Hunting the Cell Cycle Snark
Abstract
:1. Introduction
2. Orsay, France 1981–1983
3. Institut Jacques Monod, France 1983–1986
4. Leicester, UK 1986–1996
5. Rouen, France 1996–Present
6. Miscellaneous Research
7. Future Projects
8. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wikipedia. The Hunting of the Snark. Available online: https://en.wikipedia.org/wiki/The_Hunting_of_the_Snark (accessed on 17 April 2024).
- Kelly, R.M. Lewis Carroll; Twayne: Boston, MA, USA, 1990; p. 190. [Google Scholar]
- Sanchez-Rivas, C.; Levi-Meyrueis, C.; Lazard-Monier, F.; Schaeffer, P. Diploid state of phenotypically recombinant progeny arising after protoplast fusion in Bacillus subtilis. Mol. Gen. Genet. 1982, 188, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, V.; Hauck, Y.; Beloin, C.; Le Hegarat, F.; Hirschbein, L. Chromosomal inactivation of Bacillus subtilis exfusants: A prokaryotic model of epigenetic regulation. Biol. Chem. 1998, 379, 553–557. [Google Scholar]
- Zouine, M.; Beloin, C.; Ghelis, C.; Le Hegarat, F. The L17 ribosomal protein of Bacillus subtilis binds preferentially to curved DNA. Biochimie 2000, 82, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Autret, S.; Levine, A.; Vannier, F.; Fujita, Y.; Seror, S.J. The replication checkpoint control in Bacillus subtilis: Identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 1999, 31, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- Huisman, O.; D’Ari, R.; George, J. Inducible sfi dependent division inhibition in Escherichia coli. Mol. Gen. Genet. 1980, 177, 629–636. [Google Scholar] [CrossRef]
- Burton, P.; Holland, I.B. Two pathways of division inhibition in UV-irradiated E. coli. Mol. Gen. Genet. 1983, 190, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Takeda, Y.; Nishimura, A.; Suzuki, H.; Inouye, M.; Hirota, Y. Synthetic ColE1 plasmids carrying genes for cell division in Escherichia coli. Plasmid 1977, 1, 67–77. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Britton, R.; Geszvain, K.; Lupski, J.R. Conservation and evolution of the rpsU-dnaG-rpoD macromolecular synthesis operon in bacteria. Mol. Microbiol. 1993, 8, 343–355. [Google Scholar] [CrossRef]
- Norris, V.; Alliotte, T.; Jaffe, A.; D’Ari, R. DNA replication termination in Escherichia coli parB (a dnaG allele), parA, and gyrB mutants affected in DNA distribution. J. Bacteriol. 1986, 168, 494–504. [Google Scholar] [CrossRef]
- Jaffe, A.; D’Ari, R.; Norris, V. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J. Bacteriol. 1986, 165, 66–71. [Google Scholar] [CrossRef]
- Donachie, W.D. Relationship between cell size and time of initiation of DNA replication. Nature 1968, 219, 1077–1079. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, R.H.; Barth, P.T.; Collins, T. Control of DNA synthesis in bacteria. Symp. Soc. Gen. Microbiol. 1969, 19, 263–297. [Google Scholar]
- Jacob, F.; Brenner, S. On the regulation of DNA synthesis in bacteria: The hypothesis of the replicon. Comptes Rendus Hebd. Seances Acad. Sci. 1963, 256, 298–300. [Google Scholar]
- Nordstrom, K. The replicon theory 40 years: An EMBO workshop held in Villefranche sur Mer, France, 18–23 January 2003. Plasmid 2003, 49, 269–280. [Google Scholar] [CrossRef]
- Kohiyama, M.; Lanfrom, H.; Brenner, S.; Jacob, F. Modifications of Indispensable Functions in Thermosensitive Escherichia coli Mutants. on a Mutation Preventing Replication of the Bacterial Chromosome. Comptes Rendus Hebd. Seances Acad. Sci. 1963, 257, 1979–1981. [Google Scholar]
- Koch, A.L. The Surface Stress Theory: Non-Vitalism in Action. In Bacterial Growth and Form; Koch, A.L., Ed.; Springer: Dordrecht, The Netherlands, 2001; pp. 161–190. [Google Scholar]
- Foley, M.; Brass, J.M.; Birmingham, J.; Cook, W.R.; Garland, P.B.; Higgins, C.F.; Rothfield, L.I. Compartmentalization of the periplasm at cell division sites in Escherichia coli as shown by fluorescence photobleaching experiments. Mol. Microbiol. 1989, 3, 1329–1336. [Google Scholar] [CrossRef] [PubMed]
- Mulder, E.; Woldringh, C.L. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 1989, 171, 4303–4314. [Google Scholar] [CrossRef]
- Cook, W.R.; Rothfield, L.I. Nucleoid-independent identification of cell division sites in Escherichia coli. J. Bacteriol. 1999, 181, 1900–1905. [Google Scholar] [CrossRef]
- Taghbalout, A.; Rothfield, L. RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton. Proc. Natl. Acad. Sci. USA 2007, 104, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, N.H. A model of bacterial DNA segregation based upon helical geometry. J. Theor. Biol. 1985, 112, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Newman, E.B.; D’Ari, R.; Lin, R.T. The leucine-Lrp regulon in E. coli: A global response in search of a raison d’etre. Cell 1992, 68, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Kepes, F.; Kepes, A. Long-lasting synchrony of the division of enteric bacteria. Biochem. Biophys. Res. Commun. 1981, 99, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Marcaud, H.; Gabarro-Arpa, J.; Ehrlich, R.; Reiss, C. An algorithm for studying cooperative transitions in DNA. Nucleic Acids Res. 1986, 14, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y.; Ryter, A.; Jacob, F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb. Symp. Quant. Biol. 1968, 33, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Hansen, F.G.; Atlung, T. The DnaA Tale. Front. Microbiol. 2018, 9, 319. [Google Scholar] [CrossRef]
- Hughes, P.; Squali-Houssaini, F.; Forterre, P.; Kohiyama, M. In vitro replication of a dam methylated and non-methylated ori-C plasmid. J. Mol. Biol. 1984, 176, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J.; Kern, R.; Guha, S.; Landoulsi, A.; Fayet, O.; Malki, A.; Kohiyama, M. Parental strand recognition of the DNA replication origin by the outer membrane in Escherichia coli. EMBO J. 1994, 13, 4695–4703. [Google Scholar] [CrossRef]
- Dervyn, E.; Suski, C.; Daniel, R.; Bruand, C.; Chapuis, J.; Errington, J.; Janniere, L.; Ehrlich, S.D. Two essential DNA polymerases at the bacterial replication fork. Science 2001, 294, 1716–1719. [Google Scholar] [CrossRef]
