Light-Chain Amyloidosis: The Great Impostor
Abstract
:1. Introduction
2. Historical Background
- Q1: When was the term amyloid coined?
- Q2: When was amyloid linked to plasma cell disorders?
- Q3: When was Congo Red baptized as the holy grail of amyloid detection?
- Q4: Does Congo Red come all the way from Congo?
- Q5: When was the immunoglobulin light chain linked with amyloidosis?
3. Disease Manifestation
- Q6: What is the most commonly affected organ in AL amyloidosis?
- The electrocardiogram shows diffuse low voltage QRS (<5 mm height), QRS deviation, LBBBs, and pseudo-infarction.
- The echocardiography test reveals biventricular hypertrophy, interventricular septal hypertrophy, biatrial dilatation, decreased longitudinal strain in the mid and basal wall with relative sparing of apical function.
- NTproBNP is the most sensitive marker (100% sensitivity) for cardiac involvement in AL amyloidosis and constitutes an important factor in survival and prognosis [17].
- Cardiovascular magnetic resonance (CMR) imaging with late gadolinium enhancement (LGE) shows circumferential subendocardial LGE in AL amyloidosis. It is used for the diagnosis of cardiac AL amyloidosis but also as a prognostic tool [18].
- Endomyocardial biopsy detects and recognizes of the type of amyloid with high accuracy. When there is suspicion of cardiac amyloidosis, the endomyocardium should be biopsied rather than peripheral organs [19].
- Myocardial PET/CT shows enhancement of the radiotracer (technetium) due to the amyloid binding; currently, it is only used as a research tool [16].
- Cardiac MRI is used mainly for prognostic and monitoring purposes. It shows a diffuse decrease in the T1 and T2 signal intensity of myocardium. Moreover, myocardial native T1 and T2 are elevated. T2 elevation is associated with worse prognosis.
- Q7: How does AL amyloidosis affect the kidneys?
- Q8: Could a gastroenterologist be the first doctor to suspect AL amyloidosis?
- Q9: What other symptoms can a patient with AL amyloidosis demonstrate?
4. Diagnostic Procedures and Differential Diagnosis
- Q10: What is the diagnostic algorithm?
- Q11: Is AL amyloidosis the only form of amyloidosis?
- Wild-type ATTR amyloidosis (ATTRwt), an age-related amyloidosis, caused by wild-type transthyretin deposition in the myocardium without immunoglobulin light chains [36].
- Hereditary amyloidosis can be divided into:
- Hereditary amyloid transthyretin amyloidosis (ATTRv) caused by systemic deposition of mutated form of transthyretin (TTR) amyloid fibrils inherited as an autosomal dominant trait. The main ATTRv phenotypes include ATTR cardiac amyloidosis, ATTR leptomeningeal/CNS amyloidosis, and ATTR amyloidosis polyneuropathy [37].
- Non-ATTR hereditary amyloidosis consists of other inherited gene mutations (apolipoprotein AI and AII, fibrinogen Aa, lysozyme, gelsolin, and cystatin C)
- AA amyloidosis: this is related to a chronic inflammatory condition and is characterized by the extracellular deposition of fibrils derived from the serum amyloid A (SAA) protein [38].
- Q12: What is the role of Tc-99m scintigraphy in the diagnosis of amyloidosis?
- Q13: What is the diagnostic approach for distinguishing ATTR and AL amyloidosis?
- Q14: How is AL amyloidosis related to other plasma cell disorders?
- Q15: Are there cases of systemic monoclonal immunoglobulin deposition disease (MIDD) that are not AL amyloidosis?
5. Therapeutic Interventions
- Q16: How are the patients risk-stratified?
- Q17: What is the aim of the therapy?
- Q18: How is response defined?
- Complete response (CR), when serum and urine immunofixation is negative with normalized ratio of FLC;
- Very good partial response (VGPR), when the difference of dFLC is <40 mg/L;
- Partial response (PR), when dFLC are decreased by 50%;
- No response, when none of the above is achieved.
- Q19: What is the current standard of care?
- Q20. What is supportive therapy in AL amyloidosis?
