M.; Ng, K.L.; Jayapalan, J.J.; Karikalan, B.; Hashim, O.H. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int. J. Med. Sci. 2019, 16, 450–460. [Google Scholar] [CrossRef]
- Abubaker, J.; Jehan, Z.; Bavi, P.; Sultana, M.; Al-Harbi, S.; Ibrahim, M.; Al-Nuaim, A.; Ahmed, M.; Amin, T.; Al-Fehaily, M.; et al. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J. Clin. Endocrinol. Metab. 2008, 93, 611–618. [Google Scholar] [CrossRef]
- Xing, M. Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol. Clin. N. Am. 2008, 41, 1135–1146. [Google Scholar] [CrossRef]
- Xing, M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 2010, 20, 697–706. [Google Scholar] [CrossRef]
- Song, Y.S.; Lim, J.A.; Choi, H.; Won, J.K.; Moon, J.H.; Cho, S.W.; Lee, K.E.; Park, Y.J.; Yi, K.H.; Park, D.J.; et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer 2016, 122, 1370–1379. [Google Scholar] [CrossRef]
- Solomon, J.P.; Benayed, R.; Hechtman, J.F.; Ladanyi, M. Identifying patients with NTRK fusion cancer. Ann. Oncol. 2019, 30, viii16–viii22. [Google Scholar] [CrossRef]
- Pekova, B.; Sykorova, V.; Dvorakova, S.; Vaclavikova, E.; Moravcova, J.; Katra, R.; Astl, J.; Vlcek, P.; Kodetova, D.; Vcelak, J.; et al. RET, NTRK, ALK, BRAF, and MET Fusions in a Large Cohort of Pediatric Papillary Thyroid Carcinomas. Thyroid 2020, 30, 1771–1780. [Google Scholar] [CrossRef]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Panebianco, F.; Nikitski, A.V.; Nikiforova, M.N.; Kaya, C.; Yip, L.; Condello, V.; Wald, A.I.; Nikiforov, Y.E.; Chiosea, S.I. Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr. Relat. Cancer 2016, 26, 803–814. [Google Scholar] [CrossRef]
- Santarpia, L.; Myers, J.N.; Sherman, S.I.; Trimarchi, F.; Clayman, G.L.; El-Naggar, A.K. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 2010, 116, 2974–2983. [Google Scholar] [CrossRef]
- Haddad, R.I.; Bischoff, L.; Ball, D.; Bernet, V.; Blomain, E.; Busaidy, N.L.; Campbell, M.; Dickson, P.; Duh, Q.Y.; Ehya, H.; et al. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 925–951. [Google Scholar] [CrossRef]
- Al-Jundi, M.; Thakur, S.; Gubbi, S.; Klubo-Gwiezdzinska, J. Novel Targeted Therapies for Metastatic Thyroid Cancer-A Comprehensive Review. Cancers 2020, 12, 2104. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [CrossRef]
- Paladino, S.; Melillo, R.M. Editorial: Novel Mechanism of Radioactive Iodine Refractivity in Thyroid Cancer. J. Natl. Cancer Inst. 2017, 109, djx106. [Google Scholar] [CrossRef]
- Feine, U.; Lietzenmayer, R.; Hanke, J.P.; Held, J.; Wöhrle, H.; Müller-Schauenburg, W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J. Nucl. Med. 1996, 37, 1468–1472. [Google Scholar]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid J. 2019, 8, 227–245. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Lin, Y.; Liang, J. Radioactive Iodine-Refractory Differentiated Thyroid Cancer and Redifferentiation Therapy. Endocrinol. Metab. 2019, 34, 215–225. [Google Scholar] [CrossRef]
- Mallick, U.K.; Charalambous, H. Current issues in the management of differentiated thyroid cancer. Nucl. Med. Commun. 2004, 25, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Filetti, S.; Durante, C.; Hartl, D.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Electronic address: [email protected]. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up †. Ann. Oncol. 2019, 30, 1856–1883. [Google Scholar] [CrossRef] [PubMed]
- Filetti, S.; Durante, C.; Hartl, D.M.; Leboulleux, S.; Locati, L.D.; Newbold, K.; Papotti, M.G.; Berruti, A.; ESMO Guidelines Committee. Electronic address: [email protected]. ESMO Clinical Practice Guideline update on the use of systemic therapy in advanced thyroid cancer. Ann. Oncol. 2022, 33, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Droz, J.P.; Schlumberger, M.; Rougier, P.; Ghosn, M.; Gardet, P.; Parmentier, C. Chemotherapy in metastatic nonanaplastic thyroid cancer: Experience at the Institut Gustave-Roussy. Tumori J. 1990, 76, 480–483. [Google Scholar] [CrossRef]
- Williams, S.D.; Birch, R.; Einhorn, L.H. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: A Southeastern Cancer Study Group Trial. Cancer Treat. Rep. 1986, 70, 405–407. [Google Scholar]
- Matuszczyk, A.; Petersenn, S.; Bockisch, A.; Gorges, R.; Sheu, S.Y.; Veit, P.; Mann, K. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm. Metab. Res. 2008, 40, 210–213. [Google Scholar] [CrossRef]
- Argiris, A.; Agarwala, S.S.; Karamouzis, M.V.; Burmeister, L.A.; Carty, S.E. A phase II trial of doxorubicin and interferon alpha 2b in advanced, non-medullary thyroid cancer. Investig. New Drugs 2008, 26, 183–188. [Google Scholar] [CrossRef]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, Z.; Ji, Q.; Ge, M.; Shi, F.; Qin, J.; Wang, F.; Chen, G.; Zhang, Y.; Huang, R.; et al. A Randomized, Phase III Study of Lenvatinib in Chinese Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. Clin. Cancer Res. 2021, 27, 5502–5509. [Google Scholar] [CrossRef]
- Brose, M.S.; Robinson, B.; Sherman, S.I.; Krajewska, J.; Lin, C.C.; Vaisman, F.; Hoff, A.O.; Hitre, E.; Bowles, D.W.; Hernando, J.; et al. Cabozantinib for radioiodine-refractory differentiated thyroid cancer (COSMIC-311): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021, 22, 1126–1138. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Qin, S.; Li, Z.; Yang, H.; Fu, W.; Li, S.; Chen, W.; Gao, Z.; Miao, W.; Xu, H.; et al. Apatinib vs. Placebo in Patients with Locally Advanced or Metastatic, Radioactive Iodine-Refractory Differentiated Thyroid Cancer: The REALITY Randomized Clinical Trial. JAMA Oncol. 2022, 8, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Qin, S.; Yang, H.; Shi, F.; Yang, A.; Han, X.; Liu, B.; Li, Z.; Ji, Q.; Tang, L.; et al. Multicenter Randomized Double-Blind Phase III Trial of Donafenib in Progressive Radioactive Iodine-Refractory Differentiated Thyroid Cancer. Clin Cancer Res. 2023, 29, 2791–2799. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov/ (accessed on 9 December 2023).
