A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays
Abstract
:1. Introduction
2. The Hypotheses
2.1. Paper-Based Adsorbents as Potential Microbial Concentration Media from Human Urine Samples
2.2. Evaluation of the Hypotheses: Tuning the Hydrophobicity of Paper Surfaces for Preconcentrating the Microorganisms from Urine Samples
2.3. Evaluation of the Hypotheses: Does Preconcentrating the Microorganisms from Urine Samples Facilitate the Accuracy of LAMP and PCR?
3. LAMP Limitations
4. Consequence of the Hypotheses and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- McLellan, L.K.; Hunstad, D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol. Med. 2016, 22, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Hasandka, A.; Singh, A.R.; Prabhu, A.; Singhal, H.R.; Nandagopal, M.S.G.; Mani, N.K. Paper and Thread as Media for the Frugal Detection of Urinary Tract Infections (UTIs). Anal. Bioanal. Chem. 2022, 414, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Adrover-Jaume, C.; Rojo-Molinero, E.; Clemente, A.; Russell, S.M.; Arranz, J.; Oliver, A.; De La Rica, R. Mobile Origami Immunosensors for the Rapid Detection of Urinary Tract Infections. Analyst 2020, 145, 7916–7921. [Google Scholar] [CrossRef] [PubMed]
- Simmering, J.E.; Tang, F.; Cavanaugh, J.E.; Polgreen, L.A.; Polgreen, P.M. The Increase in Hospitalizations for Urinary Tract Infections and the Associated Costs in the United States, 1998–2011. Open Forum Infect. Dis. 2017, 4, ofw281. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef]
- Marcus, N.; Ashkenazi, S.; Yaari, A.; Samra, Z.; Livni, G. Non-Escherichia coli versus Escherichia coli Community-Acquired Urinary Tract Infections in Children Hospitalized in a Tertiary Center: Relative Frequency, Risk Factors, Antimicrobial Resistance and Outcome. Pediatr. Infect. Dis. J. 2005, 24, 581–585. [Google Scholar] [CrossRef]
- Sabih, A.; Leslie, S.W. Complicated Urinary Tract Infections; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Torres-Sangiao, E.; Lamas Rodriguez, B.; Cea Pájaro, M.; Carracedo Montero, R.; Parajó Pazos, N.; García-Riestra, C. Direct Urine Resistance Detection Using VITEK 2. Antibiotics 2022, 11, 663. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, L.; Zhang, W.; Liao, K.; Zhang, S.; Zhang, Z.; Ma, X.; Chen, J.; Zhang, X.; Qu, P.; et al. Direct Detection and Identification of Bacterial Pathogens from Urine with Optimized Specimen Processing and Enhanced Testing Algorithm. J. Clin. Microbiol. 2017, 55, 1488–1495. [Google Scholar] [CrossRef]
- Sher, M.; Zhuang, R.; Demirci, U.; Asghar, W. Paper-Based Analytical Devices for Clinical Diagnosis: Recent Advances in the Fabrication Techniques and Sensing Mechanisms. Expert Rev. Mol. Diagn. 2017, 17, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Sudarsan, S.; Prabhu, A.; Prasad, D.; Mani, N.K. DNA Compaction Enhances the Sensitivity of Fluorescence-Based Nucleic Acid Assays: A Game Changer in Point of Care Sensors? Analyst 2023, 148, 2295–2307. [Google Scholar] [CrossRef] [PubMed]
- Kelkar, N.; Prabhu, A.; Prabhu, A.; Nandagopal, M.G.; Mani, N.K. Sensing of Body Fluid Hormones Using Paper-Based Analytical Devices. Microchem. J. 2022, 174, 107069. [Google Scholar] [CrossRef]