6. Novel Therapies
- Q21. Are there antibodies that target amyloid deposits?
- Birtamimab (NEOD001) is humanized monoclonal antibody that clears the deposited amyloid fibrils by phagocytosis. It interacts with cryptic epitopes that are exposed on misfolded molecules and clears the amyloid from the organs and the bloodstream. A post-hoc analysis from the phase III VITAL showed increased OS for patients with advanced AL amyloidosis. An ongoing double-blind, phase III study, AFFIRM-AL, was designed to confirm the finding of VITAL [57].
- Anselamimab (11-1F4) is also a monoclonal antibody that binds to a conformational epitope in the N-terminal of both κ- and λ-amyloid deposits in the organs. Phase 1a/1b study data showed that anselamimab is well tolerated and could improve organ function, especially of the heart [58]. Moreover, there two ongoing randomized phase 3 studies of anselamimab combined with standard-of-care therapy in advanced AL amyloidosis (NCT04512235, NCT04504825) that could alter the treatment landscape [59].
- Q22. Could antibody–drug conjugates be used in treatment amyloidosis?
- Q23. Will CAR-T be the answer for Amyloidosis?
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sabinot, A.; Ghetti, G.; Pradelli, L.; Bellucci, S.; Lausi, A.; Palladini, G. State-of-the-Art Review on AL Amyloidosis in Western Countries: Epidemiology, Health Economics, Risk Assessment and Therapeutic Management of a Rare Disease. Blood Rev. 2023, 59, 101040. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A. Amyloidosis: A Convoluted Story. Br. J. Haematol. 2001, 114, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Wilks, S. Report on Lardaceous Disease. Guys Hosp. Rep. 1865, 11, 45–55. [Google Scholar]
- Doyle, L. Lardaceous Disease: Some Early Reports by British Authors (1722–1879). J. R. Soc. Med. 1988, 81, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Weber, H. Mollities Ossium, Doubtful Whether Carcinomatous or Syphilitic. Trans. Pathol. Soc. Lond. 1867, 18, 206–210. [Google Scholar]
- Bennhold, H. Specific Staining of Amyloid by Congo Red [German]. Munch. Med. Wochenschr. 1922, 69, 1537–1538. [Google Scholar]
- Yakupova, E.I.; Bobyleva, L.G.; Vikhlyantsev, I.M.; Bobylev, A.G. Congo Red and Amyloids: History and Relationship. Biosci. Rep. 2019, 39, BSR20181415. [Google Scholar] [CrossRef]
- Huang, T.H.; Yang, D.S.; Fraser, P.E.; Chakrabartty, A. Alternate Aggregation Pathways of the Alzheimer Beta-Amyloid Peptide. An in Vitro Model of Preamyloid. J. Biol. Chem. 2000, 275, 36436–36440. [Google Scholar] [CrossRef]
- Steensma, D.P. “Congo” Red: Out of Africa? Arch. Pathol. Lab. Med. 2001, 125, 250–252. [Google Scholar] [CrossRef]
- Magnus-Levy, A. Multiple Myelome. Acta Med. Scand. 1938, 95, 217–280. [Google Scholar] [CrossRef]
- Kyle, R.A.; Bayrd, E.D. “Primary” Systemic Amyloidosis and Myeloma. Discussion of Relationship and Review of 81 Cases. Arch. Intern. Med. 1961, 107, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Glenner, G.G.; Terry, W.; Harada, M.; Isersky, C.; Page, D. Amyloid Fibril Proteins: Proof of Homology with Immunoglobulin Light Chains by Sequence Analyses. Science 1971, 172, 1150–1151. [Google Scholar] [CrossRef] [PubMed]
- Glenner, G.G.; Ein, D.; Eanes, E.D.; Bladen, H.A.; Terry, W.; Page, D.L. Creation of “Amyloid” Fibrils from Bence Jones Proteins in Vitro. Science 1971, 174, 712–714. [Google Scholar] [CrossRef] [PubMed]