- Radman, M. DNA replication: One strand may be more equal. Proc. Natl. Acad. Sci. USA 1998, 95, 9718–9719. [Google Scholar] [CrossRef]
- Ninio, J.; Bernardi, F.; Brun, G.; Assairi, L.; Lauber, M.; Chapeville, F. On the mechanism of nucleotide incorporation into DNA and RNA. FEBS Lett. 1975, 57, 139–144. [Google Scholar] [CrossRef]
- Rychkova, S.I.; Ninio, J. Paradoxical fusion of two images and depth perception with a squinting eye. Vis. Res. 2009, 49, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Ninio, J. Frail hypotheses in evolutionary biology. PLoS Genet. 2010, 6, e1001067. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Engel, M.; Demarty, M. Modelling biological systems with competitive coherence. Adv. Artif. Neural Syst. 2012, 2012, 1–20. [Google Scholar] [CrossRef]
- Mattick, K.L.; Rowbury, R.J.; Humphrey, T.J. Morphological changes to Escherichia coli O157:H7, commensal E. coli and Salmonella spp. in response to marginal growth conditions, with special reference to mildly stressing temperatures. Sci. Prog. 2003, 86, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Herrick, J. The dynamic replicon: Adapting to a changing cellular environment. Bioessays 2010, 32, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Watts, F.Z.; Miller, D.M.; Orr, E. Identification of myosin heavy chain in Saccharomyces cerevisiae. Nature 1985, 316, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, A.; Nordstrom, K. Replication of minichromosomes in a host in which chromosome replication is random. Mol. Microbiol. 1997, 23, 1215–1220. [Google Scholar] [CrossRef]
- Casaregola, S.; Jacq, A.; Laoudj, D.; McGurk, G.; Margarson, S.; Tempete, M.; Norris, V.; Holland, I.B. Cloning and analysis of the entire Escherichia coli ams gene. ams is identical to hmp1 and encodes a 114 kDa protein that migrates as a 180 kDa protein. J. Mol. Biol. 1992, 228, 30–40. [Google Scholar]
- Niki, H.; Jaffe, A.; Imamura, R.; Ogura, T.; Hiraga, S. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 1991, 10, 183–193. [Google Scholar] [CrossRef]
- Norris, V.; Seror, S.J.; Casaregola, S.; Holland, I.B. A single calcium flux triggers chromosome replication, segregation and septation in bacteria: A model. J. Theor. Biol. 1988, 134, 341–350. [Google Scholar] [CrossRef]
- Swan, D.G.; Hale, R.S.; Dhillon, N.; Leadlay, P.F. A bacterial calcium-binding protein homologous to calmodulin. Nature 1987, 329, 84–85. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.X.; Bouquin, N.; Norris, V.; Casaregola, S.; Seror, S.J.; Holland, I.B. A single base change in the acceptor stem of tRNA(3Leu) confers resistance upon Escherichia coli to the calmodulin inhibitor, 48/80. EMBO J. 1991, 10, 3113–3122. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Chen, M.; Goldberg, M.; Voskuil, J.; McGurk, G.; Holland, I.B. Calcium in bacteria: A solution to which problem? Mol. Microbiol. 1991, 5, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.E.; Gee, K.; Giles, J.; Knight, H.; Hurwitz, B.L.; Karnes, J.H. Role of the gut microbiome in cardiovascular drug response: The potential for clinical application. Pharmacotherapy 2022, 42, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Grant, S.; Freestone, P.; Canvin, J.; Sheikh, F.N.; Toth, I.; Trinei, M.; Modha, K.; Norman, R.I. Calcium signalling in bacteria. J. Bacteriol. 1996, 178, 3677–3682. [Google Scholar] [CrossRef] [PubMed]
- Naseem, R.; Wann, K.T.; Holland, I.B.; Campbell, A.K. ATP regulates calcium efflux and growth in E. coli. J. Mol. Biol. 2009, 391, 42–56. [Google Scholar] [CrossRef]
- Huang, R.; Reusch, R.N. Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J. Biol. Chem. 1996, 271, 22196–22202. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Reusch, R.N. pH regulates cation selectivity of poly-(R)-3-hydroxybutyrate/polyphosphate channels from E. coli in planar lipid bilayers. Biochemistry 2001, 40, 2075–2079. [Google Scholar] [CrossRef]
- Norris, V. Poly-(R)-3-hydroxybutyrate and the pioneering work of Rosetta Natoli Reusch. Cell. Mol. Biol. (Noisy-Le-Grand) 2005, 51, 629–634. [Google Scholar]
- Negoda, A.; Negoda, E.; Reusch, R.N. Importance of oligo-R-3-hydroxybutyrates to S. lividans KcsA channel structure and function. Mol. Biosyst. 2010, 6, 2249–2255. [Google Scholar] [CrossRef]
- Reusch, R.N. The Role of Short-Chain Conjugated Poly-(R)-3-Hydroxybutyrate (cPHB) in Protein Folding. Int. J. Mol. Sci. 2013, 14, 10727–10748. [Google Scholar] [CrossRef] [PubMed]
- Reusch, R.N. Poly-(R)-3-hydroxybutyrates (PHB) are Atherogenic Components of Lipoprotein Lp(a). Med. Hypotheses 2015, 85, 1041–1043. [Google Scholar] [PubMed]
- Seebach, D. No Life on this Planet Without PHB. Helv. Chim. Acta 2023, 106, e202200205. [Google Scholar] [CrossRef]
- Das, S.; Lengweiler, U.D.; Seebach, D.; Reusch, R.N. Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic polyphosphate. Proc. Natl. Acad. Sci. USA 1997, 94, 9075–9079. [Google Scholar] [CrossRef] [PubMed]
- Rahimova, N.; Cooke, M.; Zhang, S.; Baker, M.J.; Kazanietz, M.G. The PKC universe keeps expanding: From cancer initiation to metastasis. Adv. Biol. Regul. 2020, 78, 100755. [Google Scholar] [CrossRef]
- Norris, V.; Baldwin, T.J.; Sweeney, S.T.; Williams, P.H.; Leach, K.L. A protein kinase C-like activity in Escherichia coli. Mol. Microbiol. 1991, 5, 2977–2981. [Google Scholar] [CrossRef]
- Cozzone, A.J. Protein phosphorylation in prokaryotes. Annu. Rev. Microbiol. 1988, 42, 97–125. [Google Scholar] [CrossRef]
- Freestone, P.; Grant, S.; Trinei, M.; Onoda, T.; Norris, V. Protein phosphorylation in Escherichia coli L. form NC-7. Microbiology 1998, 144 Pt 12, 3289–3295. [Google Scholar] [CrossRef]
- Onoda, T.; Enokizono, J.; Kaya, H.; Oshima, A.; Freestone, P.; Norris, V. Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J. Bacteriol. 2000, 182, 1419–1422. [Google Scholar] [CrossRef]
- Leaver, M.; Dominguez-Cuevas, P.; Coxhead, J.M.; Daniel, R.A.; Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457, 849–853. [Google Scholar] [CrossRef]