- Brose, M.S.; Worden, F.P.; Newbold, K.L.; Guo, M.; Hurria, A. Effect of Age on the Efficacy and Safety of Lenvatinib in Radioiodine-Refractory Differentiated Thyroid Cancer in the Phase III SELECT Trial. J. Clin. Oncol. 2017, 35, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.; Durante, C.; Topliss, D.J.; Winquist, E.; Robenshtok, E.; Iwasaki, H.; Luster, M.; Elisei, R.; Leboulleux, S.; Tahara, M. Lenvatinib for the Treatment of Radioiodine-Refractory Differentiated Thyroid Cancer: Treatment Optimization for Maximum Clinical Benefit. Oncologist 2022, 27, 565–572. [Google Scholar] [CrossRef]
- Available online: www.ema.europa.eu (accessed on 13 December 2023).
- Brose, M.S.; Panaseykin, Y.; Konda, B.; de la Fouchardiere, C.; Hughes, B.G.M.; Gianoukakis, A.G.; Joo Park, Y.; Romanov, I.; Krzyzanowska, M.K.; Leboulleux, S.; et al. A Randomized Study of Lenvatinib 18 mg vs. 24 mg in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2022, 107, 776–787. [Google Scholar] [CrossRef]
- Matsuyama, C.; Enokida, T.; Ueda, Y.; Suzuki, S.; Fujisawa, T.; Ito, K.; Okano, S.; Tahara, M. Planned drug holidays during treatment with lenvatinib for radioiodine-refractory differentiated thyroid cancer: A retrospective study. Front. Oncol. 2023, 13, 1139659. [Google Scholar] [CrossRef]
- Carr, L.L.; Mankoff, D.A.; Goulart, B.H.; Eaton, K.D.; Capell, P.T.; Kell, E.M.; Bauman, J.E.; Martins, R.G. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res. 2010, 16, 5260–5268. [Google Scholar] [CrossRef]
- Gupta-Abramson, V.; Troxel, A.B.; Nellore, A.; Puttaswamy, K.; Re-dlinger, M.; Ransone, K.; Mandel, S.J.; Flaherty, K.T.; Loevner, L.A.; O’Dwyer, P.J.; et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol. 2008, 26, 4714–4719. [Google Scholar] [CrossRef]
- Brose, M.S.; Troxel, A.B.; Yarchoan, M.; Cohen, A.B.; Harlacker, K.; Dyanick, N.A.; Posey, Z.A.; Makani, R.; Prajapati, P.; Zifchak, L.M.; et al. A phase II study of everolimus (E) and sorafenib (S) in patients (PTS) with metastatic differentiated thyroid cancer who have progressed on sorafenib alone. J. Clin. Oncol. 2015, 33, 6072. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yang, H.; Ding, Y.; Cheng, Y.Z.; Shi, F.; Tan, J.; Deng, Z.Y.; Chen, Z.D.; Wang, R.F.; Ji, Q.H.; et al. Donafenib in Progressive Locally Advanced or Metastatic Radioactive Iodine-Refractory Differentiated Thyroid Cancer: Results of a Randomized, Multicenter Phase II Trial. Thyroid 2021, 31, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Bastholt, L.; Krause, T.; de la Fouchardiere, C.; Tennvall, J.; Awada, A.; Gómez, J.M.; Bonichon, F.; Leenhardt, L.; Soufflet, C.; et al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 2 trial. Lancet Oncol. 2012, 13, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Ravaud, A.; de la Fouchardière, C.; Caron, P.; Doussau, A.; Do Cao, C.; Asselineau, J.; Rodien, P.; Pouessel, D.; Nicolli-Sire, P.; Klein, M.; et al. A multicenter phase II study of sunitinib in patients with locally advanced or metastatic differentiated, anaplastic or medullary thyroid carcinomas: Mature data from the THYSU study. Eur. J. Cancer 2017, 76, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ji, Q.; Bai, C.; Zheng, X.; Zhang, Y.; Shi, F.; Li, X.; Tang, P.; Xu, Z.; Huang, R.; et al. Surufatinib in Chinese Patients with Locally Advanced or Metastatic Differentiated Thyroid Cancer and Medullary Thyroid Cancer: A Multicenter, Open-Label, Phase II Trial. Thyroid 2020, 30, 1245–1253. [Google Scholar] [CrossRef]
- Bible, K.C.; Menefee, M.E.; Lin, C.J.; Millward, M.J.; Maples, W.J.; Goh, B.C.; Karlin, N.J.; Kane, M.A.; Adkins, D.R.; Molina, J.R.; et al. An International Phase 2 Study of Pazopanib in Progressive and Metastatic Thyroglobulin Antibody Negative Radioactive Iodine Refractory Differentiated Thyroid Cancer. Thyroid 2020, 30, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E.E.; Tortorici, M.; Kim, S.; Ingrosso, A.; Pithavala, Y.K.; Bycott, P. A Phase II trial of axitinib in patients with various histologic subtypes of advanced thyroid cancer: Long-term outcomes and pharmacokinetic/pharmacodynamic analyses. Cancer Chemother. Pharmacol. 2014, 74, 1261–1270. [Google Scholar] [CrossRef]
- Bauman, J.E.; Chen, Z.; Zhang, C.; Ohr, J.P.; Ferris, R.L.; McGorisk, G.M.; Brandt, S.; Srivatsa, S.; Chen, A.Y.; Steuer, C.E.; et al. A Multicenter Randomized Phase II Study of Single Agent Efficacy and Optimal Combination Sequence of Everolimus and Pasireotide LAR in Advanced Thyroid Cancer. Cancers 2022, 26, 2639. [Google Scholar] [CrossRef] [PubMed]
