Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration
Abstract
:1. Introduction
2. Therapeutic Protocols and Available Drugs
3. Biomarkers of Treatment Response
4. Signs of Choroidal Neovascular Membrane Reactivation
5. Non-Responsive Cases
6. Anti-VEGF Therapy Ocular Side Effects
7. When to Stop Treatment
8. Future Directions in Neovascular AMD
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Jarrar, Z.; Wormald, R.; Cook, D.G.; Fletcher, A.; Owen, C.G. Age and gender variations in age-related macular degeneration prevalence in populations of European ancestry: A meta-analysis. Ophthalmology 2012, 119, 571–580. [Google Scholar] [CrossRef]
- Hobbs, S.D.; Pierce, K. Wet Age-Related Macular Degeneration (Wet AMD); StatPearls: St Petersburg, Russia, 2022. [Google Scholar]
- Spilsbury, K.; Garrett, K.L.; Shen, W.Y.; Constable, I.J.; Rakoczy, P.E. Over-expression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am. J. Pathol. 2000, 157, 135–144. [Google Scholar] [CrossRef]
- Wong, T.Y.; Liew, G.; Mitchell, P. Clinical update: New treatments for age-related macular degeneration. Lancet 2007, 370, 204–206. [Google Scholar] [CrossRef]
- Usui, Y.; Westenskow, P.D.; Kurihara, T.; Aguilar, E.; Sakimoto, S.; Paris, L.P.; Wittgrove, C.; Feitelberg, D.; Friedlander, M.S.; Moreno, S.K.; et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J. Clin. Investig. 2015, 125, 2335–2346. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, X.; Xu, T.; Xu, X.; Liu, Z. Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: A systematic review and comprehensive meta-analysis. Oncotarget 2017, 8, 51492–51506. [Google Scholar] [CrossRef]
- Spaide, R.F.; Laud, K.; Fine, H.F.; Klancnik, J.M., Jr.; Meyerle, C.B.; Yannuzzi, L.A.; Sorenson, J.; Slakter, J.; Fisher, Y.L.; Cooney, M.J. Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 2006, 26, 383–390. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Moshfeghi, A.A.; Puliafito, C.A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg. Lasers Imaging 2005, 36, 331–335. [Google Scholar] [CrossRef]
- Lucentis—Ranibizumab Injection, Solution. DailyMed. Available online: https://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=de4e66cc-ca05-4dc9-8262-e00e9b41c36d (accessed on 27 June 2024).
- Brown, D.M.; Michels, M.; Kaiser, P.K.; Heier, J.S.; Sy, J.P.; Ianchulev, T.; ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study. Ophthalmology 2009, 116, 57–65. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Heier, J.; Brown, D.; Ho, A.; Kaiser, P.; Vitti, R. Randomized, double-masked, active-controlled phase 3 trial of the efficacy and safety of intravitreal VEGF trap-eye in wet AMD: One-year results of the View-1 study. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3073. [Google Scholar]
- Schmidt-Erfurth, U.; Chong, V.; Kirchof, B.; Korobelnik, J.F.; Papp, A.; Anderesi, M.; Groetzbach, G.; Sommerauer, B.; Sandbrink, R.; Ogura, Y. Primary results of an international phase III study using intravitreal VEGF trap-eye compared to ranibizumab in patients with wet AMD (VIEW 2). Investig. Ophthalmol. Vis. Sci. 2011, 52, 1650. [Google Scholar]
- Tadayoni, R.; Sararols, L.; Weissgerber, G.; Verma, R.; Clemens, A.; Holz, F.G. Brolucizumab: A Newly Developed Anti-VEGF Molecule for the Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmologica 2021, 244, 93–101. [Google Scholar] [CrossRef]
- Dugel, P.U.; Koh, A.; Ogura, Y.; Jaffe, G.J.; Schmidt-Erfurth, U.; Brown, D.M.; Gomes, A.V.; Warburton, J.; Weichselberger, A.; Holz, F.G.; et al. HAWK and HARRIER: Phase 3, Multicenter, Randomized, Double-Masked Trials of Brolucizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2020, 127, 72–84. [Google Scholar] [CrossRef]
- Khanani, A.M.; Kotecha, A.; Chang, A.; Chen, S.J.; Chen, Y.; Guymer, R.; Heier, J.S.; Holz, F.G.; Iida, T.; Ives, J.A.; et al. TENAYA and LUCERNE Investigators. TENAYA and LUCERNE: Two-Year Results from the Phase 3 Neovascular Age-Related Macular Degeneration Trials of Faricimab with Treat-and-Extend Dosing in Year 2. Ophthalmology 2024, 131, 914–926. [Google Scholar] [CrossRef]