- Freestone, P.; Grant, S.; Toth, I.; Norris, V. Identification of phosphoproteins in Escherichia coli. Mol. Microbiol. 1995, 15, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Freestone, P.; Nystrom, T.; Trinei, M.; Norris, V. The universal stress protein, UspA, of Escherichia coli is phosphorylated in response to stasis. J. Mol. Biol. 1997, 274, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Freestone, P.; Trinei, M.; Clarke, S.C.; Nystrom, T.; Norris, V. Tyrosine phosphorylation in Escherichia coli. J. Mol. Biol. 1998, 279, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Phospholipid flip-out controls the cell cycle of Escherichia coli. J. Theor. Biol. 1989, 139, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Hypothesis: Chromosome separation in Escherichia coli involves autocatalytic gene expression, transertion and membrane-domain formation. Mol. Microbiol. 1995, 16, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Misevic, G.; Delosme, J.M.; Oshima, A. Hypothesis: A phospholipid translocase couples lateral and transverse bilayer asymmetries in dividing bacteria. J. Mol. Biol. 2002, 318, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Madsen, M.S. Autocatalytic gene expression occurs via transertion and membrane domain formation and underlies differentiation in bacteria: A model. J. Mol. Biol. 1995, 253, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Amir, A. Is cell size a spandrel? eLife 2017, 6, e22186. [Google Scholar] [CrossRef]
- Norris, V. Sequestration of origins of chromosome replication in Escherichia coli by lipid compartments: The pocket hypothesis. J. Theor. Biol. 1993, 164, 239–244. [Google Scholar] [CrossRef]
- Norris, V. Hypothesis: Transcriptional sensing and membrane-domain formation initiate chromosome replication in Escherichia coli. Mol. Microbiol. 1995, 15, 985–987. [Google Scholar] [CrossRef]
- Fröhlich, H. Long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 1968, 2, 641–649. [Google Scholar] [CrossRef]
- Said-Salman, I.H.; Jebaii, F.A.; Yusef, H.H.; Moustafa, M.E. Global gene expression analysis of Escherichia coli K-12 DH5alpha after exposure to 2.4 GHz wireless fidelity radiation. Sci. Rep. 2019, 9, 14425. [Google Scholar] [CrossRef] [PubMed]
- Peltek, S.; Meshcheryakova, I.; Kiseleva, E.; Oshchepkov, D.; Rozanov, A.; Serdyukov, D.; Demidov, E.; Vasiliev, G.; Vinokurov, N.; Bryanskaya, A.; et al. E. coli aggregation and impaired cell division after terahertz irradiation. Sci. Rep. 2021, 11, 20464. [Google Scholar] [CrossRef]
- Bannikova, S.; Khlebodarova, T.; Vasilieva, A.; Mescheryakova, I.; Bryanskaya, A.; Shedko, E.; Popik, V.; Goryachkovskaya, T.; Peltek, S. Specific Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int. J. Mol. Sci. 2022, 23, 15216. [Google Scholar] [CrossRef]
- Matsuhashi, M.; Pankrushina, A.N.; Endoh, K.; Watanabe, H.; Mano, Y.; Hyodo, M.; Fujita, T.; Kunugita, K.; Kaneko, T.; Otani, S. Studies on carbon material requirements for bacterial proliferation and spore germination under stress conditions: A new mechanism involving transmission of physical signals. J. Bacteriol. 1995, 177, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Hyland, G.J. Do bacteria sing? Sonic intercellular communication between bacteria may reflect electromagnetic intracellular communication involving coherent collective vibrational modes that could integrate enzyme activities and gene expression. Mol. Microbiol. 1997, 24, 879–880. [Google Scholar] [CrossRef]
- Norris, V.; Manners, B. Deformations in the cytoplasmic membrane of Escherichia coli direct the synthesis of peptidoglycan. The hernia model. Biophys. J. 1993, 64, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Rajnicek, A.M.; McCaig, C.D.; Gow, N.A. Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: Implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 1994, 176, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Madsen, M.S.; Snelling, D.F.; Heaphy, S.; Norris, V. Antiviruses as therapeutic agents: A mathematical analysis of their potential. J. Theor. Biol. 1997, 184, 111–116. [Google Scholar] [CrossRef]
- Norris, V.; Madsen, M.S.; Heaphy, S. Designer antiviruses for HIV. Trends Microbiol. 1993, 1, 355–357. [Google Scholar] [CrossRef]
- Norris, V.; Ovadi, J. Role of Multifunctional Cytoskeletal Filaments in Coronaviridae Infections: Therapeutic Opportunities for COVID-19 in a Nutshell. Cells 2021, 10, 1818. [Google Scholar] [CrossRef] [PubMed]
- Kalamvoki, M.; Norris, V. A Defective Viral Particle Approach to COVID-19. Cells 2021, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, B. How the Leopard Changed Its Spots: The Evolution of Complexity; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Ho, M.-W. The Rainbow and the Worm; World Scientific: Singapore, 2008; p. 408. [Google Scholar]
- Kauffman, S. At Home in the Universe, the Search for the Laws of Complexity; Penguin: London, UK, 1996; pp. 1–321. [Google Scholar]
- Kubitschek, H.E. Increase in cell mass during the division cycle of Escherichia coli B/rA. J. Bacteriol. 1986, 168, 613–618. [Google Scholar] [CrossRef]
- Cooper, S. What is the bacterial growth law during the division cycle? J. Bacteriol. 1988, 170, 5001–5005. [Google Scholar] [CrossRef] [PubMed]
- Cooper, S.; Shedden, K. Microarray analysis of gene expression during the cell cycle. Cell Chromosome 2003, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Ayala, J.A.; Begg, K.; Bouche, J.P.; Bouloc, P.; Boye, E.; Canvin, J.; Casaregola, S.; Cozzone, A.J.; Crooke, E.; et al. Cell cycle control: Prokaryotic solutions to eukaryotic problems? J. Theor. Biol. 1994, 168, 227–230. [Google Scholar] [CrossRef]
- Thornton, M.; Armitage, M.; Maxwell, A.; Dosanjh, B.; Howells, A.J.; Norris, V.; Sigee, D.C. Immunogold localization of GyrA and GyrB proteins in Escherichia coli. Microbiology 1994, 140 Pt 9, 2371–2382. [Google Scholar] [CrossRef]
- Norris, V.; Turnock, G.; Sigee, D. The Escherichia coli enzoskeleton. Mol. Microbiol. 1996, 19, 197–204. [Google Scholar] [CrossRef]