- Vaxman, I.; Gertz, M. When to Suspect a Diagnosis of Amyloidosis. Acta Haematol. 2020, 143, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Han, D.; Wei, S.; Wang, H.; Chen, L. Multiorgan Involvement by Amyloid Light Chain Amyloidosis. J. Int. Med. Res. 2019, 47, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, A.; Javed, A.; Jayakrishnan, T.T.; Brumbaugh, A.; Sandhu, A.; Hardman, B. AL Type Cardiac Amyloidosis: A Devastating Fatal Disease. J. Community Hosp. Intern. Med. Perspect. 2021, 11, 407–412. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; Choi, J.; Jeon, E.; Lee, J.E.; Min, J.H.; Choi, J.Y.; Kim, J.-S.; Kim, S.; Kim, K. Exploration of the Appropriate NT-Probnp Level for AL Amyloidosis Staging. Blood 2021, 138, 3777. [Google Scholar] [CrossRef]
- Dungu, J.; Whelan, C.J.; Gibbs, S.D.; Pinney, J.H.; Banypersad, S.M.; Venner, C.P.; Lachmann, H.J.; Wechalekar, A.; Gillmore, J.D.; Hawkins, P.N.; et al. Patterns of Late Gadolinium Enhancement in 94 Patients with AL or Transthyretin Cardiac Amyloidosis. J. Cardiovasc. Magn. Reson. 2012, 14, O87. [Google Scholar] [CrossRef]
- Oda, S.; Kidoh, M.; Nagayama, Y.; Takashio, S.; Usuku, H.; Ueda, M.; Yamashita, T.; Ando, Y.; Tsujita, K.; Yamashita, Y. Trends in Diagnostic Imaging of Cardiac Amyloidosis: Emerging Knowledge and Concepts. RadioGraphics 2020, 40, 961–981. [Google Scholar] [CrossRef]
- Kyle, R.A.; Greipp, P.R. Amyloidosis (AL). Clinical and Laboratory Features in 229 Cases. Mayo Clin. Proc. 1983, 58, 665–683. [Google Scholar]
- Kozlowski, P.; Montgomery, S.; Befekadu, R.; Hahn-Strömberg, V. The Risk of Renal Disease Is Increased in Lambda Myeloma with Bone Marrow Amyloid Deposits. J. Blood Med. 2017, 8, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ronco, P.; Aucouturier, P. Renal Involvement in AL Amyloidosis: The Facts, the Promise and the Hope. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.—Eur. Ren. Assoc. 2009, 24, 2967–2969. [Google Scholar] [CrossRef] [PubMed]
- Hayman, S.R.; Lacy, M.Q.; Kyle, R.A.; Gertz, M.A. Primary Systemic Amyloidosis: A Cause of Malabsorption Syndrome. Am. J. Med. 2001, 111, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Madsen, L.G.; Gimsing, P.; Schiødt, F.V. Primary (AL) Amyloidosis with Gastrointestinal Involvement. Scand. J. Gastroenterol. 2009, 44, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Higaki, S.; Nishiaki, M.; Mitani, N.; Yanai, H.; Tada, M.; Okita, K. 99mTc-HSA-D Scintigraphy in the Diagnosis of Protein-Losing Gastroenteropathy Due to Secondary Amyloidosis. J. Gastroenterol. 1997, 32, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Guirl, M.J.; Högenauer, C.; Santa Ana, C.A.; Porter, J.L.; Little, K.H.; Stone, M.J.; Fordtran, J.S. Rapid Intestinal Transit as a Primary Cause of Severe Chronic Diarrhea in Patients with Amyloidosis. Am. J. Gastroenterol. 2003, 98, 2219–2225. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-M.; Takahashi, N.; Miyabe, K.; Yoshida, M.; Abe, F.; Yamashita, T.; Nara, M.; Yoshioka, T.; Ohashi, K.; Goto, A.; et al. Immunoglobulin Light Chain Amyloidosis with Severe Liver Dysfunction Accompanied by Factor X Deficiency. Intern. Med. Tokyo Jpn. 2019, 58, 3039–3043. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Wechalekar, A.; Bird, J.; Cavenagh, J.; Hawkins, S.; Kazmi, M.; Lachmann, H.J.; Hawkins, P.N.; Pratt, G. BCSH Committee Guidelines on the Diagnosis and Investigation of AL Amyloidosis. Br. J. Haematol. 2015, 168, 207–218. [Google Scholar] [CrossRef]