- Ross, A.H.; Downey, L.; Devonport, H.; Gale, R.P.; Kotagiri, A.; Mahmood, S.; Mehta, H.; Narendran, N.; Patel, P.J.; Parmar, N.; et al. Recommendations by a UK expert panel on an aflibercept treat-and-extend pathway for the treatment of neovascular age-related macular degeneration. Eye 2020, 34, 1825–1834. [Google Scholar] [CrossRef]
- Mantel, I. Optimizing the anti-VEGF treatment strategy for neovascular age-related macular degeneration: From clinical trials to real-life requirements. Transl. Vis. Sci. Technol. 2015, 4, 6. [Google Scholar] [CrossRef]
- Bayer. Study to Gather Information on Safety and Use of High Dose Aflibercept Injection into the Eye in Patients with an Age Related Eye Disorder that Causes Blurred Vision or a Blind Spot Due to Abnormal Blood Vessels that Leak Fluid into the Light Sensitive Lining Inside the Eye (PULSAR); Bayer: Leverkusen, Germany, 2019; Clinicaltrials.gov Identifier: NCT04423718. [Google Scholar]
- Wykoff, C.C.; Brown, D.M.; Reed, K.; Berliner, A.J.; Gerstenblith, A.T.; Breazna, A.; Abraham, P.; Fein, J.G.; Chu, K.W.; Clark, W.L.; et al. Effect of High-Dose Intravitreal Aflibercept, 8 mg, in Patients With Neovascular Age-Related Macular Degeneration: The Phase 2 CANDELA Randomized Clinical Trial. JAMA Ophthalmol. 2023, 141, 834–842. [Google Scholar] [CrossRef]
- CATT Research Group; Martin, D.F.; Maguire, M.G.; Ying, G.S.; Grunwald, J.E.; Fine, S.L.; Jaffe, G.J. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2011, 364, 1897–1908. [Google Scholar]
- Guymer, R.H.; Markey, C.M.; McAllister, I.L.; Gillies, M.C.; Hunyor, A.P.; Arnold, J.J.; FLUID Investigators. Tolerating subretinal fluid in neovascular age-related macular degeneration treated with ranibizumab using a treat-and-extend regimen: FLUID study 24-month results. Ophthalmology 2019, 126, 723–734. [Google Scholar] [CrossRef]
- Almuhtaseb, H.; Kanavati, S.; Rufai, S.; Lotery, A.J. One-year real-world outcomes in patients receiving fixed-dosing aflibercept for neovascular age-related macular degeneration. Eye 2017, 31, 878–883. [Google Scholar] [CrossRef]
- Grechenig, C.; Reiter, G.S.; Riedl, S.; Arnold, J.; Guymer, R.; Gerendas, B.S.; Bogunović, H.; Schmidt-Erfurth, U. Impact of Residual Subretinal Fluid Volumes on Treatment Outcomes in a Subretinal Fluid-Tolerant Treat-and-Extend Regimen. Retina 2021, 41, 2221–2228. [Google Scholar] [CrossRef]
- Waldstein, S.M.; Philip, A.M.; Leitner, R.; Simader, C.; Langs, G.; Gerendas, B.S.; Schmidt-Erfurth, U. Correlation of 3-dimensionally quantified intraretinal and subretinal fluid with visual acuity in neovascular age-related macular degeneration. JAMA Ophthalmol. 2016, 134, 182–190. [Google Scholar] [CrossRef]
- Miotto, S.; Zemella, N.; Gusson, E.; Panozzo, G.; Saviano, S.; Scarpa, G.; Boschi, G.; Piermarocchi, S. Morphologic Criteria of Lesion Activity in Neovascular Age-Related Macular Degeneration: A Consensus Article. J. Ocul. Pharmacol. Ther. 2018, 34, 298–308. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Vogl, W.D.; Jampol, L.M.; Bogunović, H. Application of automated quantification of fluid volumes to anti-VEGF therapy of neovascular age-related macular degeneration. Ophthalmology 2020, 127, 1211–1219. [Google Scholar] [CrossRef]
- Reiter, G.S.; Grechenig, C.; Vogl, W.D.; Guymer, R.H.; Arnold, J.J.; Bogunovic, H.; Schmidt-Erfurth, U. Analysis of fluid volume and its impact on visual acuity in the fluid study as quantified with deep learning. Retina 2021, 41, 1318–1328. [Google Scholar] [CrossRef]
- Jung, J.J.; Freund, K.B. Long-term follow-up of outer retinal tubulation documented by eye-tracked and en face spectral-domain optical coherence tomography. Arch. Ophthalmol. 2012, 130, 1618–1619. [Google Scholar] [CrossRef]
- Zweifel, S.A.; Engelbert, M.; Laud, K.; Margolis, R.; Spaide, R.F.; Freund, K.B. Outer retinal tubulation: A novel optical coherence tomography finding. Arch. Ophthalmol. 2009, 127, 1596–1602. [Google Scholar] [CrossRef]
- Litts, K.M.; Messinger, J.D.; Dellatorre, K.; Yannuzzi, L.A.; Freund, K.B.; Curcio, C.A. Clinicopathological correlation of outer retinal tubulation in age-related macular degeneration. JAMA Ophthalmol. 2015, 133, 609–612. [Google Scholar] [CrossRef]