- Fierro-Maya, L.F.; González, G.G.; Melo, L.J.R.; Cuéllar, A.A.C.; Carreño, A.; Córdoba, C. Safety and efficacy of sorafenib in patients with advanced thyroid carcinoma: A phase II study (NCT02084732). Arch. Endocrinol. Metab. 2021, 27, 2359. [Google Scholar] [CrossRef]
- Sherman, E.J.; Dunn, L.A.; Ho, A.L.; Baxi, S.S.; Ghossein, R.A.; Fury, M.G.; Haque, S.; Sima, C.S.; Cullen, G.; Fagin, J.A.; et al. Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 2017, 123, 4114–4121. [Google Scholar] [CrossRef]
- Lim, S.M.; Chung, W.Y.; Nam, K.H.; Kang, S.W.; Lim, J.Y.; Kim, H.G.; Shin, S.H.; Sun, J.M.; Kim, S.G.; Kim, J.H.; et al. An open label, multicenter, phase II study of dovitinib in advanced thyroid cancer. Eur. J. Cancer 2015, 51, 1588–1595. [Google Scholar] [CrossRef]
- Hayes, D.N.; Lucas, A.S.; Tanvetyanon, T.; Krzyzanowska, M.K.; Chung, C.H.; Murphy, B.A.; Gilbert, J.; Mehra, R.; Moore, D.T.; Sheikh, A.; et al. Phase II efficacy and pharmacogenomic study of Selumetinib (AZD6244; ARRY-142886) in iodine-131 refractory papillary thyroid carcinoma with or without follicular elements. Clin. Cancer Res. 2012, 18, 2056–2065. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; de Souza, J.A.; Geyer, S.; Wirth, L.J.; Menefee, M.E.; Liu, S.V.; Shah, K.; Wright, J.; Shah, M.H. Cabozantinib As Salvage Therapy for Patients with Tyrosine Kinase Inhibitor-Refractory Differentiated Thyroid Cancer: Results of a Multicenter Phase II International Thyroid Oncology Group Trial. J. Clin. Oncol. 2017, 35, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Zheng, X.; Zhang, Y.; Shi, F.; Cheng, Y.; Guo, Z.; Ge, M.; Qin, J.; Zhang, J.; Li, Z.; et al. Anlotinib in Locally Advanced or Metastatic Radioiodine-Refractory Differentiated Thyroid Carcinoma: A Randomized, Double-Blind, Multicenter Phase II Trial. Clin Cancer Res. 2023, 29, 4047–4056. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Liao, C.Y.; Karrison, T.; de Souza, J.A.; Worden, F.P.; Libao, B.; Krzyzanowska, M.K.; Hayes, D.N.; Winquist, E.; Saloura, V.; et al. A multicenter, open-label, randomized, phase II study of cediranib with or without lenalidomide in iodine 131-refractory differentiated thyroid cancer. Ann. Oncol. 2023, 34, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Wirth, L.J.; Sherman, E.; Robinson, B.; Solomon, B.; Kang, H.; Lorch, J.; Worden, F.; Brose, M.; Patel, J.; Leboulleux, S.; et al. Efficacy of Selpercatinib in RET-Altered Thyroid Cancers. N. Engl. J. Med. 2020, 383, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; et al. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol. 2021, 9, 491–501. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Waguespack, S.G.; Drilon, A.; Lin, J.J.; Brose, M.S.; McDermott, R.; Almubarak, M.; Bauman, J.; Casanova, M.; Krishnamurthy, A.; Kummar, S.; et al. Efficacy and safety of larotrectinib in patients with TRK fusion-positive thyroid carcinoma. Eur. J. Endocrinol. 2022, 186, 631–643. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282, Erratum in Lancet Oncol. 2020, 21, e341; Erratum in Lancet Oncol. 2020, 21, e372; Erratum in Lancet Oncol. 2021, 22, e428. [Google Scholar] [CrossRef]
- Brose, M.S.; Cabanillas, M.E.; Cohen, E.E.; Wirth, L.J.; Riehl, T.; Yue, H.; Sherman, S.I.; Sherman, E.J. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: A non-randomised, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016, 17, 1272–1282. [Google Scholar] [CrossRef]
- Busaidy, N.L.; Konda, B.; Wei, L.; Wirth, L.J.; Devine, C.; Daniels, G.A.; DeSouza, J.A.; Poi, M.; Seligson, N.D.; Cabanillas, M.E.; et al. Dabrafenib Versus Dabrafenib + Trametinib in BRAF-Mutated Radioactive Iodine Refractory Differentiated Thyroid Cancer: Results of a Randomized, Phase 2, Open-Label Multicenter Trial. Thyroid 2022, 32, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.L.; Grewal, R.K.; Leboeuf, R.; Sherman, E.J.; Pfister, D.G.; Deandreis, D.; Pentlow, K.S.; Zanzonico, P.B.; Haque, S.; Gavane, S.; et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N. Engl. J. Med. 2013, 368, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.A.; Sherman, E.J.; Baxi, S.S.; Tchekmedyian, V.; Grewal, R.K.; Larson, S.M.; Pentlow, K.S.; Haque, S.; Tuttle, R.M.; Sabra, M.M.; et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J. Clin. Endocrinol. Metab. 