Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pink Bollworms
2.2. Screening of Antibiotics Associated with Cry1Ac Resistance
2.3. Experimental Design
2.4. Intestinal DNA Extraction and PCR Amplification
2.5. Illumina MiSeq Library Construction and Sequencing
2.6. Bioinformatic Analysis
3. Results
3.1. Screening of Antibiotics
3.2. Alpha Diversity Analysis
3.3. PCoA Analysis
3.4. Microbial Community Composition Analysis
3.5. LEfSe Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sridhar, J.; Chinna Babu Naik, V.; Ghodke, A.; Kranthi, S.; Kranthi, K.R.; Singh, B.P.; Choudhary, J.S.; Krishna, M.S.R. Population genetic structure of cotton pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) using mitochondrial cytochrome oxidase I (COI) gene sequences from India. Mitochondrial DNA Part A 2017, 28, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Henneberry, T.J.; Naranjo, S.E. Integrated management approaches for pink bollworm in the Southwestern United States. Integr. Pest. Manag. Rev. 1998, 3, 31–52. [Google Scholar] [CrossRef]
- Wu, K.M.; Lu, Y.H.; Feng, H.Q.; Jiang, Y.Y.; Zhao, J.Z. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 2008, 321, 1676–1678. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Huang, Y.; Wu, H.; Huang, M.; Cong, S.; Tabashnik, B.E.; Wu, K. Increased frequency of pink bollworm resistance to Bt toxin Cry1Ac in China. PLoS ONE 2012, 7, e29975. [Google Scholar] [CrossRef] [PubMed]
- Tabashnik, B.E.; Roush, R.T.; Earle, E.D.; Shelton, A.M. Resistance to Bt toxins. Science 2000, 287, 42. [Google Scholar] [CrossRef] [PubMed]
- Gunning, R.V.; Dang, H.T.; Kemp, F.C.; Nicholson, I.C.; Moores, G.D. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl. Environ. Microbiol. 2005, 71, 2558–2563. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Zhang, L.; Liang, G.; Li, X.; Wu, K. Involvement of nonbinding site proteinases in the development of resistance of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry1Ac. J. Econ. Entomol. 2013, 106, 2514–2521. [Google Scholar] [CrossRef]
- Maclntosh, S.C.; Kishore, G.M.; Perlak, F.J.; Marrone, P.G.; Stone, T.B.; Sims, S.R.; Fuchs, R.L. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J. Agric. Food Chem. 1990, 38, 1145–1152. [Google Scholar] [CrossRef]
- Bates, S.L.; Zhao, J.Z.; Roush, R.T.; Shelton, A.M. Insect resistance management in GM crops: Past, present and future. Nat. Biotechnol. 2005, 23, 57–62. [Google Scholar] [CrossRef]
- Pardo-Lopez, L.; Munoz-Garay, C.; Porta, H.; Rodriguez-Almazan, C.; Soberon, M.; Bravo, A. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 2009, 30, 589–595. [Google Scholar] [CrossRef]
- Carriere, Y.; Crickmore, N.; Tabashnik, B.E. Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 2015, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.; Moran, N.A. The gut microbiota of insects-diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Dillon, R.J.; Dillon, V.M. The gut bacteria of insects: Nonpathogenic interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef] [PubMed]
- Khaing, M.M.; Yang, X.M.; Zhao, M.; Zhang, W.N.; Wang, B.J.; Wei, J.Z.; Liang, G.M. Effects of antibiotics on biological activity of Cry1Ac in Bt-susceptible and Bt-resistant Helicoverpa armigera strains. J. Invertebr. Pathol. 2017, 151, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Visweshwar, R.; Sharma, H.C.; Akbar, S.M.D.; Sreeramulu, K. Elimination of gut microbes with antibiotics confers resistance to Bacillus thuringiensis toxin proteins in Helicoverpa armigera (Hubner). Appl. Biochem. Biotechnol. 2015, 177, 1621–1637. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.P.; Jia, Y.H.; Sun, Y.; Han, S.C.; Xia, X.F. Gut bacteria reduce the Bt susceptibility in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), by competing for niche and protecting the inner wall of gut. Acta Entomol. Sin. 2022, 65, 1645–1657. [Google Scholar]