- Kovacs, A.; Kiss, T.; Rarosi, F.; Somfai, G.M.; Facsko, A.; Degi, R. The effect of ranibizumab and aflibercept treatment on the prevalence of outer retinal tubulation and its influence on retreatment in neovascular age-related macular degeneration. BMC Ophthalmol. 2018, 18, 298. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Waldstein, S.M.; Deak, G.G.; Kundi, M.; Simader, C. Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration. Ophthalmology 2015, 122, 822–832. [Google Scholar] [CrossRef]
- Jaffe, G.J.; Ying, G.S.; Toth, C.A.; Daniel, E.; Grunwald, J.E.; Martin, D.F.; Maguire, M.G. Macular morphology and visual acuity in year five of the comparison of age-related macular degeneration treatments trials. Ophthalmology 2019, 126, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, D.; London, N.J.S.; Khurana, R.N.; Dugel, P.U.; Gune, S.; Hill, L.; Tuomi, L. Ranibizumab treatment for pigment epithelial detachment secondary to neovascular age-related macular degeneration: Post hoc analysis of the HARBOR study. Ophthalmology 2016, 123, 2213–2224. [Google Scholar] [CrossRef] [PubMed]
- Riedl, S.; Cooney, L.; Grechenig, C.; Sadeghipour, A.; Pablik, E.; Seaman, J.W., 3rd; Waldstein, S.M.; Schmidt-Erfurth, U. Topographic analysis of photoreceptor loss correlated with disease morphology in neovascular age-related macular degeneration. Retina 2020, 40, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Woronkowicz, M.; Lightman, S.; Tomkins-Netzer, O. The prognostic value of total macular external limiting membrane and ellipsoid zone damage for clinical outcome in treatment-resistant neovascular age-related macular degeneration. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 2373–2378. [Google Scholar] [CrossRef]
- Shin, H.J.; Chung, H.; Kim, H.C. Association between foveal microstructure and visual outcome in age-related macular degeneration. Retina 2011, 31, 1627–1636. [Google Scholar] [CrossRef]
- Coscas, F.; Coscas, G.; Lupidi, M.; Dirani, A.; Srour, M.; Semoun, O.; Français, C.; Souied, E.H. Restoration of outer retinal layers after aflibercept therapy in exudative AMD: Prognostic value. Investig. Opthalmol. Vis. Sci. 2015, 56, 4129–4134. [Google Scholar] [CrossRef]
- Curcio, C.A.; Zanzottera, E.C.; Ach, T.; Balaratnasingam, C.; Freund, K.B. Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO211–BIO226. [Google Scholar]
- Coscas, G.; De Benedetto, U.; Coscas, F.; Li Calzi, C.I.; Vismara, S.; Roudot-Thoraval, F.; Bandello, F.; Souied, E. Hyperreflective dots: A new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 2013, 229, 32–37. [Google Scholar] [CrossRef]
- Willoughby, A.S.; Ying, G.S.; Toth, C.A.; Maguire, M.G.; Burns, R.E.; Grunwald, J.E.; Daniel, E.; Jaffe, G.J. Subretinal hyperreflective material in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2015, 122, 1846.e5–1853.e5. [Google Scholar] [CrossRef]
- Kawashima, Y.; Hata, M.; Oishi, A.; Ooto, S.; Yamashiro, K.; Tamura, H.; Miyata, M.; Uji, A.; Ueda-Arakawa, N.; Tsujikawa, A. Association of vascular versus avascular subretinal hyperreflective material with aflibercept response in age-related macular degeneration. Am. J. Ophthalmol. 2017, 181, 61–70. [Google Scholar] [CrossRef]
- Kumar, J.B.; Stinnett, S.; Han, J.I.L.; Jaffe, G.J. Correlation of subretinal hyperreflective material morphology and visual acuity in neovascular age-related macular degeneration. Retina 2020, 40, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.; Souka, A.; Adelman, R.A. Association between the vitreomacular interface and optical coherence tomography characteristics in wet age-related macular degeneration. Retina 2017, 37, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Kanadani, T.C.M.; Dos Reis Veloso, C.E.; Dorairaj, S.; Nehemy, M.B. Influence of vitreomacular adhesion on anti-vascular endothelial growth factor treatment for neovascular age-related macular degeneration. Ophthalmic Res. 2017, 58, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Koh, H.J. Effects of vitreomacular adhesion on anti-vascular endothelial growth factor treatment for exudative age-related macular degeneration. Ophthalmology 2011, 118, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Zheng, X.; Yu, Y.; Ye, X.; Hu, Z.; Yuan, D.; Liu, Q. Vitreomacular adhesion or vitreomacular traction may affect antivascular endothelium growth factor treatment for neovascular age-related macular degeneration. Br. J. Ophthalmol. 2017, 101, 1003–1010. [Google Scholar] [CrossRef]