- Chalmers, D. Facing up to the problem of consciousness. J. Conscious. Stud. 1995, 2, 200–219. [Google Scholar]
- Norris, V. Bacteria as tools for studies of consciousness. In Toward a Science of Consciousness II: The Second Tucson Discussions and Debates; Hameroff, S., Kaszniak, A., Scott, A., Eds.; MIT Press: Cambridge, MA, USA, 1998; pp. 397–405. [Google Scholar]
- Norris, V. Competitive Coherence Generates Qualia in Bacteria and Other Living Systems. Biology 2021, 10, 1034. [Google Scholar] [CrossRef]
- Ripoll, C.; Guespin-Michel, J.; Norris, V.; Thellier, M. Defining integrative biology. Complexity 1998, 4, 19–20. [Google Scholar] [CrossRef]
- Thomas, R.; D’Ari, R. Biological Feedback; CRC Press: Boca Raton, FL, USA, 1990; p. 328. [Google Scholar]
- Laurent, M.; Charvin, G.; Guespin-Michel, J. Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbruck, a long series of ignored models. Cell. Mol. Biol. 2005, 51, 583–594. [Google Scholar] [PubMed]
- Alexandre, S.; Colé, G.; Coutard, S.; Monnier, C.; Norris, V.; Margolin, W.; Yu, X.; Valleton, J.M. Interaction of FtsZ protein with a DPPE Langmuir film. Colloids Surf. B Biointerfaces 2002, 23, 391–395. [Google Scholar] [CrossRef]
- Alexandre, S.; Dérue, V.; Garah, S.; Monnier, C.; Norris, V.; Valleton, J.-M. Submolecular Structures in Dipalmytoylphosphatidylethanolamine Langmuir-Blodgett Films Observed by Scanning Force Microscopy. J. Colloid Interface Sci. 2000, 227, 585–587. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, C.; Valleton, J.M.; Orange, N.; Norris, V.; Mileykovskaya, E.; Alexandre, S. Behaviour of bacterial division protein FtsZ under a monolayer with phospholipid domains. Biochim. Biophys. Acta 2007, 1768, 2812–2821. [Google Scholar] [CrossRef] [PubMed]
- Zerrouk, Z.; Alexandre, S.; Lafontaine, C.; Norris, V.; Valleton, J.M. Inner membrane lipids of Escherichia coli form domains. Colloids Surf. B Biointerfaces 2008, 63, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Cabin-Flaman, A.; Monnier, A.F.; Coffinier, Y.; Audinot, J.N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.N.; Bensimon, A.; Janniere, L.; et al. Combed Single DNA Molecules Imaged by Secondary Ion Mass Spectrometry. Anal. Chem. 2011, 83, 6940–6947. [Google Scholar] [CrossRef] [PubMed]
- Cabin-Flaman, A.; Monnier, A.F.; Coffinier, Y.; Audinot, J.N.; Gibouin, D.; Wirtz, T.; Boukherroub, R.; Migeon, H.N.; Bensimon, A.; Janniere, L.; et al. Combining combing and secondary ion mass spectrometry to study DNA on chips using (13)C and (15)N labeling. F1000Res 2016, 5, 1437. [Google Scholar] [CrossRef]
- Norris, V.; Koch, I.; Amar, P.; Kepes, F.; Janniere, L. Hypothesis: Local variations in the speed of individual DNA replication forks determine the phenotype of daughter cells. Med. Res. Arch. 2017, 5, 1–18. [Google Scholar]
- Delaune, A.; Cabin-Flaman, A.; Legent, G.; Gibouin, D.; Smet-Nocca, C.; Lefebvre, F.; Benecke, A.; Vasse, M.; Ripoll, C. 50nm-scale localization of single unmodified, isotopically enriched, proteins in cells. PLoS ONE 2013, 8, e56559. [Google Scholar] [CrossRef]
- Ramachandran, A.; Santiago, J.G. Isotachophoresis: Theory and Microfluidic Applications. Chem. Rev. 2022, 122, 12904–12976. [Google Scholar] [CrossRef] [PubMed]
- Bouligand, Y.; Norris, V. Chromosome separation and segregation in dinoflagellates and bacteria may depend on liquid crystalline states. Biochimie 2001, 83, 187–192. [Google Scholar] [CrossRef]
- Reich, Z.; Wachtel, E.J.; Minsky, A. Liquid-crystalline mesophases of plasmid DNA in bacteria. Science 1994, 264, 1460–1463. [Google Scholar] [CrossRef]
- Abadi, M.; Serag, M.F.; Habuchi, S. Entangled polymer dynamics beyond reptation. Nat. Commun. 2018, 9, 5098. [Google Scholar] [CrossRef]
- Mishra, G.; Bigman, L.S.; Levy, Y. ssDNA diffuses along replication protein A via a reptation mechanism. Nucleic Acids Res. 2020, 48, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Hori, N.; Thirumalai, D. Condensates in RNA repeat sequences are heterogeneously organized and exhibit reptation dynamics. Nat. Chem. 2022, 14, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Blaauwen, T.D.; Doi, R.H.; Harshey, R.M.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; Minsky, A.; et al. Toward a Hyperstructure Taxonomy. Annu. Rev. Microbiol. 2007, 61, 309–329. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; den Blaauwen, T.; Cabin-Flaman, A.; Doi, R.H.; Harshey, R.; Janniere, L.; Jimenez-Sanchez, A.; Jin, D.J.; Levin, P.A.; Mileykovskaya, E.; et al. Functional taxonomy of bacterial hyperstructures. Microbiol. Mol. Biol. Rev. 2007, 71, 230–253. [Google Scholar] [CrossRef]
- Saier, M.H., Jr. Microcompartments and protein machines in prokaryotes. J. Mol. Microbiol. Biotechnol. 2013, 23, 243–269. [Google Scholar] [CrossRef]
- Norris, V.; Gascuel, P.; Guespin-Michel, J.; Ripoll, C.; Saier, M.H., Jr. Metabolite-induced metabolons: The activation of transporter-enzyme complexes by substrate binding. Mol. Microbiol. 1999, 31, 1592–1595. [Google Scholar] [CrossRef]
- Vincent, J.C.; Alexandre, S.; Thellier, M. How a soluble enzyme can be forced to work as a transport system: Description of an experimental design. Arch. Biochem. Biophys. 1988, 261, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Thellier, M.; Legent, G.; Amar, P.; Norris, V.; Ripoll, C. Steady-state kinetic behaviour of functioning-dependent structures. FEBS J. 2006, 273, 4287–4299. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Alexandre, S.; Bouligand, Y.; Cellier, D.; Demarty, M.; Grehan, G.; Gouesbet, G.; Guespin, J.; Insinna, E.; Le Sceller, L.; et al. Hypothesis: Hyperstructures regulate bacterial structure and the cell cycle. Biochimie 1999, 81, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Le Sceller, L.; Ripoll, C.; Demarty, M.; Cabin-Flaman, A.; Nyström, T.; Saier, M., Jr.; Norris, V. Modelling bacterial hyperstructures with cellular automata. Interjournal Complex Syst. 2000, 366. Available online: https://www.lri.fr/~pa/Hsim/InterJournal (accessed on 21 September 2024).
