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Abstract: The microalga Haematococcus lacustris has a complex life cycle and a slow growth rate,
hampering its mass cultivation. Culture of microalgae with organic carbon sources can increase the
growth rate. Few studies have evaluated the effects of organic carbon sources on H. lacustris. We
compared the vegetative and inductive stages of H. lacustris under autotrophic and mixotrophic
conditions using four organic carbon sources: sodium acetate, glycerol, sodium gluconate, and
ribose, each at various concentrations (0.325, 0.65, 1.3, and 2.6 g/L). The cell density was increased
by 1.3 g/L of glycerol in the vegetative stage. The rapid transition to the inductive stage under
nitrogen-depletion conditions caused by 1.3 or 2.6 g/L sodium acetate promoted the accumulation
of astaxanthin. The production of astaxanthin by H. lacustris in mass culture using organic carbon
sources could increase profitability.

Keywords: Haematococcus lacustris; astaxanthin; sodium acetate; glycerol; microalgae

1. Introduction

Carotenoids are organic pigments synthesized by plants, algae, bacteria, and fungi and
have more than 700 structural varieties [1]. The ketocarotenoid astaxanthin (3,3′-dihydroxy-
β, β’-carotene-4,4′-dione) is a red pigment with antioxidant activity as a result of its
hydroxyl and keto groups [2]. Astaxanthin is used as a raw material for pharmaceuticals
and functional foods because it suppresses inflammation, is nontoxic, and prevents diabetes
and cancer [2,3]. By 2027, the market value of astaxanthin is expected to increase to USD
3.4 billion [4]. Astaxanthin may be synthesized chemically or extracted from natural sources.
The synthetic version contains isomers that are different from those in natural products;
these have low biological stability [5,6]. Synthetic astaxanthin is not approved as a food
supplement [7] and is less effective than astaxanthin from an algal source [8]. Natural
astaxanthin has approximately 20- to 50-fold greater antioxidant activity than the synthetic
version [4]. It is biosynthesized by several bacteria, fungi, and plants; the edible product
is mainly produced by the microalgae Haematococcus lacustris, Chromochloris zofingiensis,
Halochlorella rubescens, Ettlia carotinosa, and Rhexinema sarcinoideum [8]. The green alga
Haematococcus lacustris is an important source of astaxanthin, which can make up to 4% of
the algae components under natural light and 8% under artificial light [7]. At 80–99% of
total carotenoids, astaxanthin exists in a highly pure form in Haematococcus [9]. Astaxanthin
has a polyene system and can exist in 9-cis, 13-cis, 15-cis, and all-trans geometric isomeric
forms [10]. The trans-isomeric form is more stable than the cis-isomeric form [4]. The
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3S, 3′S stereoisomer of astaxanthin is suitable for humans. Chemical synthesis yields a
stereoisomeric ratio of 1(3S, 3′S):2(3R, 3′S):1(3R, 3′R). The 3S, 3′S form is produced by H.
lacustris [11]. The life cycle of Haematococcus is divided into four stages: green vegetative
cells, macrozooids, microzooids, and haematocysts; the latter accumulate astaxanthin [8–10].
At the green vegetative stage, motile and palmelloid cells can proliferate into 2–32 daughter
cells via mitosis [12–14]. However, growth is reduced, and cells increase in size under
stress conditions such as adverse temperatures, pH values, salinities, light intensities, or
nutrient deprivation. Lipid droplets are formed in the cytoplasm, accumulating a large
amount of astaxanthin, giving them a characteristic bright red color [10]. Haematococcus has
a slower growth rate compared to most other microalgae; the doubling time is 85 to 192 h,
depending on the medium and light intensity [15].

Organic carbon sources in mixotrophic culture promote cell division, haematocyst
production, and carotenoid accumulation [16]. Inorganic carbon sources directly affect
microalgal growth as a result of the high concentration of CO2 gas and pH control [17].
Astaxanthin production can be promoted by increasing the concentration of CO2; ≤5% CO2
favored the growth and astaxanthin accumulation of Haematococcus, whereas higher con-
centrations of CO2 suppressed growth [18–21]. Astaxanthin assimilation can be enhanced
by adding carbon sources such as acetate, ribose, and mannose to mixotrophic cultures.
However, few studies have evaluated the effects of external carbon sources on the growth
rate and astaxanthin accumulation of H. lacustris. The benefits of CO2 injection are debated.
Efforts to improve the growth rate by adding external carbon sources are environmentally
and economically necessary. We evaluated the effects of four external carbon sources on
the biomass and astaxanthin productivity of H. lacustris in the presence of natural air. The
results may provide guidance for the large-scale cultivation of H. lacustris. Therefore, the
most important considerations were sustainability and economic viability. We used sodium
acetate, sodium gluconate, and glycerol, which are inexpensive, as external carbon sources.
In addition, we examined ribose, despite its high cost, to determine whether its application
is profitable. We evaluated the effects of these four sources on the growth and astaxanthin
accumulation of H. lacustris.