- Kimura, S.; Morizane, Y.; Toshima, S.; Hosogi, M.; Kumase, F.; Hosokawa, M.; Shiode, Y.; Fujiwara, A.; Shiraga, F. Efficacy of vitrectomy and inner limiting membrane peeling in age-related macular degeneration resistant to anti-vascular endothelial growth factor therapy, with vitreomacular traction or epiretinal membrane. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1731–1736. [Google Scholar] [CrossRef]
- Metrangolo, C.; Donati, S.; Mazzola, M.; Fontanel, L.; Messina, W.; D’alterio, G.; Rubino, M.; Radice, P.; Premi, E.; Azzolini, C. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J. Ophthalmol. 2021, 2021, 9994098. [Google Scholar] [CrossRef]
- Padnick-Silver, L.; Weinberg, A.B.; Lafranco, F.P.; Macsai, M.S. Pilot study for the detection of early exudative age-related macular degeneration with optical coherence tomography. Retina 2012, 32, 1045–1056. [Google Scholar] [CrossRef]
- Kim, J.M.; Kang, S.W.; Son, D.Y.; Bae, K. Risk factors and clinical significance of prechoroidal cleft in neovascular age-related macular degeneration. Retina 2017, 37, 2047–2055. [Google Scholar] [CrossRef]
- Dolz-Marco, R.; Glover, J.P.; Gal-Or, O.; Litts, K.M.; Messinger, J.D.; Zhang, Y.; Cozzi, M.; Pellegrini, M.; Freund, K.B.; Staurenghi, G.; et al. Choroidal and sub-retinal pigment epithelium caverns: Multimodal imaging and correspondence with friedman lipid globules. Ophthalmology 2018, 125, 1287–1301. [Google Scholar] [CrossRef]
- Querques, G.; Costanzo, E.; Miere, A.; Capuano, V.; Souied, E.H. Choroidal caverns: A novel optical coherence tomography finding in geographic atrophy. Investig. Opthalmol. Vis. Sci. 2016, 57, 2578–2582. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.; Smith, T.R. Clinical and pathological study of choroidal lipid globules. Arch. Ophthalmol. 1966, 75, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Vupparaboina, K.K.; Goud, A.; Dansingani, K.K.; Chhablani, J. Choroidal imaging biomarkers. Surv. Ophthalmol. 2019, 64, 312–333. [Google Scholar] [CrossRef]
- Gupta, P.; Ting, D.S.W.; Thakku, S.G.; Wong, T.Y.; Cheng, C.Y.; Wong, E.; Mathur, R.; Wong, D.; Yeo, I.; Gemmy Cheung, C.M. Detailed characterization of choroidal morphologic and vascular features in age-related macular degeneration and polypoidal choroidal vasculopathy. Retina 2017, 37, 2269–2280. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Gupta, P.; Tan, K.A.; Cheung, C.M.G.; Wong, T.Y.; Cheng, C.Y. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci. Rep. 2016, 6, 21090. [Google Scholar] [CrossRef]
- Essex, R.W.; Nguyen, V.; Walton, R.; Arnold, J.J.; McAllister, I.L.; Guymer, R.H.; Morlet, N.; Young, S.; Barthelmes, D.; Gillies, M.C. Treatment patterns and visual outcomes during the maintenance phase of treat-and-extend therapy for age-related macular degeneration. Ophthalmology 2016, 123, 2393–2400. [Google Scholar] [CrossRef]
- Yamamoto, A.; Okada, A.A.; Kano, M.; Koizumi, H.; Saito, M.; Maruko, I.; Sekiryu, T.; Iida, T. One-Year results of intravitreal aflibercept for polypoidal choroidal vasculopathy. Ophthalmology 2015, 122, 1866–1872. [Google Scholar] [CrossRef]
- Hemeida, T.S.; Keane, P.A.; Dustin, L.; Sadda, S.R.; Fawzi, A.A. Long-term visual and anatomical outcomes following anti-VEGF monotherapy for retinal angiomatous proliferation. Br. J. Ophthalmol. 2010, 94, 701–705. [Google Scholar] [CrossRef]
- Abedi, F.; Wickremasinghe, S.; Richardson, A.J.; Islam, A.F.; Guymer, R.H.; Baird, P.N. Genetic influences on the outcome of anti-vascular endothelial growth factor treatment in neovascular age-related macular degeneration. Ophthalmology 2013, 120, 1641–1648. [Google Scholar] [CrossRef]