2019, 104, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Rothenberg, S.M.; McFadden, D.G.; Palmer, E.L.; Daniels, G.H.; Wirth, L.J. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 2015, 21, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Cao, C.D.; Zerdoud, S.; Attard, M.; Bournaud, C.; Benisvy, D.; Taieb, D.; Bardet, S.; Terroir-Cassou-Mounat, M.; Betrian, S.; et al. MERAIODE: A Redifferentiation Phase II Trial with Trametinib and Dabrafenib Followed by Radioactive Iodine Administration for Metastatic Radioactive Iodine Refractory Differentiated Thyroid Cancer Patients with a BRAFV600E Mutation (NCT 03244956). J. Endocr. Soc. 2021, 5, A876. [Google Scholar] [CrossRef]
- Weber, M.; Kersting, D.; Riemann, B.; Brandenburg, T.; Führer-Sakel, D.; Grünwald, F.; Kreissl, M.C.; Dralle, H.; Weber, F.; Schmid, K.W.; et al. Enhancing Radioiodine Incorporation into Radioiodine-Refractory Thyroid Cancer with MAPK Inhibition (ERRITI): A Single-Center Prospective Two-Arm Study. Clin. Cancer Res. 2022, 28, 4194–4202. [Google Scholar] [CrossRef] [PubMed]
- Iravani, A.; Solomon, B.; Pattison, D.A.; Jackson, P.; Ravi Kumar, A.; Kong, G.; Hofman, M.S.; Akhurst, T.; Hicks, R.J. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019, 29, 1634–1645. [Google Scholar] [CrossRef]
- Kouvaraki, M.A.; Liakou, C.; Paraschi, A.; Dimas, K.; Patsouris, E.; Tseleni-Balafouta, S.; Rassidakis, G.Z.; Moraitis, D. Activation of mTOR signaling in medullary and aggressive papillary thyroid carcinomas. Surgery 2011, 150, 1258–1265. [Google Scholar] [CrossRef]
- Lim, S.M.; Chang, H.; Yoon, M.J.; Hong, Y.K.; Kim, H.; Chung, W.Y.; Park, C.S.; Nam, K.H.; Kang, S.W.; Kim, M.K.; et al. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann. Oncol. 2013, 24, 3089–3094. [Google Scholar] [CrossRef]
- Hanna, G.J.; Busaidy, N.L.; Chau, N.G.; Wirth, L.J.; Barletta, J.A.; Calles, A.; Haddad, R.I.; Kraft, S.; Cabanillas, M.E.; Rabinowits, G.; et al. Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-refractory Thyroid Cancer: A Phase II Study. Clin. Cancer Res. 2018, 24, 1546–1553. [Google Scholar] [CrossRef]
- Schneider, T.C.; de Wit, D.; Links, T.P.; van Erp, N.P.; van der Hoeven, J.J.; Gelderblom, H.; Roozen, I.C.; Bos, M.; Corver, W.E.; van Wezel, T.; et al. Everolimus in Patients with Advanced Follicular-Derived Thyroid Cancer: Results of a Phase II Clinical Trial. J. Clin. Endocrinol. Metab. 2017, 102, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Budiawan, H.; Salavati, A.; Kulkarni, H.R.; Baum, R.P. Peptide receptor radionuclide therapy of treatment-refractory metastatic thyroid cancer using (90)Yttrium and (177)Lutetium labeled somatostatin analogs: Toxicity, response and survival analysis. Am. J. Nucl. Med. Mol. Imaging 2013, 4, 39–52. [Google Scholar] [PubMed]
- Versari, A.; Sollini, M.; Frasoldati, A.; Fraternali, A.; Filice, A.; Froio, A.; Asti, M.; Fioroni, F.; Cremonini, N.; Putzer, D.; et al. Differentiated thyroid cancer: A new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid 2014, 24, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Araque, K.A.; Gubbi, S.; Klubo-Gwiezdzinska, J. Updates on the Management of Thyroid Cancer. Horm. Metab. Res. 2020, 52, 562–577. [Google Scholar] [CrossRef] [PubMed]
- Ulisse, S.; Tuccilli, C.; Sorrenti, S.; Antonelli, A.; Fallahi, P.; D’Armiento, E.; Catania, A.; Tartaglia, F.; Amabile, M.I.; Giacomelli, L.; et al. PD-1 Ligand Expression in Epithelial Thyroid Cancers: Potential Clinical Implications. Int. J. Mol. Sci. 2019, 20, 1405. [Google Scholar] [CrossRef] [PubMed]
- Mehnert, J.M.; Varga, A.; Brose, M.S.; Aggarwal, R.R.; Lin, C.C.; Prawira, A.; De Braud, F.; Tamura, K.; Doi, T.; Piha-Paul, S.A.; et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced, PD-L1-positive papillary or follicular thyroid cancer. BMC Cancer 2019, 19, 196. [Google Scholar] [CrossRef] [PubMed]
- Lorch, J.H.; Barletta, J.A.; Nehs, M.; Uppaluri, R.; Alexander, E.K.; Haddad, R.I.; Hanna, G.J.; Margalit, D.N.; Tishler, R.B.; Schoenfeld, J.D.; et al. A phase II study of nivolumab (N) plus ipilimumab (I) in radioidine refractory differentiated thyroid cancer (RAIR DTC) with exploratory cohorts in anaplastic (ATC) and medullary thyroid cancer (MTC). J. Clin. Oncol. 2020, 38, 6513. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Garcia-Alvarez, A.; Hernando, J.; Carmona-Alonso, A.; Capdevila, J. What is the status of immunotherapy in thyroid neoplasms? Front. Endocrinol. 2022, 13, 929091. [Google Scholar] [CrossRef]