- Amar, P.; Bernot, G.; Norris, V. HSIM: A simulation programme to study large assemblies of proteins. J. Biol. Phys. Chem. 2004, 4, 124–130. [Google Scholar] [CrossRef]
- Amar, P.; Legent, G.; Thellier, M.; Ripoll, C.; Bernot, G.; Nystrom, T.; Saier, M.H., Jr.; Norris, V. A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst. Biol. 2008, 2, 27. [Google Scholar] [CrossRef]
- Ovadi, J.; Srere, P.A. Macromolecular compartmentation and channeling. Int. Rev. Cytol. 2000, 192, 255–280. [Google Scholar] [PubMed]
- Castellana, M.; Wilson, M.Z.; Xu, Y.; Joshi, P.; Cristea, I.M.; Rabinowitz, J.D.; Gitai, Z.; Wingreen, N.S. Enzyme clustering accelerates processing of intermediates through metabolic channeling. Nat. Biotechnol. 2014, 32, 1011–1018. [Google Scholar] [CrossRef]
- Sweetlove, L.J.; Fernie, A.R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 2018, 9, 2136. [Google Scholar] [CrossRef]
- Bar-Peled, L.; Kory, N. Principles and functions of metabolic compartmentalization. Nat. Metab. 2022, 4, 1232–1244. [Google Scholar] [CrossRef]
- Norris, V.; Verrier, C.; Feuilloley, M. Hybolites Revisited. Recent. Pat. Antiinfect. Drug Discov. 2016, 11, 16–31. [Google Scholar] [CrossRef]
- Legent, G.; Norris, V. Hybolites: Novel therapeutic tools for targeting hyperstructures in bacteria. Recent. Pat. Antiinfect. Drug Discov. 2009, 4, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Amar, P. Chromosome Replication in Escherichia coli: Life on the Scales. Life 2012, 2, 286–312. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Why do bacteria divide? Front. Microbiol. 2015, 6, 322. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Speculations on the initiation of chromosome replication in Escherichia coli: The dualism hypothesis. Med. Hypotheses 2011, 76, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.P.; Fralick, J.; Vediyappan, G.; Danchin, A.; Norris, V. A strand-specific model for chromosome segregation in bacteria. Mol. Microbiol. 2003, 49, 895–903. [Google Scholar] [CrossRef]
- Konto-Ghiorghi, Y.; Norris, V. Hypothesis: Nucleoid-associated proteins segregate with a parental DNA strand to generate coherent phenotypic diversity. Theory Biosci. 2021, 140, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Kayser, C.; Muskhelishvili, G.; Konto-Ghiorghi, Y. The Roles of Nucleoid-Associated Proteins and Topoisomerases in Chromosome Structure, Strand Segregation and the Generation of Phenotypic Heterogeneity in Bacteria. FEMS Microbiol. Rev. 2023, 47, fuac049. [Google Scholar] [CrossRef]
- Slodzian, G.; Daigne, B.; Girard, F.; Boust, F.; Hillion, F. Scanning secondary ion analytical microscopy with parallel detection. Biol. Cell 1992, 74, 43–50. [Google Scholar] [CrossRef]
- Lechene, C.; Hillion, F.; McMahon, G.; Benson, D.; Kleinfeld, A.M.; Kampf, J.P.; Distel, D.; Luyten, Y.; Bonventre, J.; Hentschel, D.; et al. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J. Biol. 2006, 5, 20. [Google Scholar] [CrossRef]
- Boxer, S.G.; Kraft, M.L.; Weber, P.K. Advances in imaging secondary ion mass spectrometry for biological samples. Annu. Rev. Biophys. 2009, 38, 53–74. [Google Scholar] [CrossRef]
- Gangwe Nana, G.Y.; Ripoll, C.; Cabin-Flaman, A.; Gibouin, D.; Delaune, A.; Janniere, L.; Grancher, G.; Chagny, G.; Loutelier-Bourhis, C.; Lentzen, E.; et al. Division-Based, Growth Rate Diversity in Bacteria. Front. Microbiol. 2018, 9, 849. [Google Scholar] [CrossRef] [PubMed]
- Meselson, M.; Stahl, F.W. The Replication of DNA in Escherichia Coli. Proc. Natl. Acad. Sci. USA 1958, 44, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Ripoll, C. Generation of Bacterial Diversity by Segregation of DNA Strands. Front. Microbiol. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Raine, D.J. A fission-fusion origin for life. Orig. Life Evol. Biosph. 1998, 28, 523–537. [Google Scholar] [CrossRef]
- Raine, D.J.; Norris, V. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J. Theor. Biol. 2007, 246, 176–185. [Google Scholar] [CrossRef]
- Root-Bernstein, R.S.; Dillon, P.F. Molecular complementarity I: The complementarity theory of the origin and evolution of life. J. Theor. Biol. 1997, 188, 447–479. [Google Scholar] [CrossRef]
- Dillon, P.F.; Root-Bernstein, R.S. Molecular complementarity II: Energetic and vectorial basis of biological homeostasis and its implications for death. J. Theor. Biol. 1997, 188, 481–493. [Google Scholar] [CrossRef]
- Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 2006, 28, 399–412. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Baker, A.G.; Rhinesmith, T.; Turke, M.; Huber, J.; Brown, A.W. “Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life 2023, 13, 265. [Google Scholar] [CrossRef]
- Segre, D.; Ben-Eli, D.; Lancet, D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA 2000, 97, 4112–4117. [Google Scholar] [CrossRef]
- Norris, V.; Loutelier-Bourhis, C.; Thierry, A. How did metabolism and genetic replication get married? Orig. Life Evol. Biosph. 2012, 42, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Reusch, R.N.; Igarashi, K.; Root-Bernstein, R. Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells. Biol. Direct 2015, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Moreira, A. A possible circular RNA at the origin of life. J. Theor. Biol. 2007, 249, 314–324. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Theoretical minimal RNA rings mimick molecular evolution before tRNA-mediated translation: Codon-amino acid affinities increase from early to late RNA rings. Comptes Rendus Biol. 2020, 343, 111–122. [Google Scholar] [CrossRef]
- Norris, V.; Demongeot, J. The Ring World: Eversion of Small Double-Stranded Polynucleotide Circlets at the Origin of DNA Double Helix, RNA Polymerization, Triplet Code, Twenty Amino Acids, and Strand Asymmetry. Int. J. Mol. Sci. 2022, 23, 12915. [Google Scholar] [CrossRef]