- Kimk, H.; Lee, S.C.; Kwon, K.Y.; Lee, J.H.; Koh, H.J.; Byeon, S.H.; Kim, S.S.; Kim, M.; Lee, C.S. Subfoveal choroidal thickness as a predictor of treatment response to anti-vascular endothelial growth factor therapy for polypoidal choroidal vasculopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1497–1503. [Google Scholar]
- Koh, A.; Lee, W.K.; Chen, L.J.; Chen, S.J.; Hashad, Y.; Kim, H.; Lai, T.Y.; Pilz, S.; Ruamviboonsuk, P.; Tokaji, E.; et al. EVEREST study: Efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012, 32, 1453–1464. [Google Scholar] [CrossRef] [PubMed]
- Oishi, A.; Miyamoto, N.; Mandai, M.; Honda, S.; Matsuoka, T.; Oh, H.; Kita, M.; Nagai, T.; Bessho, N.; Uenishi, M.; et al. LAPTOP study: A 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. Ophthalmology 2014, 121, 1151–1152. [Google Scholar] [CrossRef] [PubMed]
- Won, K.L.; Yuichiro, O.; Tomohiro, I.; Shih-Jen, C.; Tien Yin, W.; Paul, M.; Tatsuro, I.; Eric, Z.; Sergio, L. Efficacy and Safety of Intravitreal Aflibercept in Polypoidal Choroidal Vasculopathy: 12-Month Results of the PLANET Study. Investig. Ophthalmol. Vis. Sci. 2017, 58, 1199. [Google Scholar]
- Kokame, G.T.; Lai, J.C.; Wee, R.; Yanagihara, R.; Shantha, J.G.; Ayabe, J.; Hirai, K. Prospective clinical trial of Intravitreal aflibercept treatment for Polypoidal choroidal vasculopathy with hemorrhage or exudation (EPIC study): 6 month results. BMC Ophthalmol. 2016, 16, 127. [Google Scholar] [CrossRef] [PubMed]
- Gulati, N.; Forooghian, F.; Lieberman, R.; Jabs, D.A. Vascular endothelial growth factor inhibition in uveitis: A systematic review. Br. J. Ophthalmol. 2011, 95, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Kaiser, P.K.; Michels, M.; Soubrane, G.; Heier, J.S.; Kim, R.Y.; Sy, J.P.; Schneider, S. ANCHOR Study Group. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1432–1444. [Google Scholar] [CrossRef]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y. MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef]
- Busbee, B.G.; Ho, A.C.; Brown, D.M.; Heier, J.S.; Suñer, I.J.; Li, Z.; Rubio, R.G.; Lai, P.; HARBOR Study Group. Twelve-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 2013, 120, 1046–1056. [Google Scholar] [CrossRef]
- Forooghian, F.; Cukras, C.; Meyerle, C.B.; Chew, E.Y.; Wong, W.T. Tachyphylaxis after intravitreal bevacizumab for exudative age-related macular degeneration. Retina 2009, 29, 723–731. [Google Scholar] [CrossRef]
- Ho, A.C.; Busbee, B.G.; Regillo, C.D.; Wieland, M.R.; Van Everen, S.A.; Li, Z.; Rubio, R.G.; Lai, P.; HARBOR Study Group. Twenty-four-month efficacy and safety of 0.5 mg or 2.0 mg ranibizumab in patients with subfoveal neovascular age-related macular degeneration. Ophthalmology 2014, 121, 2181–2192. [Google Scholar] [CrossRef]
- Fung, A.T.; Kumar, N.; Vance, S.K.; Slakter, J.S.; Klancnik, J.M.; Spaide, R.S.; Freund, K.B. Pilot study to evaluate the role of high-dose ranibizumab 2.0 mg in the management of neovascular age-related macular degeneration in patients with persistent/recurrent macular fluid <30 days following treatment with intravitreal anti-VEGF therapy (the LAST Study). Eye 2012, 26, 1181–1187. [Google Scholar] [PubMed]
- Brown, D.M.; Chen, E.; Mariani, A.; Major, J.C., Jr. The SAVE Study Group. Super-dose anti-VEGF (SAVE) trial: 2.0 mg intravitreal ranibizumab for recalcitrant neovascular macular degeneration-primary end point. Ophthalmology 2013, 120, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W.; Rosenfeld, P.J.; Penha, F.M.; Wang, F.; Yehoshua, Z.; Bueno-Lopez, E.; Lopez, P.F. Pharmacokinetic rationale for dosing every 2 weeks versus 4 weeks with intravitreal ranibizumab, bevacizumab, and aflibercept (vascular endothelial growth factor Trap-eye). Retina 2012, 32, 434–457. [Google Scholar] [CrossRef] [PubMed]
- Lumbroso, B.; Rispoli, M.; Savastano, M.C. Longitudinal optical coherence tomography–angiography study of type 2 naive choroidal neovascularization early response after treatment. Retina 2015, 35, 2242–2251. [Google Scholar] [CrossRef]