- Hasandka, A.; Prabhu, A.; Prabhu, A.; Singhal, H.R.; Nandagopal, M.S.G.; Shenoy, R.; Mani, N.K. “Scratch It out”: Carbon Copy Based Paper Devices for Microbial Assays and Liver Disease Diagnosis. Anal. Methods 2021, 13, 3172–3180. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.; Singhal, H.; Giri Nandagopal, M.S.; Kulal, R.; Peralam Yegneswaran, P.; Mani, N.K. Knitting Thread Devices: Detecting Candida albicans Using Napkins and Tampons. ACS Omega 2021, 6, 12667–12675. [Google Scholar] [CrossRef] [PubMed]
- Singhal, H.R.; Prabhu, A.; Giri Nandagopal, M.S.; Dheivasigamani, T.; Mani, N.K. One-Dollar Microfluidic Paper-Based Analytical Devices: Do-It-Yourself Approaches. Microchem. J. 2021, 165, 106126. [Google Scholar] [CrossRef]
- Prabhu, A.; Nandagopal, M.S.G.; Peralam Yegneswaran, P.; Prabhu, V.; Verma, U.; Mani, N.K. Thread Integrated Smart-Phone Imaging Facilitates Early Turning Point Colorimetric Assay for Microbes. RSC Adv. 2020, 10, 26853–26861. [Google Scholar] [CrossRef]
- Prabhu, A.; Giri Nandagopal, M.S.; Peralam Yegneswaran, P.; Singhal, H.R.; Mani, N.K. Inkjet Printing of Paraffin on Paper Allows Low-Cost Point-of-Care Diagnostics for Pathogenic Fungi. Cellulose 2020, 27, 7691–7701. [Google Scholar] [CrossRef]
- Mani, N.K.; Prabhu, A.; Biswas, S.K.; Chakraborty, S. Fabricating Paper Based Devices Using Correction Pens. Sci. Rep. 2019, 9, 1752. [Google Scholar] [CrossRef]
- Ray, R.; Goyal, A.; Prabhu, A.; Parekkh, S.; Maddasani, S.; Mani, N.K. Paper-Based Dots and Smartphone for Detecting Counterfeit Country Eggs. Food Chem. 2023, 403, 134484. [Google Scholar] [CrossRef]
- Ray, R.; Noronha, C.; Prabhu, A.; Mani, N.K. Latex-Based Paper Devices with Super Solvent Resistance for On-the-Spot Detection of Metanil Yellow in Food Samples. Food Anal. Methods 2022, 15, 2664–2674. [Google Scholar] [CrossRef]
- Ray, R.; Prabhu, A.; Prasad, D.; Garlapati, V.K.; Aminabhavi, T.M.; Mani, N.K.; Simal-Gandara, J. Paper-Based Microfluidic Devices for Food Adulterants: Cost-Effective Technological Monitoring Systems. Food Chem. 2022, 390, 133173. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Balhoff, J.B.; Landwehr, G.M.; Rahman, S.M.; Vaithiyanathan, M.; Melvin, A.T. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int. J. Mol. Sci. 2018, 19, 2731. [Google Scholar] [CrossRef]
- Bhattarai, R.K.; Pudasaini, S.; Sah, M.; Neupane, B.B.; Giri, B. Handmade Paper as a Paper Analytical Device for Determining the Quality of an Antidiabetic Drug. ACS Omega 2022, 7, 14074–14081. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef]
- St John, A.; Price, C.P. Existing and Emerging Technologies for Point-of-Care Testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-Mediated Isothermal Amplification (LAMP): Principle, Features, and Future Prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Özay, B.; McCalla, S.E. A Review of Reaction Enhancement Strategies for Isothermal Nucleic Acid Amplification Reactions. Sens. Actuators Rep. 2021, 3, 100033. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.-E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface Characteristics Influencing Bacterial Adhesion to Polymeric Substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef]
- Saito, Y.; Nakagami, K. Chapter 1—Sample Preparation for the Analysis of Drugs in Biological Fluids. In Methods of Therapeutic Drug Monitoring Including Pharmacogenetics; Hempel, G., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2020; Volume 7, pp. 1–13. ISSN 1567-7192. [Google Scholar]
- Hagarová, I. Cloud Point Extraction Utilizable for Separation and Preconcentration of (Ultra)Trace Elements in Biological Fluids before Their Determination by Spectrometric Methods: A Brief Review. Chem. Pap. 2017, 71, 869–879. [Google Scholar] [CrossRef]