2. Materials and Methods
2.1. Strain and Culture Conditions

H. lacustris (LIMS-PS-1354) was obtained from the Library of Marine Samples at KIOST,
Geoje, South Korea. H. lacustris was cultured at 21 ± 1 ◦C with a 12:12 h light:dark cycle and
a photon flux density of 37 µmol m−2 s−1 in Jaworski’s medium (JM). To prepare JM, six
stock solutions were generated by mixing 10.0 g MgSO4·7H2O, 4.0 g Ca(NO3)2·4H2O, 2.48 g
KH2PO4, 3.18 g NaHCO3, 7.2 g Na2HPO4·12H2O, and 16 g NaNO3 in 200 mL deionized
water. Similarly, a stock solution was prepared by mixing 0.45 g EDTAFeNa and 0.45 g
EDTANa2 in 200 mL deionized water. Another was prepared by mixing 0.496 g H3BO3,
0.278 g MnCl2·4H2O, and 0.20 g (NH4)6Mo7O24·4H2O in 200 mL deionized water. The
last stock solution was prepared by mixing 0.008 g cyanocobalamin, 0.008 g thiamine HCl,
and 0.008 g biotin in 200 mL deionized water. Finally, 1 mL of each stock solution was
made up to 1 L with deionized water, creating the JM (pH 7) [22]. To compare effects
on growth, 50 mL of cell suspension was inoculated into 150 mL of the JM in a 250 mL
Erlenmeyer flask.

To evaluate astaxanthin accumulation, cell suspension (6.82 × 104 mL−1) was cen-
trifuged at 3000 rpm for 15 min and washed twice with distilled water. Next, 20 mL of
the culture was inoculated into a 250 mL Erlenmeyer flask containing nitrogen-depleted
JM medium. Subsequently, 20 mL of culture was diluted by adding water up to 180 mL.
For nitrogen starvation, the nitrogen sources Ca(NO3)2·4H2O and NaNO3 were not added
during the preparation of the JM.
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2.2. Organic Carbon Sources

Sodium acetate (≥99%, JT Baker, Phillipsburg, NJ, USA), glycerol (≥99%, Sigma-
Aldrich, Burlington, NJ, USA), sodium gluconate (≥99%, Sigma-Aldrich, Burlington, NJ,
USA), and D-ribose (≥99%, ACROS Organics, Geel, Belgium) were used as organic carbon
sources. Each of these was tested at concentrations of 0.325, 0.65, 1.3, and 2.6 g/L [23,24].

2.3. Analysis of Cell Growth

Cell concentrations were measured at 3-day intervals, and growth curves were plotted.
Dry weight (DW) was measured after 14 days of culture. Cell density was measured using
a haemocytometer (Neubauer-Improved with Dark-Line, Marienfeld, Germany) under a
light microscope (×20) (BX53, Olympus, Japan). Absorbance at a wavelength of 680 nm
was measured using a UV-vis spectrophotometer (UV-1601, Simadzu, Kyoto, Japan). To
determine DW, 3 mL aliquots of culture were centrifuged for 5 min at 2000 rpm. The cell
pellets were washed twice with distilled water, dried in a pre-weighed aluminum dish
at 105 ◦C for 24 h until a constant weight was reached, cooled to room temperature in a
desiccator, and weighed. Weights were converted into grams per liter.