- Hara, C.; Wakabayashi, T.; Fukushima, Y.; Sayanagi, K.; Kawasaki, R.; Sato, S.; Sakaguchi, H.; Nishida, K. Tachyphylaxis during treatment of exudative age-related macular degeneration with aflibercept. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2559–2569. [Google Scholar] [CrossRef]
- Gasperini, J.L.; Fawzi, A.A.; Khondkaryan, A.; Lam, L.; Chong, L.P.; Eliott, D.; Walsh, A.C.; Hwang, J.; Sadda, S.R. Bevacizumab and ranibizumab tachyphylaxis in the treatment of choroidal neovascularisation. Br. J. Ophthalmol. 2012, 96, 14–20. [Google Scholar] [CrossRef]
- Schaal, S.; Kaplan, H.J.; Tezel, T.H. Is there tachyphylaxis to intravitreal anti-vascular endothelial growth factor pharmacotherapy in age-related macular degeneration? Ophthalmology 2008, 115, 2199–2205. [Google Scholar] [CrossRef]
- Lazzeri, S.; Ripandelli, G.; Sartini, M.S.; Parravano, M.; Varano, M.; Nardi, M.; Di Desidero, T.; Orlandi, P.; Bocci, G. Aflibercept administration in neovascular age-related macular degeneration refractory to previous anti-vascular endothelial growth factor drugs: A critical review and new possible approaches to move forward. Angiogenesis 2015, 18, 397–432. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Andreoli, C.; Miller, J.B.; Loewenstein, J.I.; Sobrin, L.; Eliott, D.; Vavvas, D.G.; Miller, J.W.; Kim, I.K. Conversion to aflibercept for chronic refractory or recurrent neovascular age-related macular degeneration. Am. J. Ophthalmol. 2013, 156, 29–35. [Google Scholar] [CrossRef]
- Bakall, B.; Folk, J.C.; Boldt, H.C.; Sohn, E.H.; Stone, E.M.; Russell, S.R.; Mahajan, V.B. Aflibercept therapy for exudative age-related macular degeneration resistant to bevacizumab and ranibizumab. Am. J. Ophthalmol. 2013, 156, 15–22. [Google Scholar] [CrossRef]
- Seguin-Greenstein, S.; Lightman, S.; Tomkins-Netzer, O. A Meta-Analysis of Studies Evaluating Visual and Anatomical Outcomes in Patients with Treatment Resistant Neovascular Age-Related Macular Degeneration following Switching to Treatment with Aflibercept. J. Ophthalmol. 2016, 2016, 4095852. [Google Scholar] [CrossRef] [PubMed]
- Spooner, K.; Hong, T.; Wijeyakumar, W.; Chang, A.A. Switching to aflibercept among patients with treatment-resistant neovascular age-related macular degeneration: A systematic review with meta-analysis. Clin. Ophthalmol. 2017, 11, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Alfageme, C.; Nicholson, L.; Hamilton, R.D.; Patel, P.J. Incidence and long term visual acuit outcomes of retinal pigment eithelium tears after intravitreal anti vascular endothelial growth factor treatment of neovascular age related macular degeneration. Retina 2019, 39, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.; Rodríguez, F.J.; Joussen, A.M.; Koh, A.; Eter, N.; Wong, D.T.; Korobelnik, J.F.; Okada, A.A. Management of retinal pigment epithelium tear during anti-vascular endothelial growth factor therapy. Retina 2021, 41, 671–678. [Google Scholar] [CrossRef]
- Empeslidis, T.; Vardarinos, A.; Konidaris, V.; Ch’ng, S.W.; Kapoor, B.; Deane, J.; Tsaousis, K.T. Incidence of retinal pigment epithelial tears and associated risk factors after treatment of age-related macular degeneration with intravitreal anti-VEGF injections. Open Ophthalmol. J. 2014, 8, 101–104. [Google Scholar] [CrossRef]
- Gutfleisch, M.; Heimes, B.; Schumacher, M.; Dietzel, M.; Lommatzsch, A.; Bird, A.; Pauleikhoff, D. Long-term visual outcome of pigment epithelial tears in association with anti-VEGF therapy of pigment epithelial detachment in AMD. Eye 2011, 25, 1181–1186. [Google Scholar] [CrossRef]
- Levine, J.P.; Marcus, I.; Sorenson, J.A.; Spaide, R.F.; Cooney, M.J.; Freund, K.B. Macular hemorrhage in neovascular age-related macular degeneration after stabilization with antiangiogenic therapy. Retina 2009, 29, 1074–1079. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, J.; Sun, X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: A comprehensive review. Drug Des. Dev. Ther. 2016, 10, 1857–1867. [Google Scholar]