- Haugen, B.; French, J.; Worden, F.P.; Konda, B.; Sherman, E.J.; Dadu, R.; Gianoukakis, A.G.; Wolfe, E.G.; Foster, N.R.; Bowles, D.W.; et al. Lenvatinib plus pembrolizumab combination therapy in patients with radioiodine-refractory (RAIR), progressive differentiated thyroid cancer (DTC): Results of a multicenter phase II international thyroid oncology group trial. J. Clin. Oncol. 2020, 38, 6512. [Google Scholar] [CrossRef]
BRAF | RET | NTRK | PIK3CA | RAS | PAX8/PPARγ | PTEN | ALK | |
---|---|---|---|---|---|---|---|---|
PTC | 50–60% | 10% | 2% | 2% | 10–20% | 2% | 1% | |
FTC | 1–10% | 40–50% | 30–35% | <10% | ||||
PDTC | 5–35% | 2–10% | 20–40% | 4–9% | ||||
MTC | 100% (familial) 50% (sporadic) | 40% (sporadic) | ||||||
ATC | 10–50% | 4% | 10–20% | 20–40% | 5–15% |
NCT | Title | Description | Intervention | Outcomes | Results | Reference |
---|---|---|---|---|---|---|
NCT00984282 | Sorafenib in radioactive iodine-refractory, locally advanced or metastatic diff erentiated thyroid cancer: a randomised, double-blind, phase 3 trial | Phase 3, Randomized, Double-Blind | Sorafenib vs. Placebo | Primary: PFS Secondary: Safety | PFS: 10.8 months (Sorafenib) vs. 5.8 (Placebo) HR 0.59 p < 0.0001 | [48] |
NCT01321554 | Lenvatinib versus Placebo in Radioiodine- Refractory Thyroid Cancer | Phase 3, Randomized, Double-Blind | Lenvatinib vs. Placebo | Primary: PFS Secondary: ORR, Safety | PFS: 18.3 (Lenvatinib) vs. 3.6 (Placebo)HR 0.21 p < 0.001, ORR: 64.8% vs. 1.5% | [49] |
NCT02966093 | A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial of Lenvatinib (E7080) in 131 I-Refractory Differentiated Thyroid Cancer in China | Phase 3, Randomized, Double blind | Lenvatinib vs. placebo | Primary: PFS Secondary: ORR, OS, Safety | PFS: 23.9 months (Lenvatinib) vs. 3.7 (placebo) p < 0.0001 ORR: 69.9 (Lenvatinib) vs. 0 (placebo) | [50] |
NCT03690388 | A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Cabozantinib (XL184) in Subjects with Radioiodine-Refractory Differentiated Thyroid Cancer Who Have Progressed After Prior Vascular Endothelial Growth Factor Receptor (VEGFR) -Targeted Therapy | Phase 3, Multicenter, Randomized, Double-Blind, Placebo controlled | Cabozantinib vs. placebo | Primary: PFS Secondary: ORR | PFS: mPFS not Reached in experimental group vs. 1.9 months in plaebo. ORR: 15% vs. 0% | [51] |
NCT03048877 | Efficacy of Apatinib in Radioactive Iodine-refractory Differentiated Thyroid Cancer | Phase 3, Randomized, Double blind | Apatinib vs. Placebo | Primary: PFS | PFS: 22.4 months (Apatinib) vs. 4.5 months (Placebo) HR 0.26, p < 0.001 | [52] |
NCT03602495 | A Multicenter, Randomized, Double-blind, Placebo-controlled, Phase 3 Study of Donafenib in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer | Phase 3, Randomized, Double-Blind | Donafenib vs. Placebo | Primary: PFS Secondary: OS, ORR, DCR, TTP | Interim Analysis PFS: 12.9 months (Donafenib) vs. 6.4 (Placebo) p < 0.0001, ORR 23.3 (Donafenib) vs. 1.7 (Placebo) | [53] |
NCT01876784 | Evaluation of Efficacy, Safety of Vandetanib in Patients with Differentiated Thyroid Cancer (VERIFY) | Phase 3, Randomized, Double Blind | Vandetanib vs. Placebo | Primary: PFS | PFS: 10 months (Vandetanib) vs. 5.7 (Placebo) HR 0.75 (p = 0.08) | [54] |
NCT | Title | Description | Intervention | Outcomes | Results | Reference |
---|---|---|---|---|---|---|
NCT02702388 | A Trial of Lenvatinib (E7080) in Subjects with Iodine-131 Refractory Differentiated Thyroid Cancer to Evaluate Whether an Oral Starting Dose of 18 Milligram (mg) Daily Will Provide Comparable Efficacy to a 24 mg Starting Dose, But Have a Better Safety Profile | Phase 2, Randomized, Double Blind | Lenvatinib 24 mg vs. Lenvatinib 18 mg | Primary: ORR, Rate of Grade > 3 AE Secondary: PFS, PFS2, Safety, Time of First Dose reduction, Number of Dose Reductions | ORR: 57.3 (24 mg) vs. 40.3 (18 mg) Rate of Grade > 3 AE: 61.3 (24 mg) vs. 57.1 (18 mg) PFS: Not reached (24 mg) vs. 24.4 months (18 mg) | [58] |
NCT00519896 | Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation | Phase 2, Single Group, Open Label | Sunitinib | Primary: ORR Secondary: Safety and Toxicity, TTP | ORR: 31% TTP: 12.8 (8.9–N/A) | [60] |
NCT00654238 | Phase II Trial of Sorafenib (Nexavar) in Patients with Advanced Thyroid Cancer | Phase 2, Single Group, Open Label | Sorafenib | Primary: ORR Secondary: PFS | ORR: 36.4 (DTC) PFS: 77 weeks (60–96) | [61] |