- Bak, P. How Nature Works: The Science of Self-Organized Criticality; Copernicus: New York, NY, USA, 1996. [Google Scholar]
- Raine, D.J.; Norris, V. Metabolic cycles and self-organised criticality. Interjournal Complex Syst. 2000, 361. [Google Scholar]
- Demarty, M.; Gleyse, B.; Raine, D.; Ripoll, C.; Norris, V. Modelling autocatalytic networks with artificial microbiology. Comptes Rendus Biol. 2003, 326, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, P.; Ziegler, J.; Banzhaf, W. Artificial chemistries—A review. Artif. Life 2001, 7, 225–275. [Google Scholar] [CrossRef] [PubMed]
- Raine, D.J.; Grondin, Y.; Thellier, M.; Norris, V. Networks as constrained thermodynamic systems. Comptes Rendus Biol. 2003, 326, 65–74. [Google Scholar] [CrossRef]
- Grondin, Y.; Raine, D.J.; Norris, V. The correlation between architecture and mRNA abundance in the genetic regulatory network of Escherichia coli. BMC Syst. Biol. 2007, 1, 30. [Google Scholar] [CrossRef]
- Churchward, G.; Estiva, E.; Bremer, H. Growth rate-dependent control of chromosome replication initiation in Escherichia coli. J. Bacteriol. 1981, 145, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Lobner-Olesen, A.; Skarstad, K.; Hansen, F.G.; von Meyenburg, K.; Boye, E. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 1989, 57, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Skarstad, K.; Steen, H.B.; Stokke, T.; Boye, E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. Embo J. 1994, 13, 2097–2102. [Google Scholar] [CrossRef]
- Christensen, B.B.; Atlung, T.; Hansen, F.G. DnaA boxes are important elements in setting the initiation mass of Escherichia coli. J. Bacteriol. 1999, 181, 2683–2688. [Google Scholar] [CrossRef]
- Cooper, S. Regulation of DNA synthesis in bacteria: Analysis of the Bates/Kleckner licensing/initiation-mass model for cell cycle control. Mol. Microbiol. 2006, 62, 303–307. [Google Scholar] [CrossRef]
- Si, F.; Li, D.; Cox, S.E.; Sauls, J.T.; Azizi, O.; Sou, C.; Schwartz, A.B.; Erickstad, M.J.; Jun, Y.; Li, X.; et al. Invariance of Initiation Mass and Predictability of Cell Size in Escherichia coli. Curr. Biol. 2017, 27, 1278–1287. [Google Scholar] [CrossRef]
- Zheng, H.; Bai, Y.; Jiang, M.; Tokuyasu, T.A.; Huang, X.; Zhong, F.; Wu, Y.; Fu, X.; Kleckner, N.; Hwa, T.; et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat. Microbiol. 2020, 5, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Nana, G.G.; Audinot, J.N. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci. 2014, 133, 47–61. [Google Scholar] [CrossRef]
- Mayer, F. Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J. Mol. Microbiol. Biotechnol. 2006, 11, 228–243. [Google Scholar] [CrossRef]
- Wichmann, C.; Naumann, P.T.; Spangenberg, O.; Konrad, M.; Mayer, F.; Hoppert, M. Liposomes for microcompartmentation of enzymes and their influence on catalytic activity. Biochem. Biophys. Res. Commun. 2003, 310, 1104–1110. [Google Scholar] [CrossRef]
- Wiggins, P. Life depends upon two kinds of water. PLoS ONE 2008, 3, e1406. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; Amann-Winkel, K.; Angell, C.A.; Anisimov, M.A.; Caupin, F.; Chakravarty, C.; Lascaris, E.; Loerting, T.; Panagiotopoulos, A.Z.; Russo, J.; et al. Water: A Tale of Two Liquids. Chem. Rev. 2016, 116, 7463–7500. [Google Scholar] [CrossRef]
- Manning, G.S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys. 1969, 51, 924–933. [Google Scholar] [CrossRef]
- Oosawa, F. Polyelectrolytes; Marcel Dekker: New York, NY, USA, 1971; ISBN ISBN 0824715055. [Google Scholar]
- Ripoll, C.; Norris, V.; Thellier, M. Ion condensation and signal transduction. Bioessays 2004, 26, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, G.; Trinei, M.; Modha, J.; Kusel, J.; Freestone, P.; Fishov, I.; Joseleau-Petit, D.; Redman, C.; Farmer, P.; Norris, V. Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Mol. Microbiol. 1996, 20, 233–238. [Google Scholar] [CrossRef]
- Oursel, D.; Loutelier-Bourhis, C.; Orange, N.; Chevalier, S.; Norris, V.; Lange, C.M. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass. Spectrom. 2007, 21, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Oursel, D.; Loutelier-Bourhis, C.; Orange, N.; Chevalier, S.; Norris, V.; Lange, C.M. Identification and relative quantification of fatty acids in Escherichia coli membranes by gas chromatography/mass spectrometry. Rapid Commun. Mass. Spectrom. 2007, 21, 3229–3233. [Google Scholar] [CrossRef]
- Weiner, J.H.; Lemire, B.D.; Elmes, M.L.; Bradley, R.D.; Scraba, D.G. Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organelle. J. Bacteriol. 1984, 158, 590–596. [Google Scholar] [CrossRef]
- Arechaga, I.; Miroux, B.; Karrasch, S.; Huijbregts, R.; de Kruijff, B.; Runswick, M.J.; Walker, J.E. Characterisation of new intracellular membranes in Escherichia coli accompanying large scale over-production of the b subunit of F(1)F(o) ATP synthase. FEBS Lett. 2000, 482, 215–219. [Google Scholar] [CrossRef]
- Norris, V.; Mileykovskaya, E.; Matsumoto, K. Extending the Transertion Hypothesis. Biochem. Anal. Biochem. 2015, 4, 4. [Google Scholar]
- Matsumoto, K.; Hara, H.; Fishov, I.; Mileykovskaya, E.; Norris, V. The membrane: Transertion as an organizing principle in membrane heterogeneity. Front. Microbiol. 2015, 6, 572. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, J.; Shuto, S.; Imai, Y.; Ishikawa, K.; Saito, T.; Natori, K.; Matsuoka, S.; Hara, H.; Matsumoto, K. Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res. Microbiol. 2016, 167, 202–214. [Google Scholar] [CrossRef]