- Chinnappan, R.; Ramadan, Q.; Zourob, M. Isolation and Detection of Exosomal Mir210 Using Carbon Nanomaterial-Coated Magnetic Beads. J. Funct. Biomater. 2023, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Chinnappan, R.; Ramadan, Q.; Zourob, M. An Integrated Lab-on-a-Chip Platform for Pre-Concentration and Detection of Colorectal Cancer Exosomes Using Anti-CD63 Aptamer as a Recognition Element. Biosens. Bioelectron. 2023, 220, 114856. [Google Scholar] [CrossRef] [PubMed]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed]
- Ridley, J.W. Metabolic Origins of Urine and Other Body Fluids BT. In Fundamentals of the Study of Urine and Body Fluids; Ridley, J.W., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 45–60. ISBN 978-3-319-78417-5. [Google Scholar]
- Zuo, Y.; Yang, Y.; Zhu, Z.; He, W.; Aydin, Z. Determination of Uric Acid and Creatinine in Human Urine Using Hydrophilic Interaction Chromatography. Talanta 2011, 83, 1707–1710. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, J.; Sankey, O.F.; Schmidt, K.E.; Page, J.B. Chemical Reactions of Ammonia with Polar and Non-Polar Nitride Semiconductor Surfaces. Surf. Sci. 1999, 427–428, 298–303. [Google Scholar] [CrossRef]
- Lu, H.D.; Yang, S.S.; Wilson, B.K.; McManus, S.A.; Chen, C.V.H.H.; Prud’homme, R.K. Nanoparticle Targeting of Gram-Positive and Gram-Negative Bacteria for Magnetic-Based Separations of Bacterial Pathogens. Appl. Nanosci. 2017, 7, 83–93. [Google Scholar] [CrossRef]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D. V Bio-Mimicking Nano and Micro-Structured Surface Fabrication for Antibacterial Properties in Medical Implants. J. Nanobiotechnol. 2017, 15, 64. [Google Scholar] [CrossRef]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial Cell Attachment, the Beginning of a Biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef]
- Gottenbos, B.; Van Der Mei, H.C.; Busscher, H.J.; Grijpma, D.W.; Feijen, J. Initial Adhesion and Surface Growth of Pseudomonas Aeruginosa on Negatively and Positively Charged Poly(Methacrylates). J. Mater. Sci. Mater. Med. 1999, 10, 853–855. [Google Scholar] [CrossRef]
- Yoda, I.; Koseki, H.; Tomita, M.; Shida, T.; Horiuchi, H.; Sakoda, H.; Osaki, M. Effect of Surface Roughness of Biomaterials on Staphylococcus Epidermidis Adhesion. BMC Microbiol. 2014, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- James, G.A.; Boegli, L.; Hancock, J.; Bowersock, L.; Parker, A.; Kinney, B.M. Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials. Aesthetic Plast. Surg. 2019, 43, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Kolewe, K.W.; Peyton, S.R.; Schiffman, J.D. Fewer Bacteria Adhere to Softer Hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 19562–19569. [Google Scholar] [CrossRef] [PubMed]
- Zita, A.; Hermansson, M. Determination of Bacterial Cell Surface Hydrophobicity of Single Cells in Cultures and in Wastewater in Situ. FEMS Microbiol. Lett. 1997, 152, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Krasowska, A.; Sigler, K. How Microorganisms Use Hydrophobicity and What Does This Mean for Human Needs? Front. Cell. Infect. Microbiol. 2014, 4, 112. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.K.; Yegin, Y.; Yang, F.; Zhang, M.; Li, J.; Huang, S.; Verkhoturov, S.V.; Schweikert, E.A.; Perez-Lewis, K.; Scholar, E.A.; et al. The Influence of Surface Chemistry on the Kinetics and Thermodynamics of Bacterial Adhesion. Sci. Rep. 2018, 8, 17247. [Google Scholar] [CrossRef] [PubMed]