2.4. Analysis of Total Carotenoid Content

To evaluate astaxanthin accumulation, total carotenoid content was measured after
9 days of culture under nitrogen-depleted conditions. For this purpose, 10 mL of H.
lacustris suspension was transferred to a 15 mL conical tube and centrifuged at 4500 rpm
for 15 min. After removing the supernatant, 10 mL of dimethyl sulfoxide (DMSO) was
added, followed by boiling at 55 ◦C for 10 min and vortexing for 30 s to disrupt cells.
Samples were centrifuged, and the absorbances (A) at wavelengths of 665, 649, and 480 nm
of the supernatants were measured using a spectrophotometer. Carotenoid content was
calculated using the formula of Wellburn (1994) [25]:

Ca (µg mL−1) = 12.19 A665 − 3.45 A649

Cb (µg mL−1) = 21.99 A649 − 5.32 A665

Total carotenoids (µg mL−1) = (1000 A480 − 2.14 Ca [µg mL−1] − 70.16 Cb [µg mL−1]) ÷ 220

where Ca is chlorophyll a; Cb is chlorophyll b; and A665, A649, and A480 are the absorbances
at 665, 649, and 480 nm, respectively.

2.5. Analysis of Astaxanthin Content

To evaluate the astaxanthin content, 10 mL samples were transferred to conical tubes
and centrifuged at 1700 g for 10 min. The pellets were treated with 5% (w/v) KOH diluted
with 30% (v/v) methanol. Chlorophyll was degraded at 70 ◦C for 10 min, and samples were
centrifuged at 3500 rpm for 10 min. The supernatants were removed, and 100 µL of glacial
acetic acid was added. Subsequently, 5 mL of DMSO was added, and the solutions were
boiled at 70 ◦C for 15 min. After a final centrifugation, the absorbances of the supernatants
at 490 nm were measured using a spectrophotometer, and the astaxanthin contents were
calculated as follows [26]:

astaxanthin (mg/L) = [4.5 × A490 × (Va ÷ Vb)]

where A490 is the absorbance at 490 nm of the supernatant, and Va and Vb are the volumes
of DMSO and microalga samples, respectively.

2.6. Statistical Analysis

Data are presented as means ± standard deviations. Statistical analyses were per-
formed using one-way ANOVA followed by Tukey’s multiple comparison test using SPSS
software (version 22; IBM Corp., Armonk, NY, USA). A value of p < 0.05 was taken to
indicate statistical significance.
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3. Results
3.1. Green Vegetative Stage of H. lacustris

By adding four different types of carbon sources—sodium acetate, glycerol, sodium
gluconate, and ribose—at varying quantities, the growth efficacy of H. lacustris was con-
firmed. Generally, the growth curves of the cell numbers varied according to the con-
centration and source of carbon. At day 10, the maximum H. lacustris cell density of
31.08 ± 1.83 × 104 mL−1 was achieved using 0.325 g/L sodium acetate (Figure 1). At
1.3 and 2.6 g/L sodium acetate, cells did not grow from day 4 and began to die. Glycerol-
containing cultures grew at all concentrations. Specifically, after the 12th day of culture,
the greatest increase in cell density was 37.61 ± 1.23 × 104 cells mL−1 at a concentration of
1.3 g/L. Concentrations of 1.3 g/L and 2.6 g/L transitioned to the red stage in comparison
to the control, and at the remaining concentrations, the growth curve’s amplitude was
smaller than in the control (Figure 2). Regardless of the quantity, adding sodium gluconate
led to lower cell densities than in the control (Figure 3), and by day 4, all of the cells were
red. The addition of ribose continued to maintain the growth phase; partial or complete
redness did not appear until day 12. As shown in Figure 4, ribose yielded a maximum cell
density of 31.61 ± 1.06 × 104 cells mL−1.
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Figure 4. Comparison of growth curves of H. lacustris treated with different ribose concentrations
((A): cell density, (B): optical density).

After growing for 14 days, the biomass was measured as DW. The cultures with
glycerol and ribose had larger numbers of cells and higher DWs, and those with sodium
acetate and sodium gluconate had lower DWs (Figure 5). The DW yields of the carbon
sources differed significantly from the control (p < 0.05). The addition of 0.325 g/L of
sodium acetate led to the highest DW of 0.446 ± 0.05 g/L. The addition of 1.30 g/L
of glycerol resulted in a DW of 0.630 ± 0.08 g/L. Sodium gluconate reduced the DW
compared to the control (0.352 ± 0.06 g/L). Ribose at 1.30 g/L resulted in the highest DW
of 0.558 ± 0.03 g/L.
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3.2. Astaxanthin Accumulation According to Growth Stage