- Bray, D.; Levin, M.D.; Morton-Firth, C.J. Receptor clustering as a cellular mechanism to control sensitivity. Nature 1998, 393, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Cabin-Flaman, A.; Ripoll, C.; Saier, M.H., Jr.; Norris, V. Hypothesis: Chemotaxis in Escherichia coli results from hyperstructure dynamics. J. Mol. Microbiol. Biotechnol. 2005, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Menu-Bouaouiche, L.; Becu, J.-M.; Legendre, R.; Norman, R.; Rosenzweig, J.A. Hyperstructure interactions influence the virulence of the Type 3 secretion system in yersiniae and other bacteria. Appl. Microbiol. Biotechnol. 2012, 96, 23–36. [Google Scholar] [CrossRef]
- Yang, J.; Jain, C.; Schesser, K. RNase E regulates the Yersinia type 3 secretion system. J. Bacteriol. 2008, 190, 3774–3778. [Google Scholar] [CrossRef] [PubMed]
- Lipowsky, R.; Dimova, R. Domains in membranes and vesicles. J. Phys. Condens. Matter 2002, 15, S31–S45. [Google Scholar] [CrossRef]
- Norris, V.; Woldringh, C.; Mileykovskaya, E. A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min. FEBS Lett. 2004, 561, 3–10. [Google Scholar] [CrossRef]
- Fishov, I.; Woldringh, C.L. Visualization of membrane domains in Escherichia coli. Mol. Microbiol. 1999, 32, 1166–1172. [Google Scholar] [CrossRef]
- Kohiyama, M.; Herrick, J.; Norris, V. Open Questions about the Roles of DnaA, Related Proteins, and Hyperstructure Dynamics in the Cell Cycle. Life 2023, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Monnier, A.F.; Fossum-Raunehaug, S.; Maciag-Dorszynska, M.; Cabin-Flaman, A.; Kepes, F.; Wegrzyn, G.; Szalewska-Palasz, A.; Norris, V.; Skarstad, K.; et al. Multiple links connect central carbon metabolism to DNA replication initiation and elongation in Bacillus subtilis. DNA Res. 2018, 25, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Soultanas, P.; Janniere, L. The metabolic control of DNA replication: Mechanism and function. Open Biol. 2023, 13, 230220. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer-Martin, H.W.; Ehleringer, J.R.; Hegg, E.L. Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc. Natl. Acad. Sci. USA 2005, 102, 17337–17341. [Google Scholar] [CrossRef] [PubMed]
- Kreuzer-Martin, H.W.; Lott, M.J.; Ehleringer, J.R.; Hegg, E.L. Metabolic processes account for the majority of the intracellular water in log-phase Escherichia coli cells as revealed by hydrogen isotopes. Biochemistry 2006, 45, 13622–13630. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, C.; Wang, F.; Chang, S.J.; Yao, J.; Blake, R.E. Probing the metabolic water contribution to intracellular water using oxygen isotope ratios of PO4. Proc. Natl. Acad. Sci. USA 2016, 113, 5862–5867. [Google Scholar] [CrossRef]
- Saragovi, A.; Zilberman, T.; Yasur, G.; Turjeman, K.; Abramovich, I.; Kuchersky, M.; Gottlieb, E.; Barenholz, Y.; Berger, M. Analysis of cellular water content in T cells reveals a switch from slow metabolic water gain to rapid water influx prior to cell division. J. Biol. Chem. 2022, 298, 101795. [Google Scholar] [CrossRef]
- Weiner, T.; Tamburini, F.; Keren, N.; Keinan, J.; Angert, A. Does metabolic water control the phosphate oxygen isotopes of microbial cells? Front. Microbiol. 2023, 14, 1277349. [Google Scholar] [CrossRef]
- Sohrabi-Mahboub, M.; Jahangiri, S.; Farrokhpour, H. Molecular dynamics simulation of the hydration of adenosine phosphates. J. Mol. Liq. 2019, 283, 359–365. [Google Scholar] [CrossRef]
- Buckstein, M.H.; He, J.; Rubin, H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J. Bacteriol. 2008, 190, 718–726. [Google Scholar] [CrossRef]
- Lin, W.H.; Jacobs-Wagner, C. Connecting single-cell ATP dynamics to overflow metabolism, cell growth, and the cell cycle in Escherichia coli. Curr. Biol. 2022, 32, 3911–3924.e3914. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Hypothesis: Bacteria live on the edge of phase transitions with a cell cycle regulated by a water-clock. ResearchSquare 2024, preprint. [Google Scholar]
- Zaslavsky, B.Y.; Uversky, V.N. In Aqua Veritas: The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membrane-less Organelles. Biochemistry 2018, 57, 2437–2451. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.L.; Seinkmane, E.; Styles, C.T.; Mihut, A.; Kruger, L.K.; McNally, K.E.; Planelles-Herrero, V.J.; Dudek, M.; McCall, P.M.; Barbiero, S.; et al. Macromolecular condensation buffers intracellular water potential. Nature 2023, 623, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Desbiez, M.O.; Kergosien, Y.; Champagnat, P.; Thellier, M. Memorization and delayed expression of regulatory messages in plants. Planta 1984, 160, 392–399. [Google Scholar] [CrossRef]
- Verdus, M.-C.; Thellier, M.; Ripoll, C. Storage of environmental signals in flax. Their morphogenetic effect as enabled by a transient depletion of calcium. Plant J. 1997, 12, 1399–1410. [Google Scholar] [CrossRef]
- Norris, V.; Ripoll, C.; Thellier, M. The Theatre Management Model of Plant Memory. Plant Signal Behav. 2014, 10, e976157. [Google Scholar] [CrossRef]
- Tafforeau, M.; Verdus, M.C.; Norris, V.; White, G.J.; Cole, M.; Demarty, M.; Thellier, M.; Ripoll, C. Plant sensitivity to low intensity 105 GHz electromagnetic radiation. Bioelectromagnetics 2004, 25, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Tafforeau, M.; Verdus, M.C.; Norris, V.; Ripoll, C.; Thellier, M. Memory processes in the response of plants to environmental signals. Plant Signal Behav. 2006, 1, 9–14. [Google Scholar] [CrossRef]
- Norris, V.; Amar, P.; Legent, G.; Ripoll, C.; Thellier, M.; Ovadi, J. Sensor potency of the moonlighting enzyme-decorated cytoskeleton: The cytoskeleton as a metabolic sensor. BMC Biochem. 2013, 14, 3. [Google Scholar] [CrossRef]
- Olah, J.; Norris, V.; Ovadi, J. Modeling of sensing potency of cytoskeletal systems decorated with metabolic enzymes. J. Theor. Biol. 2015, 365, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Olah, J.; Szenasi, T.; Lehotzky, A.; Norris, V.; Ovadi, J. Challenges in Discovering Drugs That Target the Protein-Protein Interactions of Disordered Proteins. Int. J. Mol. Sci. 2022, 23, 1550. [Google Scholar] [CrossRef] [PubMed]