- Tegoulia, V.A.; Cooper, S.L. Staphylococcus aureus Adhesion to Self-Assembled Monolayers: Effect of Surface Chemistry and Fibrinogen Presence. Colloids Surf. B Biointerfaces 2002, 24, 217–228. [Google Scholar] [CrossRef]
- Kim, Y.; Jung, K.; Chang, J.; Kwak, T.; Lim, Y.; Kim, S.; Na, J.; Lee, J.; Choi, I.; Lee, L.P.; et al. Active Surface Hydrophobicity Switching and Dynamic Interfacial Trapping of Microbial Cells by Metal Nanoparticles for Preconcentration and In-Plane Optical Detection. Nano Lett. 2019, 19, 7449–7456. [Google Scholar] [CrossRef]
- Mi, F.; Hu, C.; Wang, Y.; Wang, L.; Peng, F.; Geng, P.; Guan, M. Recent Advancements in Microfluidic Chip Biosensor Detection of Foodborne Pathogenic Bacteria: A Review. Anal. Bioanal. Chem. 2022, 414, 2883–2902. [Google Scholar] [CrossRef]
- Hizal, F.; Rungraeng, N.; Lee, J.; Jun, S.; Busscher, H.J.; van der Mei, H.C.; Choi, C.-H. Nanoengineered Superhydrophobic Surfaces of Aluminum with Extremely Low Bacterial Adhesivity. ACS Appl. Mater. Interfaces 2017, 9, 12118–12129. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Gulbins, E.; Da Silva, M. Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3179–3184. ISBN 978-3-540-77587-4. [Google Scholar]
- Wosten, H.A.B.; De Vries, O.M.H.; Wessels, J.G.H. Interfacial Self-Assembly of a Fungal Hydrophobin into a Hydrophobic Rodlet Layer. Plant Cell 1993, 5, 1567–1574. [Google Scholar] [CrossRef] [PubMed]
- Bayry, J.; Aimanianda, V.; Guijarro, J.I.; Sunde, M.; Latgé, J.-P. Hydrophobins–Unique Fungal Proteins. PLoS Pathog. 2012, 8, e1002700. [Google Scholar] [CrossRef] [PubMed]
- Masuoka, J.; Hazen, K.C. Cell Wall Protein Mannosylation Determines Candida Albicans Cell Surface Hydrophobicity. Microbiology 1997, 143 Pt 9, 3015–3021. [Google Scholar] [CrossRef] [PubMed]
- Farniya, F.; Jamalli, A.; Dadgar, T. Physicochemical Surface Characteristics in Different Pathogenic Bacteria. Cogent Biol. 2019, 5, 1638572. [Google Scholar] [CrossRef]
- Meno, Y.; Amako, K. The Surface Hydrophobicity and Avirulent Character of an Encapsulated Strain of Klebsiella pneumoniae. Microbiol. Immunol. 1991, 35, 841–848. [Google Scholar] [CrossRef]
- Maikranz, E.; Spengler, C.; Thewes, N.; Thewes, A.; Nolle, F.; Jung, P.; Bischoff, M.; Santen, L.; Jacobs, K. Different Binding Mechanisms of: Staphylococcus aureus to Hydrophobic and Hydrophilic Surfaces. Nanoscale 2020, 12, 19267–19275. [Google Scholar] [CrossRef] [PubMed]
- Reifsteck, F.; Wee, S.; Wilkinson, B.J. Hydrophobicity-Hydrophilicity of Staphylococci. J. Med. Microbiol. 1987, 24, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Ellepola, A.N.B.; Samaranayake, L.P. Investigative Methods for Studying the Adhesion and Cell Surface Hydrophobicity of Candida Species: An Overview. Microb. Ecol. Health Dis. 2001, 13, 46–54. [Google Scholar] [CrossRef]
- Verhorstert, K.W.; Guler, Z.; de Boer, L.; Riool, M.; Roovers, J.-P.W.; Zaat, S.A. In Vitro Bacterial Adhesion and Biofilm Formation on Fully Absorbable Poly-4-Hydroxybutyrate and Nonabsorbable Polypropylene Pelvic Floor Implants. ACS Appl. Mater. Interfaces 2020, 12, 53646–53653. [Google Scholar] [CrossRef]
- Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The Influence of Surface Texture and Wettability on Initial Bacterial Adhesion on Titanium and Zirconium Oxide Dental Implants. Int. J. Implant Dent. 2017, 3, 32. [Google Scholar] [CrossRef]