NCT01263951 | Study of Everolimus and Sorafenib in Patients with Advanced Thyroid Cancer Who Progressed on Sorafenib Alone | Phase 2, Single Group, Open Label | Everolimus plus Sorafenib | Primary: PFS Secondary: CBR | PFS: 13.7 months (7.15–24.75) | [62] |
NCT02870569 | A Multicenter, Randomized, Open-Label, Phase 2 Trial of Donafenib in 131I-Refractory Differentiated Thyroid Cancer | Phase 2, Parallel Study of two different doses of Donafenib, Open Label | Donafenib 200 mg or Donafenib 300 m | Primary: ORR Secondary: OS, PFS, Safety, DCR | ORR: 12.5% (200 mg), 13.3% (300 mg) PFS: 9.44 (200 mg) months vs. 14.98 months (300 mg) p = 0.351) | [63] |
NCT00537095 | Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial | Phase 2, Randomized, Double-Blind | Vandetanib vs. Placebo | Primary: PFS | PFS: 11.1 months (Vandetanib) vs. 5.9 (Placebo) HR 0.62, p = 0.008 | [64] |
NCT00510640 | Thyroid Cancer and Sunitinib (THYSU) | Phase 2, Open Label | Sunitinib | Primary: ORR Secondary: Safety | ORR:22% DTC | [65] |
NCT02614495 | Study of Sulfatinib in Treating Advanced Medullary Thyroid Carcinoma and Iodine-refractory Differentiated Thyroid Carcinoma | Phase 2, Open Label | Surufatinib | Primary: ORR Secondary: Safety, DCR, PFS | ORR: 21.7–33.3% DTC PFS: 11.1 months DTC | [66] |
NCT00625846 | Pazopanib Hydrochloride in Treating Patients with Advanced Thyroid Cancer | Phase 2, Open Label | Pazopanib | Primary: ORR Secondary: Safety, PFS, DoR | ORR: 49% DTC | [67] |
NCT00094055 | Study of the Anti-angiogenesis Agent AG-013736 in Patients with Metastatic Thyroid Cancer | Phase 2, Open Label | Axitinib | Primary: ORR Secondary: PFS, DoR, OS | ORR: 38.3% PFS: 459 days DoR: 625 days OS: 1068 days | [68] |
NCT01270321 | Pasireotide and Everolimus in Adult Patients with Radioiodine-Refractory Differentiated and Medullary Thyroid Cancer | Phase 2, 3 Arm, Open Label | Everolimus, Pasireotide | Primary: ORR | No PR according to RECIST 1.1 | [69] |
NCT02084732 | Safety and Efficacy of Sorafenib in Patients with Advanced Thyroid Cancer: a Phase II Clinical Study | Phase 2, Open Label | Sorafenib | Primary: ORR Secondary: Safety | ORR: 35.7% | [70] |
NCT01025453 | Phase II Study Evaluating the Combination of Temsirolimus and Sorafenib in the Treatment of Radioactive Iodine Refractory Thyroid Cancer | Phase 2, Open Label | Temsirolimus and Sorafenib | Primary: ORR Secondary: Safety | ORR: 23.7% | [71] |
NCT01964144 | An Open-label, Multicenter, Phase II Study of Dovitinib in Advanced Thyroid Cancer | Phase 2, Open Label | Dovitinib | Primary: ORR | ORR: 20.5% | [72] |
NCT00559949 | Phase 2 Study of Selumetinib Hydrogen Sulfate in Iodine-131 Refractory Papillary Thyroid Carcinoma and Papillary Thyroid Carcinoma with Follicular Elements | Phase 2, Open Label | Salumetinib | Primary: ORR Secondary: PFS, Safety, OS | ORR: 3.1% PFS: 32 weeks | [73] |
NCT01811212 | Phase II Study of Cabozantinib in Patients with Radioiodine-Refractory Differentiated Thyroid Cancer Who Progressed on Prior VEGFR-Targeted Therapy | Phase 2, Open Label | Cabozatinib | Primary: ORR Secondary: Bone Turnover, DoR, Safety | ORR: 40% DoR: 11.3 months | [74] |
NCT02586337 | A Randomized, Double-blind, Placebo-controlled, Multicenter Clinical Trial to Compare the Efficacy and Safety of Anlotinib Versus Placebo in Patients with 131I-Refractory Differentiated Thyroid Cancer (ALTER01032) | Phase 2 Randomized, Double blind | Anlotinib vs. Placebo | Primary: PFS | Median PFS 40.5 months vs. placebo 8.4 months, HR = 0.21, p < 0.001], | [75] |
NCT01208051 | A multicenter, open label, randomized, phase II study of cediranib with or without lenalidomide in iodine 131-refractory differentiated thyroid cancer | Phase 2, Randomized, Open Label, | Cediranib vs. Cediranib with Lenalidomide | Primary: PFS Secondary: ORR, DoR, Safety | Median PFS 14.8 months (Cediranib) vs. 11.3 months (Cediranib plus Lenalidomide) | [76] |
Drug | VEGFR-1 | VEGFR-2 | VEGFR-3 | c-KIT | RET | PDGFR | FGFR | TRK | OTHER |
---|---|---|---|---|---|---|---|---|---|
Lenvatinib | + | + | + | + | + | + | + | − | RET-KIF5B |
Sorafenib | − | + | + | + | + | + | − | − | RAF, FLT3 |
Cabozantinib | − | + | − | + | + | − | − | − | FLT3, MET, AXL, TIEZ, RET-KIF5B |
Larotrectinib | − | − | − | − | − | − | − | + | - |
Entrectinib | − | − | − | − | − | − | − | + | ALK, ROS1 |
Selpercatinib | − | − | − | − | + | − | − | − | - |
Pralsetinib | − | − | − | − | + | − | − | − | - |