The rate of conversion to red non-motile astaxanthin-accumulating haematocysts
was evaluated by adding an organic carbon source under nitrogen-depletion conditions
(Figure 6). Figure 6 shows the growth of H. lacustris in the presence of the four carbon
sources. The number of cells in all of the groups decreased after day 3. Beginning on day
3, the culture with sodium acetate gradually reddened; all cells were red by day 9. The
culture with glycerol led to cells turning red on day 3; they remained in the palmella stage
until day 9. The culture with sodium gluconate resulted in the reddening of cells on day 3.
Similarly, cells cultured with ribose were green until day 6 and transitioned to the early
palmella stage beginning on day 9. Figure 7 shows the biomass, total carotenoid content,
and astaxanthin content on day 9. Biomass peaked after adding 1.3 and 2.6 g/L of sodium
acetate at 1.34 ± 0.11 and 1.358 ± 0.14 g/L (DW), respectively. The highest biomass was
achieved by adding 1.3 g/L glycerol and 0.65 g/L sodium gluconate, which did not differ
according to ribose concentration.
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(D) ribose).

The total carotenoid content was highest in cells cultured with sodium acetate (1.3 g/L),
compared to a mean of 2.857 ± 0.40 µg mL−1 for the other carbon sources. Cells cultured
with 1.3 g/L glycerol had the highest total carotenoid content of 2.672 ± 0.17 µg/mL, which
was higher than in the control. The cells that were cultivated in the presence of sodium
gluconate (except at 0.325 and 1.3 g/L) and ribose (except at 1.3 and 2.6 g/L) showed
similar results as in the control. Cells cultured with 1.3 g/L sodium acetate exhibited the
highest astaxanthin content (2.436 ± 0.14 µg/mL), and those cultured with glycerol had a
higher mean astaxanthin content than in the control, with a peak of 2.269 ± 0.08 µg/mL at
1.3 g/L glycerol. Similarly, cells cultured with 1.3 g/L sodium gluconate had the highest
astaxanthin concentration, 1.629 ± 0.13 µg/mL, but the other concentrations showed no
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difference from the control. Cells cultured with all ribose concentrations except 2.6 g/L
had similar astaxanthin contents as in the control.
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4. Discussion

Microalgal biomass can be a source of compounds for the nutraceutical, pharmaceu-
tical, cosmetic, and biofuel industries [27,28]. Microalgae, particularly H. lacustris, are
sources of natural products, including carotenoids, astaxanthin, lipids, carbohydrates, and
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proteins [29]. However, because of its slow growth rate and complex life cycle, large-scale
cultivation of H. lacustris for commercial purposes is difficult [30]. Biomass yield can
be improved by adding acetate and glucose to the Haematococcus culture medium [31].
There is a high chance of contamination with the addition of glucose in the culture of H.
lacustris [32]. The introduction of exogenous carbon sources, such as sucrose in high-light
conditions [33] and oxaloactate in combination with nitrogen stress [34], enhances astax-
anthin accumulation in H. lacustris. While a lot of progress has been made in terms of
improving astaxanthin accumulation, the majority of these developments are restricted
to lab settings. Regretfully, there are still not as many H. lacustris mass cultivations at the
industrial level [11]. The selection of an optimal organic carbon source is important because
it is an important determinant of growth and astaxanthin accumulation [30,31]. Moreover,
comparing the economic aspects of the costs of manufacturing and producing astaxanthin
should be considered for industrial sustainability. An effective astaxanthin production
strategy from H. lacustris requires an optimized cultivation strategy to boost astaxanthin
accumulation and cell growth [35]. Astaxanthin accumulation in H. lacustris increased
2.7-fold under light stress and nitrogen deficiency during autotrophic growth [36].

In this study, four organic carbon sources increased the growth, biomass, and astax-
anthin accumulation of Haematococcus. Among the different concentrations of sodium
acetate, the highest growth was achieved with 0.325 g/L. Other concentrations resulted
in reduced growth rates. In the nitrogen-depletion culture, astaxanthin accumulation was
highest at a concentration of 1.3 g/L of sodium acetate. Cell growth and carotenoid content
peaked with 0.75 g/L nitrate in the presence of 2% acetate [37]. Acetate enhances the
growth and carotenoid production of H. lacustris [38]. However, the effect of acetate is
concentration-dependent, with higher concentrations inhibiting growth but significantly
increasing astaxanthin content per cell [39,40]. Excess acetate may enhance astaxanthin
production by increasing the carbon/nitrogen ratio [41]. Sodium acetate affects home-
ostasis by causing an imbalance of calcium signaling and inducing the expression of
carotenoid genes [42]. Supplementation of sodium acetate boosts metabolism (nitrogen,
carbohydrates), synthesis of lipids, and energy usage [43]. Sodium acetate has been used
as an organic carbon supplement during stress-induced secondary carotenogenesis at low
pH [44].