- Klotz, S.A.; Drutz, D.J.; Zajic, J.E. Factors Governing Adherence of Candida Species to Plastic Surfaces. Infect. Immun. 1985, 50, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Salerno, M.B.; Logan, B.E.; Velegol, D. Importance of Molecular Details in Predicting Bacterial Adhesion to Hydrophobic Surfaces. Langmuir 2004, 20, 10625–10629. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.T.; Jung, S.K.; Kim, D.-E.; Park, C.Y.; Lee, S.-Y. Wettability Control of Paper through Substitution between the Hydroxyl Group and Carbon Elements Using Argon-Carbon Plasma Treatment. Vacuum 2022, 205, 111398. [Google Scholar] [CrossRef]
- Modaressi, H.; Garnier, G. Mechanism of Wetting and Absorption of Water Droplets on Sized Paper: Effects of Chemical and Physical Heterogeneity. Langmuir 2002, 18, 642–649. [Google Scholar] [CrossRef]
- Wen, Q.; Guo, F.; Yang, F.; Guo, Z. Green Fabrication of Coloured Superhydrophobic Paper from Native Cotton Cellulose. J. Colloid Interface Sci. 2017, 497, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Baidya, A.; Ganayee, M.A.; Jakka Ravindran, S.; Tam, K.C.; Das, S.K.; Ras, R.H.A.; Pradeep, T. Organic Solvent-Free Fabrication of Durable and Multifunctional Superhydrophobic Paper from Waterborne Fluorinated Cellulose Nanofiber Building Blocks. Acs Nano 2017, 11, 11091–11099. [Google Scholar] [CrossRef] [PubMed]
- Balu, B.; Kim, J.S.; Breedveld, V.; Hess, D.W. Tunability of the Adhesion of Water Drops on a Superhydrophobic Paper Surface via Selective Plasma Etching. J. Adhes. Sci. Technol. 2009, 23, 361–380. [Google Scholar] [CrossRef]
- Hu, Z.; Zen, X.; Gong, J.; Deng, Y. Water Resistance Improvement of Paper by Superhydrophobic Modification with Microsized CaCO3 and Fatty Acid Coating. Colloids Surf. A Physicochem. Eng. Asp. 2009, 351, 65–70. [Google Scholar] [CrossRef]
- Werner, O.; Quan, C.; Turner, C.; Pettersson, B.; Wågberg, L. Properties of Superhydrophobic Paper Treated with Rapid Expansion of Supercritical CO2 Containing a Crystallizing Wax. Cellulose 2010, 17, 187–198. [Google Scholar] [CrossRef]
- Yang, H.; Deng, Y. Preparation and Physical Properties of Superhydrophobic Papers. J. Colloid Interface Sci. 2008, 325, 588–593. [Google Scholar] [CrossRef]
- Arbatan, T.; Zhang, L.; Fang, X.-Y.; Shen, W. Cellulose Nanofibers as Binder for Fabrication of Superhydrophobic Paper. Chem. Eng. J. 2012, 210, 74–79. [Google Scholar] [CrossRef]
- Carlmark, A.; Malmström, E.E. ATRP Grafting from Cellulose Fibers to Create Block-Copolymer Grafts. Biomacromolecules 2003, 4, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Munteanu, R.-E.; Tițoiu, A.-M.; Petcu, I.-C.; Cernat, I.-C.; Leancu, C.; Gheorghiu, M.; Gheorghiu, E. Direct, Rapid Detection of Pathogens from Urine Samples. Materials 2022, 15, 7640. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.; Melnick, J.L.; Longoria, C.J. Colorimetric Method for Rapid Determination of Bacteriuria. J. Clin. Microbiol. 1981, 14, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Cui, Y.; Cai, Z.; Li, L. Applications of Smartphone-Based Colorimetric Biosensors. Biosens. Bioelectron. X 2022, 11, 100173. [Google Scholar] [CrossRef]
- Trieu, P.T.; Lee, N.Y. Paper-Based All-in-One Origami Microdevice for Nucleic Acid Amplification Testing for Rapid Colorimetric Identification of Live Cells for Point-of-Care Testing. Anal. Chem. 2019, 91, 11013–11022. [Google Scholar] [CrossRef]