Vemurafenib | − | − | − | − | − | − | − | − | BRAFV600E |
Dabrafenib | − | − | − | − | − | − | − | − | BRAFV600E |
Sorafenib | Hand–foot syndrome, diarrhea, nausea, vomiting, hypertension, bleeding, arthralgia, increased amylase/lipase, rash and dry skin. |
Lenvatinib | Hypertension, diarrhea, fatigue, proteinuria, hand–foot syndrome decreased weight, nausea, vomiting, stomatitis, dysphonia. |
Cabozantinib | Diarrhea, hand–foot syndrome, hypertension, fatigue, decreased appetite, nausea, rise in transaminases. |
Pralsetinib | Constipation, diarrhea, fatigue, neutropenia, anemia, hypertension transaminases increase, musculoskeletal pain, pneumonia, pneumonitis. |
Selpercatinib | Increased transaminases, vomiting, constipation, diarrhea, nausea, rise QTC, hypertension, bleeding, fatigue, oedema. |
Entrectinib | Fatigue, constipation, oedema, dizziness, diarrhea, nausea, oedema, dysesthesia, dyspnea, anemia, increased weight, pain, cognitive disorders, cough, and pyrexia. |
Larotrectinib | Increased transaminases, vomiting, constipation, diarrhea, myalgia, fatigue, anemia, decreased neutrophil count, dizziness, paresthesia. |
Dabrafenib and Trametinib | Pyrexia, anemia, decreased appetite, fatigue, nausea, infections, pneumonia, pleural effusion, renal impairment, leukopenia. |
NCT | Title | Description | Intervention | Outcomes | Results | Reference |
---|---|---|---|---|---|---|
NCT00970359 | Reacquisition of Radioactive Iodine (RAI) Uptake of RAI-Refractory Metastatic Thyroid Cancers by Pretreatment with the Selective MEK Inhibitor AZD6244 | Single Group, Open Label | Selumetinib | Primary: Number of patients who have increased radioiodine uptake, ORR Secondary: TG level change | Primary: 12/20 increased uptake. 8 patients had RAI with 5/8 PR and 3/8 SD. Secondary: All patients had decrease in TG (mean reduction 89%) | [84] |
NCT02145143 | Enhancing Radioiodine (RAI) Incorporation Into BRAF Mutant, RAI-Refractory Thyroid Cancers with the BRAF Inhibitor Vemurafenib: A Pilot Study | Pilot study | Vemurafenib | Primary: Increased uptake and Response to RAI. | Primary: 4/10 patients had increased uptake and received RAI, resulting in 6 month regression | [85] |
NCT01534897 | Re-differentiation of Radioiodine-Refractory BRAF V600E-mutant Papillary Thyroid Carcinoma with GSK2118436 (Dabrafenib) | Single Group, Open Label | Dabrafenib | Primary: Number of patients who have increased radioiodine uptake Secondary: Safety, ORR, TG level | Primary: 6/10 patients increased uptake. Secondary: 2/6 patients treated with RAI PR, and 4/6 SD. | [86] |
NCT03244956 | Efficacy of MEK (Trametinib) and BRAFV600E (Dabrafenib) Inhibitors with Radioactive Iodine (RAI) for the Treatment of Refractory Metastatic Differentiated Thyroid Cancer (MERAIODE) | Phase 2, Non-Randomized, Open Label | Dabrafenib plus Trametinib or Trametinib (Depends on BRAF mutation status) | Primary: ORR at 6 months | ORR: 38.8%, SD in 52% and PD in10%. | [87] |
NCT04619316 | Enhancing Radioiodine Incorporation Into Radio Iodine Refractory Thyroid Cancers with MAPK Inhibition (ERRITI) | Phase 2, Open-Label | Trametinib (BRAF WT), Trametinib plus Dabrafenib (BRAF MT) | Primary: Redifferentiation rate | 7/20 patients, 2/6 BRAF MT, 5/14 BRAF WT | [88] |
NCT | Title | Description | Intervention | Outcomes | Results | Reference |
---|---|---|---|---|---|---|
NCT02973997 | Lenvatinib and Pembrolizumab in Differentiated Thyroid Cancers (DTC) | Phase 2, Single Group, Open Label | Lenvatinib and Pembrolizumab | Primary: CRRR, Confirmed CoRR Secondary: Incidence AE, PFS, OS | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT04554680 | Clinical Trial in RAI-Refractory Thyroid Carcinoma Evaluating BRAF and MEK Blockade for Re-differentiation Therapy | Phase 2, Single Group, Open Label | Dabrafenib plus Trametinib | Primary: Proportion of patients with at least one iodine avid lesion Secondary: PFS, Best Tumor Response, Change in TG levels, AE | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT04061980 | Encorafenib and Binimetinib with or Without Nivolumab in Treating Patients with Metastatic Radioiodine Refractory BRAF V600 Mutant Thyroid Cancer | Phase 2,Randomized, Open Label | Encorafenib and Binimetinib vs. Encorafenib, Binimetinib and Nivolumab | Primary: ORR Secondary: PFS, OS, DOR | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT04952493 | Anlotinib or Penpulimab in Combination with RAI for DTC | Phase 2, Randomized, Open Label | Anlotinib