- Al Hamed, R.; Bazarbachi, A.H.; Bazarbachi, A.; Malard, F.; Harousseau, J.-L.; Mohty, M. Comprehensive Review of AL Amyloidosis: Some Practical Recommendations. Blood Cancer J. 2021, 11, 97. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, L.; Hu, W.; Li, T.-F.; Liu, S. Case Report: One Case of Primary AL Amyloidosis Repeatedly Misdiagnosed as Scleroderma. Medicine 2017, 96, e8771. [Google Scholar] [CrossRef]
- Mohan, S.; Graziano, E.; Campbell, J.; Jafri, I.H. Unusual Case of Amyloidosis Presenting as a Jejunal Mass. BMJ Case Rep. 2021, 14, e240226. [Google Scholar] [CrossRef] [PubMed]
- Wisniowski, B.; Wechalekar, A. Confirming the Diagnosis of Amyloidosis. Acta Haematol. 2020, 143, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Khurana, R.; Uversky, V.N.; Nielsen, L.; Fink, A.L. Is Congo Red an Amyloid-Specific Dye? J. Biol. Chem. 2001, 276, 22715–22721. [Google Scholar] [CrossRef] [PubMed]
- Vrana, J.A.; Theis, J.D.; Dasari, S.; Mereuta, O.M.; Dispenzieri, A.; Zeldenrust, S.R.; Gertz, M.A.; Kurtin, P.J.; Grogg, K.L.; Dogan, A. Clinical Diagnosis and Typing of Systemic Amyloidosis in Subcutaneous Fat Aspirates by Mass Spectrometry-Based Proteomics. Haematologica 2014, 99, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amyloid Nomenclature 2022: Update, Novel Proteins, and Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022, 29, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Dispenzieri, A.; Magen, H.; Grogan, M.; Mauermann, M.; McPhail, E.D.; Kurtin, P.J.; Leung, N.; Buadi, F.K.; Dingli, D.; et al. Systemic Amyloidosis from A (AA) to T (ATTR): A Review. J. Intern. Med. 2021, 289, 268–292. [Google Scholar] [CrossRef] [PubMed]
- Dugo, K.; Bruno, F.; Sturiale, V.; Brancato, D.; Saccone, S.; Federico, C. Hereditary Transthyretin-Related Amyloidosis: Genetic Heterogeneity and Early Personalized Gene Therapy. Biomedicines 2022, 10, 2394. [Google Scholar] [CrossRef]
- Papa, R.; Lachmann, H.J. Secondary, AA, Amyloidosis. Rheum. Dis. Clin. N. Am. 2018, 44, 585–603. [Google Scholar] [CrossRef]
- Hotta, M.; Minamimoto, R.; Awaya, T.; Hiroe, M.; Okazaki, O.; Hiroi, Y. Radionuclide Imaging of Cardiac Amyloidosis and Sarcoidosis: Roles and Characteristics of Various Tracers. RadioGraphics 2020, 40, 2029–2041. [Google Scholar] [CrossRef]
- Briasoulis, A.; Bampatsias, D.; Papamichail, A.; Kuno, T.; Skoularigis, J.; Xanthopoulos, A.; Triposkiadis, F. Invasive and Non-Invasive Diagnostic Pathways in the Diagnosis of Cardiac Amyloidosis. J. Cardiovasc. Dev. Dis. 2023, 10, 256. [Google Scholar] [CrossRef]
- Dorbala, S.; Ando, Y.; Bokhari, S.; Dispenzieri, A.; Falk, R.H.; Ferrari, V.A.; Fontana, M.; Gheysens, O.; Gillmore, J.D.; Glaudemans, A.W.J.M.; et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Circ. Cardiovasc. Imaging 2021, 14, e000029. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Tamayo, R.; Krsnik, I.; Gómez-Bueno, M.; Garcia-Pavia, P.; Segovia-Cubero, J.; Huerta, A.; Salas, C.; Silvestre, R.Á.; Sánchez, A.; Manso, M.; et al. AL Amyloidosis and Multiple Myeloma: A Complex Scenario in Which Cardiac Involvement Remains the Key Prognostic Factor. Life 2023, 13, 1518. [Google Scholar] [CrossRef] [PubMed]