- Kuroda, Y.; Yamashiro, K.; Miyake, M.; Yoshikawa, M.; Nakanishi, H.; Oishi, A.; Tamura, H.; Ooto, S.; Tsujikawa, A.; Yoshimura, N. Factors associated with recurrence of age-related macular degeneration after anti-vascular endothelial growth factor treatment: A retrospective cohort study. Ophthalmology 2015, 122, 2303–2310. [Google Scholar] [CrossRef]
- Grunwald, J.E.; Pistilli, M.; Daniel, E.; Ying, G.S.; Pan, W.; Jaffe, G.J.; Toth, C.A.; Hagstrom, S.A.; Maguire, M.G.; Martin, D.F.; et al. Incidence and growth of geographic atrophy during 5 years of comparison of age-related macular degeneration treatments trials. Ophthalmology 2017, 124, 97–104. [Google Scholar] [CrossRef]
- Sadda, S.R.; Tuomi, L.L.; Ding, B.; Fung, A.E.; Hopkins, J.J. Macular atrophy in the HARBOR study for neovascular age-related macular degeneration. Ophthalmology 2018, 125, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Rofagha, S.; Bhisitkul, R.B.; Boyer, D.S.; Sadda, S.R.; Zhang, K.; SEVEN-UP Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: A multicenter cohort study (SEVEN-UP). Ophthalmology 2013, 120, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, U.; Harding, S.P.; Rogers, C.A.; Downes, S.M.; Lotery, A.J.; Culliford, L.A.; Reeves, B.C.; IVAN Study Investigators. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomised controlled trial. Lancet 2013, 382, 1258–1267. [Google Scholar] [CrossRef]
- Peters, S.; Heiduschka, P.; Julien, S.; Ziemssen, F.; Fietz, H.; Bartz-Schmidt, K.U.; Tübingen Bevacizumab Study Group; Schraermeyer, U. Ultrastructural findings in the primate eye after intravitreal injection of bevacizumab. Am. J. Ophthalmol. 2007, 143, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Usui-Ouchi, A.; Friedlander, M. Anti-VEGF therapy: Higher potency and long-lasting antagonism are not necessarily better. J. Clin. Investig. 2019, 129, 3032–3034. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, J.; Fischer, C.; Schworm, B.; Kreutzer, T.C.; Luft, N.; Kortuem, K.U.; Schumann, R.G.; Wolf, A.; Priglinger, S.G. Impact of Sub-Retinal Fluid on the Long-Term Incidence of Macular Atrophy in Neovascular Age-related Macular Degeneration under Treat & Extend Anti-Vascular Endothelial Growth Factor Inhibitors. Sci. Rep. 2020, 10, 8036. [Google Scholar]
- Dhrami-Gavazi, E.; Balaratnasingam, C.; Lee, W.; Freund, K.B. Type 1 neovascularization may confer resistance to geographic atrophy amongst eyes treated for neovascular age-related macular degeneration. Int. J. Retin. Vitr. 2015, 1, 15. [Google Scholar] [CrossRef]
- Mantel, I.; Dirani, A.; Zola, M.; Parvin, P.; De Massougnes, S.; Bergin, C. Macular atrophy incidence in anti-vascular endothelial growth factor- treated neovascular age—Related macular degeneration: Risk Factor Evaluation for Individualized Treatment Need of Ranibizumab or Aflibercept According to an Observe-and-Plan Regimen. Retina 2019, 39, 906–917. [Google Scholar] [CrossRef]
- Bracha, P.; Moore, N.A.; Ciulla, T.A.; WuDunn, D.; Cantor, L.B. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: A review. Surv. Ophthalmol. 2018, 63, 281–295. [Google Scholar] [CrossRef]
- Falavarjani, K.G.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef]
- Bodaghi, B.; Souied, E.H.; Tadayoni, R.; Weber, M.; Ponthieux, A.; Kodjikian, L. Detection and Management of Intraocular Inflammation after Brolucizumab Treatment for Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2023, 7, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Witkin, A.J.; Hahn, P.; Murray, T.G.; Arevalo, J.F.; Blinder, K.J.; Choudhry, N.; Emerson, G.G.; Goldberg, R.A.; Kim, S.J.; Pearlman, J.; et al. Occlusive Retinal Vasculitis Following Intravitreal Brolucizumab. J. Vitreoretin. Dis. 2020, 4, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Kearns, J.D.; Wassmann, P.; Olgac, U.; Fichter, M.; Christen, B.; Rubic-Schneider, T.; Koepke, S.; Cochin de Billy, B.; Ledieu, D.; Andre, C.; et al. A root cause analysis to identify the mechanistic drivers of immunogenicity against the anti-VEGF biotherapeutic brolucizumab. Sci. Transl. Med. 2023, 15, eabq5068. [Google Scholar] [CrossRef] [PubMed]