plus RAI vs. Penpulimab plus RAI | Primary: ORR Secondary: BRR, DCR, PFS | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT03914300 | Testing the Combination of Cabozantinib, Nivolumab, and Ipilimumab (CaboNivoIpi) for Advanced Differentiated Thyroid Cancer | Phase 2, Single Group, Open Label | Cabozatinib plus Ipilimumab plus Nivolumab | Primary: ORR Secondary: DOR, Safety | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT03573960 | A Study to Evaluate the Safety and Efficacy of Lenvatinib in Participants with Refractory Differentiated Thyroid Cancer | Phase 4, Single Group, Open Label | Lenvatinib | Primary: Percentage of >G2 AE, Number of Dose Reduction, Median to Dose Reduction Secondary: ORR, PFS, Percentage of G1 AE | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT04560127 | A Single-arm, Non-randomized, Single-center Study to Evaluate Camrelizumab in Combination with Apatinib in Patients with Radioactive Iodine-refractory Differentiated Thyroid Cancer | Phase 2, Single Group, Open Label | Camrelizumab plus Apatinib | Primary: PFS Secondary: ORR, OS, DCR, DoR, Safety | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT02041260 | A Phase II Trial of Cabozantinib for the Treatment of Radioiodine (RAI)-Refractory Differentiated Thyroid Carcinoma (DTC) in the First-line Setting | Phase 2, Single Group, Open Label | Cabozantinib | Primary: number of AE | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT05745363 | Phase Ib Clinical Trial to Evaluate the Efficacy and Safety of AL2846 Capsule in Iodine-resistant Differentiated Thyroid Cancer with Previous TKI Treatment Failure | Phase 1 and 2, Single Group, Open Label | AL2846 capsule | Primary: ORR Secondary: PFS, DCR, DoR, OS, Safety | Pending | Clinicaltrials.gov (accessed 10 March 2023) [54] |
NCT03469011 | A Study to Try to Bring Back Radioiodine Sensitivity in Patients with Advanced Thyroid Cancer. | Phase 1, Single Group, Open Label | Imatinib | Primary: Increment of RAI uptake | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT01396733 | Redifferentiation Therapy Using Alpha Lipoic Acid in Thyroid Cancer (RALT) | Phase 2, Randomized, Open Label | Alpha-lipoic acid (RALT) | Primary: Increment of Iodine uptake | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT04554680 | Clinical Trial in RAI-Refractory Thyroid Carcinoma Evaluating BRAF and MEK Blockade for Re-differentiation Therapy | Phase 2, Single Group, Open Label | Dabrafenib and Trametinib | Primary: Rate of patient with RAI uptake Secondary: PFS, ORR, TG level | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT05507775 | Digoxin for the Reinduction of Radioiodine Uptake in Metastatic or Locally Advanced Non-medullary Thyroid Carcinoma (DIGUP-TC) | Single Group, Open Label | Digoxin | Primary: Number of patients who have increased radioiodine uptake, ORR Secondary: safety | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT02145143 | Enhancing Radioiodine (RAI) Incorporation Into BRAF Mutant, RAI-Refractory Thyroid Cancers with the BRAF Inhibitor Vemurafenib: A Pilot Study | Single Group, Open Label | Vemurafenib | Primary: DoR Secondary: ORR, safety | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT05733013 | A Study to Collect Information About the Use of Redifferentiating Medications as a Standard Treatment for Thyroid Cancer | Prospective, Observational Study | Observational: Known re-differentiation | Primary: Safety | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
NCT05783323 | Larotrectinib to Enhance RAI Avidity in Differentiated Thyroid Cancer | Single Group, Open Label | Larotrectinib | Primary: Number of patients with complete pulmonary structural response | Pending | Clinicaltrials.gov (accessed 9 July 23) [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortas, C.; Charalambous, H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life 2024, 14, 22. https://doi.org/10.3390/life14010022
Cortas C, Charalambous H. Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life. 2024; 14(1):22. https://doi.org/10.3390/life14010022
Chicago/Turabian StyleCortas, Christos, and Haris Charalambous. 2024. "Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer" Life 14, no. 1: 22. https://doi.org/10.3390/life14010022
APA StyleCortas, C., & Charalambous, H. (2024). Tyrosine Kinase Inhibitors for Radioactive Iodine Refractory Differentiated Thyroid Cancer. Life, 14(1), 22. https://doi.org/10.3390/life14010022