Glycerol at 1.3 g/L increased the cell density by ≥1.5 fold of that in the control and
resulted in the highest growth rate of the four carbon sources. The nitrogen-depletion
cultures showed a similar trend to those with 1.3 g/L sodium acetate. The culture with
5 g/L glycerol increased the biomass by 34.22% [45]. Glycerol is reportedly superior to
acetate in terms of enhancing Haematococcus biomass and astaxanthin production [46]. It
is a polar and compatible solute for enzymes and membranes that readily enters algal
cells by passive diffusion [47]. The addition of compounds with polyalcohol groups (such
as glycerol, mannitol, sorbitol, and inositol) contributes to shortening of the lag phase,
transition to the exponential phase, and prolongation of the growth period [35]. Glycerol
enhances triacyl glycerol accumulation in Haematococcus and other microalgae. It increases
the lipid content of Nannochloropsis and Chlorella, enabling their mixotrophic culture [48–50].
It is an inexpensive carbon and energy source for microalgae in mixotrophic regimes,
and as a polar solute it readily enters algal cells by passive diffusion and is nontoxic to
microalgae at high concentrations [51]. In a previous study, at 5 g/L, it increased the
biomass productivity and triacylglycerol content of Neochloris oleabundans, Botryococcus
braunii, and Dunaliella [52].

The addition of sodium gluconate, irrespective of concentration, resulted in a low
growth rate, but the cells turned red after day 4. The amplitude of the growth curve
of cultures with sodium gluconate, irrespective of concentration, was lower than that of
the control, and the cells turned red after day 4. In nitrogen-depleted cultures, 1.3 g/L
sodium gluconate maximized the astaxanthin content. Feeding gluconate during the
mass cultivation of H. lacustris is a cost-effective way to improve cell activity and growth.
Gluconate increases algal resistance to high light intensities, thereby promoting growth [32].
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H. lacustris generally grows at low light intensities; at high light intensities, photosynthesis
is inhibited, growth is stopped, and secondary carotenoids are produced [53,54]. The low
growth in this study was a result of the need for a higher light intensity because of the
presence of sodium gluconate. High light intensity favors the nutrient accumulation and
growth of H. lacustris under gluconate mixotrophic conditions. Contradictorily, low light
intensity coupled with gluconate addition could not trigger the growth of H. lacustris [32].

The addition of ribose at 1.3 g/L increased the growth rate compared to the control
under nitrogen depletion conditions, but the cells did not change color irrespective of
nitrogen depletion. Ribose promotes the production of NADPH and survival against
nutrient deficiency and oxidative stress. C5 mannitols such as ribose are compatible solutes,
organic osmotic agents, thermoprotectants, and antioxidants in algal cells [55,56]. The
effects of ribose and acetate on photosynthesis in H. lacustris have been reported [23,24].
Ribose increased biomass content, cell count, and specific growth rate in H. lacustris [23].
The results from [23] indicate that the addition of ribose at a concentration of 1.15 g/L
achieved 1.3-fold higher biomass than the addition of sodium acetate. However, to evaluate
the implications of the addition of ribose from an economic standpoint, more research
is still required [23,24]. Additionally, being too expensive is another drawback of using
ribose [32].

In this study, we evaluated the effects of four organic carbon sources on astaxanthin
and the accumulation of carotenoids. When attempting to improve growth and astaxanthin
accumulation, separate H. lacustris cultures are needed because the growth conditions
differ according to the organic carbon source used. However, the optimum light intensity
varies according to the organic carbon source, so further research is needed. In this study,
adding 1.3 g/L glycerol at the green stage raised biomass to the maximum level, whereas
adding 1.3 g/L ribose raised biomass to the second highest level. Under nitrogen depletion
conditions, the highest and second highest yields of astaxanthin were obtained from the
cultures with the supplementation of sodium acetate (1.3 g/L) and glycerol (1.3 g/L),
respectively. This study revealed that sodium acetate and glycerol produced the greatest
improvements in biomass, total carotenoids, and astaxanthin accumulation under nitrogen-
depletion conditions. Furthermore, we intend to use a unique open–closed hybrid model
pond system to explore astaxanthin overproduction in mass cultures of H. lacustris and
evaluate the effects of various organic carbon sources. We will use the findings to optimize
the conditions for the industrial production of astaxanthin.
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