- Ardalan, M.-R. Light Chain Deposition Disease; There Are Reasons for Confusion. J. Ren. Inj. Prev. 2013, 2, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Rane, S.; Rana, S.; Mudrabettu, C.; Jha, V.; Joshi, K. Heavy-Chain Deposition Disease: A Morphological, Immunofluorescence and Ultrastructural Assessment. Clin. Kidney J. 2012, 5, 383–389. [Google Scholar] [CrossRef]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [CrossRef]
- Muchtar, E.; Dispenzieri, A.; Gertz, M.A.; Kumar, S.K.; Buadi, F.K.; Leung, N.; Lacy, M.Q.; Dingli, D.; Ailawadhi, S.; Bergsagel, P.L.; et al. Treatment of AL Amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement 2020 Update. Mayo Clin. Proc. 2021, 96, 1546–1577. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Merlini, G. Predicting Survival in Light Chain Amyloidosis. Haematologica 2019, 104, 1294–1296. [Google Scholar] [CrossRef]
- Sidiqi, M.H.; Aljama, M.A.; Buadi, F.K.; Warsame, R.M.; Lacy, M.Q.; Dispenzieri, A.; Dingli, D.; Gonsalves, W.I.; Kumar, S.; Kapoor, P.; et al. Stem Cell Transplantation for Light Chain Amyloidosis: Decreased Early Mortality Over Time. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 1323–1329. [Google Scholar] [CrossRef]
- Palladini, G.; Dispenzieri, A.; Gertz, M.A.; Kumar, S.; Wechalekar, A.; Hawkins, P.N.; Schönland, S.; Hegenbart, U.; Comenzo, R.; Kastritis, E.; et al. New Criteria for Response to Treatment in Immunoglobulin Light Chain Amyloidosis Based on Free Light Chain Measurement and Cardiac Biomarkers: Impact on Survival Outcomes. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 4541–4549. [Google Scholar] [CrossRef]
- Milani, P.; Cibeira, M.T. Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse. Hemato 2022, 3, 98–108. [Google Scholar] [CrossRef]
- Gertz, M.A.; Comenzo, R.; Falk, R.H.; Fermand, J.P.; Hazenberg, B.P.; Hawkins, P.N.; Merlini, G.; Moreau, P.; Ronco, P.; Sanchorawala, V.; et al. Definition of Organ Involvement and Treatment Response in Immunoglobulin Light Chain Amyloidosis (AL): A Consensus Opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 2005, 79, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Oliva, L.; Orfanelli, U.; Resnati, M.; Raimondi, A.; Orsi, A.; Milan, E.; Palladini, G.; Milani, P.; Cerruti, F.; Cascio, P.; et al. The Amyloidogenic Light Chain Is a Stressor That Sensitizes Plasma Cells to Proteasome Inhibitor Toxicity. Blood 2017, 129, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hájek, R.; Moreau, P.; Jaccard, A.; et al. Bortezomib, Melphalan, and Dexamethasone for Light-Chain Amyloidosis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3252–3260. [Google Scholar] [CrossRef]
- Wechalekar, A.D.; Cibeira, M.T.; Gibbs, S.D.; Jaccard, A.; Kumar, S.; Merlini, G.; Palladini, G.; Sanchorawala, V.; Schönland, S.; Venner, C.; et al. Guidelines for Non-Transplant Chemotherapy for Treatment of Systemic AL Amyloidosis: EHA-ISA Working Group. Amyloid 2023, 30, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Cibeira, M.T.; Ortiz-Pérez, J.T.; Quintana, L.F.; Fernádez de Larrea, C.; Tovar, N.; Bladé, J. Supportive Care in AL Amyloidosis. Acta Haematol. 2020, 143, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Results of the Phase 3 VITAL Study of NEOD001 (Birtamimab) Plus Standard of Care in Patients with Light Chain (AL) Amyloidosis Suggest Survival Benefit for Mayo Stage IV Patients—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S000649711861095X (accessed on 25 August 2023).