- Xu, G.; Nolder, D.; Reboud, J.; Oguike, M.C.; van Schalkwyk, D.A.; Sutherland, C.J.; Cooper, J.M. Paper-Origami-Based Multiplexed Malaria Diagnostics from Whole Blood. Angew. Chem. Int. Ed. 2016, 55, 15250–15253. [Google Scholar] [CrossRef]
Sl. No | Type of Pathogen | Name of Pathogen | Favorable Surface | References |
---|---|---|---|---|
1 | Gram negative | E. coli | Hydrophobic | [58] |
2 | Gram negative | Klebsiella pneumoniae | Hydrophobic | [59] |
3 | Gram negative | Pseudomonas aeruginosa | Hydrophobic | [58] |
4 | Gram negative | Proteus mirabilis | Hydrophobic | |
5 | Gram positive | Staphylococcus aureus | Hydrophobic and Hydrophilic | [50,60,61] |
6 | Gram positive | Listeria monocytogenes | Hydrophobic | [58] |
7 | Yeast | Candida albicans | Hydrophobic | [62] |
Sl. No | Hydrophobic Material | Pathogen | Detection Method | References |
---|---|---|---|---|
1 | Polymeric substrate film | S. aureus and E. coli | Fluorescence assay with green fluorescent protein (GFP) and bright field microscopy | [31] |
2 | Knitted polypropylene (PP) and poly-4-hydroxybutyrate (P4HB) | S. aureus and E. coli | Scanning electron microscopy (SEM) | [63] |
3 | Titanium dioxide (TiO2) surface | S. epidermidis | Fluorescence | [64] |
4 | Plastic surface | C. albicans | Hemacytometer measurement | [65] |
5 | Silane surface | Two strains of E. coli, JM109 and D21 and two strains of Burkholderia cepacia, G4 and Env435 | Column adhesion tests | [66] |
6 | Hydrophobic Steel Surface | E. coli | Scanning electron microscopy (SEM) | [55] |
Sl. No | Microorganism | Surface Material | Influence on Adhesion and Biofilm Formation | References |
---|---|---|---|---|
1 | E. coli | Sheets of polyethylene modified by RIGP | Higher bacterial adhesion on positively charged substance. Dense, homogenous, and uniform biofilm formed. | [30] |
2 | E. coli | Layer by layer deposit of cationic polyvinylamine/anionic cellulose nanofibril | Bacterial adhesion and viability increased with increase in surface charge | [30] |
3 | S. aureus and E. coli | Polyethylenimine multilayers | Shown to reduce the bacterial adhesion in case of negatively charged surfaces | [30] |
4 | S. aureus and E. coli | Gold coated plates with thiol layers | Increases bacterial adhesion as well as biofilm thickness for surfaces, which are hydrophilic and positively charged | [30] |
5 | Staphylococcus mutans | Chimaeric peptide-mediated nanocomplexes of carboxymethyl chitosan or amorphous calcium phosphate | Shows reduced bacterial adhesion for positively charged substances | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uttam, I.; Sudarsan, S.; Ray, R.; Chinnappan, R.; Yaqinuddin, A.; Al-Kattan, K.; Mani, N.K. A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life 2024, 14, 38. https://doi.org/10.3390/life14010038
Uttam I, Sudarsan S, Ray R, Chinnappan R, Yaqinuddin A, Al-Kattan K, Mani NK. A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life. 2024; 14(1):38. https://doi.org/10.3390/life14010038
Chicago/Turabian StyleUttam, Isha, Sujesh Sudarsan, Rohitraj Ray, Raja Chinnappan, Ahmed Yaqinuddin, Khaled Al-Kattan, and Naresh Kumar Mani. 2024. "A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays" Life 14, no. 1: 38. https://doi.org/10.3390/life14010038
APA StyleUttam, I., Sudarsan, S., Ray, R., Chinnappan, R., Yaqinuddin, A., Al-Kattan, K., & Mani, N. K. (2024). A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life, 14(1), 38. https://doi.org/10.3390/life14010038