- Olah, J.; Norris, V.; Lehotzky, A.; Ovadi, J. Perspective Strategies for Interventions in Parkinsonism: Remedying the Neglected Role of TPPP. Cells 2024, 13, 338. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Olah, J.; Krylov, S.N.; Uversky, V.N.; Ovadi, J. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. npj Syst. Biol. Appl. 2023, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.; Bhattacharya, S.; Achuthan, S.; Behal, A.; Jolly, M.K.; Kotnala, S.; Mohanty, A.; Rangarajan, G.; Salgia, R.; Uversky, V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem. Rev. 2022, 122, 6614–6633. [Google Scholar] [CrossRef] [PubMed]
- Dumas, M.E.; Barton, R.H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J.C.; et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. USA 2006, 103, 12511–12516. [Google Scholar] [CrossRef]
- Norris, V.; Molina, F.; Gewirtz, A.T. Hypothesis: Bacteria control host appetites. J. Bacteriol. 2012, 195, 411–416. [Google Scholar] [CrossRef]
- Norris, V.; Merieau, A. Plasmids as scribbling pads for operon formation and propagation. Res. Microbiol. 2013, 164, 779–787. [Google Scholar] [CrossRef]
- Allen, J.F.; Martin, W.F. Why Have Organelles Retained Genomes? Cell Syst. 2016, 2, 70–72. [Google Scholar] [CrossRef]
- Trinei, M.; Vannier, J.P.; Beurton-Aimar, M.; Norris, V. A hyperstructure approach to mitochondria. Mol. Microbiol. 2004, 53, 41–53. [Google Scholar] [CrossRef]
- Norris, V.; Sharov, A.A. A Hypothesis about How Bacterial Cells Sustain and Change Their Lives in Response to Various Signals. In Pathways to the Origin and Evolution of Meanings in the Universe; Sharov, A.A., Mikhailovsky, G., Eds.; Wiley-Scrivener: Beverly, MA, USA, 2024; p. 500. [Google Scholar]
- Norris, V.; Thierry, A.; Holland, I.B.; Amar, P.; Molina, F. The Mimic Chain Reaction. J. Mol. Microbiol. Biotechnol. 2012, 22, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Krylov, S.N.; Agarwal, P.K.; White, G.J. Synthetic, Switchable Enzymes. J. Mol. Microbiol. Biotechnol. 2017, 27, 117–127. [Google Scholar] [CrossRef]
- Norris, V.; Zemirline, A.; Amar, P.; Audinot, J.N.; Ballet, P.; Ben-Jacob, E.; Bernot, G.; Beslon, G.; Cabin, A.; Fanchon, E.; et al. Computing with bacterial constituents, cells and populations: From bioputing to bactoputing. Theory Biosci. 2011, 130, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Grondin, Y. DNA movies and panspermia. Life 2011, 1, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Grondin, Y. Making bacteriophage DNA into a movie for panspermia. J. Cosmol. 2011, 16, 7158–7176. [Google Scholar]
- Schubert, W.; Gieseler, A.; Krusche, A.; Serocka, P.; Hillert, R. Next-generation biomarkers based on 100-parameter functional super-resolution microscopy TIS. N. Biotechnol. 2012, 29, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Norris, V. Could Phase Oscillations Occur in Bacteria? In Modelling Complex Biological Systems in the Context of Genomics; Amar, P., Kepes, F., Norris, V., Bernot, G., Eds.; EDP Sciences: Evry, France, 2007; pp. 89–98. [Google Scholar]
- Bray, D. The Propagation of Allosteric States in Large Multiprotein Complexes. J. Mol. Biol. 2013, 425, 1410–1414. [Google Scholar] [CrossRef]
- Veetil, R.T.; Malhotra, N.; Dubey, A.; Seshasayee, A.S.N. Laboratory Evolution Experiments Help Identify a Predominant Region of Constitutive Stable DNA Replication Initiation. mSphere 2020, 5, e00939-19. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Fralick, J.; Danchin, A. A SeqA hyperstructure and its interactions direct the replication and sequestration of DNA. Mol. Microbiol. 2000, 37, 696–702. [Google Scholar] [CrossRef]
- Ingber, D.E. From tensegrity to human organs-on-chips: Implications for mechanobiology and mechanotherapeutics. Biochem. J. 2023, 480, 243–257. [Google Scholar] [CrossRef]
- Norris, V.; Norris, L.; Wong, W.-K. The Positive Feedback Advantages of Combining Buying and Investing. Theor. Econ. Lett. 2015, 5, 659–669. [Google Scholar] [CrossRef]
- Whitehouse, D. The Sun: A Biography; Wiley: Hoboken, NJ, USA, 2005; p. 334. [Google Scholar]
- Sheldrake, R. Is the Sun Conscious? J. Conscious. Stud. 2021, 28, 8–28. [Google Scholar]
- Wiens, J.J. How many species are there on Earth? Progress and problems. PLoS Biol. 2023, 21, e3002388. [Google Scholar] [CrossRef] [PubMed]
- Norris, V.; Zaritsky, A. Novel Principles and Methods in Bacterial Cell Cycle Physiology: Celebrating the Charles E. Helmstetter Prize in 2022. Life 2023, 13, 2260. [Google Scholar] [CrossRef]
- Cooper, S.; Helmstetter, C.E. Chromosome replication and the division cycle of Escherichia coli B/r. J. Mol. Biol. 1968, 31, 519–540. [Google Scholar] [CrossRef]
- Norris, V. Science and prizes: A case for rethinking the criteria for prizes in science (and for rewarding important discoveries in bacterial physiology). EMBO Rep. 2024, 25, 944–947. [Google Scholar] [CrossRef]
- Norris, V.; Amar, P.; Bernot, G.; Delaune, A.; Dérue, C.; Cabin-Flaman, A.; Demarty, M.; Grondin, Y.; Legent, G.; Monnier, C.; et al. Questions for cell cyclists. J. Biol. Phys. Chem. 2004, 4, 124–130. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norris, V. Hunting the Cell Cycle Snark. Life 2024, 14, 1213. https://doi.org/10.3390/life14101213
Norris V. Hunting the Cell Cycle Snark. Life. 2024; 14(10):1213. https://doi.org/10.3390/life14101213
Chicago/Turabian StyleNorris, Vic. 2024. "Hunting the Cell Cycle Snark" Life 14, no. 10: 1213. https://doi.org/10.3390/life14101213
APA StyleNorris, V. (2024). Hunting the Cell Cycle Snark. Life, 14(10), 1213. https://doi.org/10.3390/life14101213