- Edwards, C.V.; Rao, N.; Bhutani, D.; Mapara, M.; Radhakrishnan, J.; Shames, S.; Maurer, M.S.; Leng, S.; Solomon, A.; Lentzsch, S.; et al. Phase 1a/b Study of Monoclonal Antibody CAEL-101 (11-1F4) in Patients with AL Amyloidosis. Blood 2021, 138, 2632–2641. [Google Scholar] [CrossRef]
- Bal, S.; Landau, H. AL Amyloidosis: Untangling New Therapies. Hematol. Am. Soc. Hematol. Educ. Program 2021, 2021, 682–688. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Dimopoulos, M.-A.; Jaccard, A.; Merlini, G.; Theodorakakou, F.; Fotiou, D.; Minnema, M.C.; Wechalekar, A.D.; Varghese, S.; et al. Efficacy and Safety of Belantamab Mafodotin Monotherapy in Patients with Relapsed or Refractory Light Chain Amyloidosis: A Phase 2 Study By the European Myeloma Network. Blood 2022, 140, 7294–7296. [Google Scholar] [CrossRef]
- Mauro, E.; Ferrer-Fàbrega, J.; Sauri, T.; Soler, A.; Cobo, A.; Burrel, M.; Iserte, G.; Forner, A. New Challenges in the Management of Cholangiocarcinoma: The Role of Liver Transplantation, Locoregional Therapies, and Systemic Therapy. Cancers 2023, 15, 1244. [Google Scholar] [CrossRef]
- BCMA-Directed CAR-T HBI0101 Demonstrates Safety and Efficacy in Patients with Light Chain Amyloidosis. Available online: https://www.cgtlive.com/view/bcma-directed-car-t-hbi0101-demonstrates-safety-efficacy-patients-light-chain-amyloidosis (accessed on 25 August 2023).
Noninvasive | Invasive |
---|---|
CBC | BM biopsy |
Serum biochemistries | Fat pad biopsy |
β2 microglobulin | Colonoscopy * |
Serum PEP | |
Urine PEP | |
Urine 24 h protein | |
FLC (serum and urine) | |
TnT and NTproBNP | |
ECG | |
EMG * Tc-99m scintigraphy |
Variables and Cutoffs | Stages |
---|---|
NT-proBNP, 1800 ng/L | Stage I: all markers below the cutoffs |
dFLC, 180 mg/L | Stage II: one marker below the cutoffs |
cTnT, 0.025 ng/mL | Stage III: two markers below the cutoffs |
(cTnl, 0.1 ng/mL or hs cTnT, 40 ng/L) | Stage IV: all markers above the cutoffs |
Kind | Value |
---|---|
Age | <70 years |
ECOG PS | 0–2 |
NT-proBNP | <5.000 ng/L |
Troponin | <0.06 ng/mL |
eGFR | >50 mL/min per 1.73 m2 |
NYHA class | <III |
Ejection fraction | >45% |
Systolic BP | >100 mmHg |
Bilirubin | <2 mg/dL |
DLCO | >50% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefani, G.; Kouvata, E.; Vassilopoulos, G. Light-Chain Amyloidosis: The Great Impostor. Life 2024, 14, 42. https://doi.org/10.3390/life14010042
Stefani G, Kouvata E, Vassilopoulos G. Light-Chain Amyloidosis: The Great Impostor. Life. 2024; 14(1):42. https://doi.org/10.3390/life14010042
Chicago/Turabian StyleStefani, Georgia, Evangelia Kouvata, and George Vassilopoulos. 2024. "Light-Chain Amyloidosis: The Great Impostor" Life 14, no. 1: 42. https://doi.org/10.3390/life14010042
APA StyleStefani, G., Kouvata, E., & Vassilopoulos, G. (2024). Light-Chain Amyloidosis: The Great Impostor. Life, 14(1), 42. https://doi.org/10.3390/life14010042