- Hendriksma, H.P.; Küting, M.; Härtel, S.; Näther, A.; Dohrmann, A.B.; Steffan-Dewenter, I.; Tebbe, C.C. Effect of stacked insecticidal Cry proteins from maize pollen on nurse bees (Apis mellifera carnica) and their gut bacteria. PLoS ONE 2013, 8, e59589. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.L.; Stepien, T.A.; Blum, J.E.; Holt, J.F.; Labbe, N.H.; Rush, J.S.; Raffa, K.F.; Handelsman, J. From commensal to pathogen: Translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. mBio 2011, 2, e00065-11. [Google Scholar] [CrossRef]
- Chaitra, H.S.; Singh, A.; Pandiyan, K.; Kalia, V.K. Sex biased variance in the structural and functional diversity of the midgut bacterial community of last instar larvae of Pectinophora gossypiella (Lepidoptera: Gelechiidae). Microb. Ecol. 2022, 83, 1112–1122. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Hitch, T.C.A.; Chen, Y.; Creevey, C.J.; Guan, L.L. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 2019, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Wang, Q.; Cole, J.R.; Rosen, G.L. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS ONE 2012, 7, e32491. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
- Attarianfar, M.; Mikani, A.; Mehrabadi, M. The endocrine disruptor, fenoxycarb modulates gut immunity and gut bacteria titer in the cotton bollworm, Helicoverpa armigera. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 264, 109507. [Google Scholar] [CrossRef]
- Broderick, N.A.; Robinson, C.J.; McMahon, M.D.; Holt, J.; Handelsman, J.; Raffa, K.F. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera. BMC Biol. 2009, 7, 11. [Google Scholar] [CrossRef]
- Paramasiva, I.; Sharma, H.C.; Krishnayya, P.V. Antibiotics influence the toxicity of the delta endotoxins of Bacillus thuringiensis towards the cotton bollworm, Helicoverpa armigera. BMC Microbiol. 2014, 14, 200. [Google Scholar] [CrossRef]
- Patil, C.D.; Borase, H.P.; Salunke, B.K.; Patil, S.V. Alteration in Bacillus thuringiensis toxicity by curing gut flora: Novel approach for mosquito resistance management. Parasitol. Res. 2013, 112, 3283–3288. [Google Scholar] [CrossRef]
- Broderick, N.A.; Raffa, K.F.; Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 2006, 103, 15196–15199. [Google Scholar] [CrossRef] [PubMed]
- Deguenon, J.M.; Dhammi, A.; Ponnusamy, L.; Travanty, N.V.; Cave, G.; Lawrie, R.; Mott, D.; Reisig, D.; Kurtz, R.; Roe, R.M. Bacterial microbiota of field-collected Helicoverpa zea (Lepidoptera: Noctuidae) from transgenic Bt and non-Bt cotton. Microorganisms 2021, 9, 878. [Google Scholar] [CrossRef] [PubMed]
Treatments (Feeding with) | Survival Numbers |
---|---|
Artificial diet | 24 A |
Artificial diet and Cry1Ac | 18 BC |
Artificial diet and Gentamicin (480 μg/mL) | 24 A |
Artificial diet and Gentamicin (240 μg/mL) | 24 A |
Artificial diet and Gentamicin (120 μg/mL) | 24 A |
Artificial diet and Gentamicin (60 μg/mL) | 24 A |
Rifampicin (480 μg/mL), artificial diet and Cry1Ac | 16 CD |
Rifampicin (240 μg/mL), artificial diet and Cry1Ac | 19 ABC |
Rifampicin (120 μg/mL), artificial diet and Cry1Ac | 18 BC |
Rifampicin (60 μg/mL), artificial diet and Cry1Ac | 21 AB |
Gentamicin (480 μg/mL), artificial diet and Cry1Ac | 9 FG |
Gentamicin (240 μg/mL), artificial diet and Cry1Ac | 9 FG |
Gentamicin (120 μg/mL), artificial diet and Cry1Ac | 10 EFG |
Gentamicin (60 μg/mL), artificial diet and Cry1Ac | 10 EFG |
Ampicillin (480 μg/mL), artificial diet and Cry1Ac | 22 AB |
Ampicillin (240 μg/mL), artificial diet and Cry1Ac | 22 AB |
Ampicillin (120 μg/mL), artificial diet and Cry1Ac | 22 AB |
Ampicillin (60 μg/mL), artificial diet and Cry1Ac | 22 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.-B.; Hu, Y.-F.; Song, H.-J.; Cong, S.-B.; Wang, L. Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms. Life 2024, 14, 58. https://doi.org/10.3390/life14010058
Sun Z-B, Hu Y-F, Song H-J, Cong S-B, Wang L. Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms. Life. 2024; 14(1):58. https://doi.org/10.3390/life14010058
Chicago/Turabian StyleSun, Zhan-Bin, Ya-Feng Hu, Han-Jian Song, Sheng-Bo Cong, and Ling Wang. 2024. "Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms" Life 14, no. 1: 58. https://doi.org/10.3390/life14010058
APA StyleSun, Z. -B., Hu, Y. -F., Song, H. -J., Cong, S. -B., & Wang, L. (2024). Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms. Life, 14(1), 58. https://doi.org/10.3390/life14010058