- Karle, A.C.; Wrobel, M.B.; Koepke, S.; Gutknecht, M.; Gottlieb, S.; Christen, B.; Rubic-Schneider, T.; Pruimboom-Brees, I.; Leber, X.C.; Scharenberg, M.; et al. Anti-brolucizumab immune response as one prerequisite for rare retinal vasculitis/retinal vascular occlusion adverse events. Sci. Transl. Med. 2023, 15, eabq5241. [Google Scholar] [CrossRef]
- Matucci, A.; Nencini, F.; Vivarelli, E.; Bormioli, S.; Maggi, E.; Vultaggio, A. Immunogenicity-unwanted immune responses to biological drugs—Can we predict them? Expert Rev. Clin. Pharmacol. 2021, 14, 47–53. [Google Scholar] [CrossRef]
- Adrean, S.D.; Chaili, S.; Grant, S.; Pirouz, A. Recurrence rate of choroidal neovascularization in neovascular age-related macular degeneration managed with a treat-extend-stop protocol. Ophthalmol. Retin. 2018, 2, 225–230. [Google Scholar] [CrossRef]
- Arendt, P.; Yu, S.; Munk, M.R.; Ebneter, A.; Wolf, S.; Zinkernagel, M.S. Exit strategy in a treat-and-extend regimen for exudative age-related macular degeneration. Retina 2019, 39, 27–33. [Google Scholar] [CrossRef]
- Lanzetta, P.; Loewenstein, A.; The Vision Academy Steering Committee. Fundamental principles of an anti-VEGF treatment regimen: Optimal application of intravitreal anti–vascular endothelial growth factor therapy of macular diseases. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1259–1273. [Google Scholar] [CrossRef]
- Banerjee, I.; de Sisternes, L.; Hallak, J.A.; Leng, T.; Osborne, A.; Rosenfeld, P.J.; Gregori, G.; Durbin, M.; Rubin, D. Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Sci. Rep. 2020, 10, 15434. [Google Scholar] [CrossRef]
- Chandra, R.S.; Ying, G.S. Evaluation of multiple machine learning models for Predicting Number of Anti-VEGF injections in the comparison of AMD Treatment Trials (CATT). Transl. Vis. Sci. Technol. 2023, 12, 18. [Google Scholar] [CrossRef]
- Romo-Bucheli, D.; Erfurth, U.S.; Bogunovic, H. End-to-end Deep Learning Model for Predicting Treatment requirements in Neovascular AMD from longitudinal retinal OCT imaging. IEEE J. Biomed. Health Inform. 2020, 24, 3456–3465. [Google Scholar] [CrossRef] [PubMed]
- Pfau, M.; Sahu, S.; Rupnow, R.A.; Romond, K.; Millet, D.; Holz, F.G.; Schmitz-Valckenberg, S.; Fleckenstein, M.; Lim, J.I.; de Sisternes, L.; et al. Probabilistic forecasting of Anti-VEGF treatment frequency in Neovascular Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2021, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.J.; Faes, L.; Wagner, S.K.; Moraes, G.; Chopra, R.; Patel, P.J.; Balaskas, K.; Keenan, T.D.L.; Bachmann, L.M.; Keane, P.A. Predicting Incremental and Future Visual Change in Neovascular Age-Related Macular Degeneration using deep learning. Ophthalmol. Retin. 2021, 5, 1074–1084. [Google Scholar] [CrossRef] [PubMed]
- Balaskas, K.; Glinton, S.; Keenan, T.D.L.; Faes, L.; Liefers, B.; Zhang, G.; Pontikos, N.; Struyven, R.; Wagner, S.K.; McKeown, A.; et al. Prediction of visual function from automatically quantified optical coherence tomography biomarkers in patients with geographic atrophy using machine learning. Sci. Rep. 2022, 12, 15565. [Google Scholar] [CrossRef]
Biomarkers | OCT Aspect | Influence on Visual Prognosis |
---|---|---|
Intraretinal fluid (IFR) | Increased retinal thickness, Fluid cysts above the outer plexiform layer | Signs of disease activity Negative prognostic on VA May determine cystic degeneration of the retina |
Subretinal fluid (SRF) | Fluid between the RPE and the neurosensory retina | Indicates the need to continue therapy A small and stable quantity may be tolerated without increasing but also without reducing the number of intravitreal injections |
Sub- retinal pigment epithelium (RPE) fluid | Pigmentary epithelium detachment (PED) | Less impact on visual acuity |
Foveal receptor integrity | Disruption of the ellipsoid zone and the external limiting membrane band | Negative impact on visual acuity (especially on baseline VA) |
Hyperreflective dots | Small retinal conglomerates with a reflectivity higher than the RPE, located in all the layers, mostly around the cystoid spaces | Negative prognostic value Correlation with recurrences |
Subretinal hyperreflective material | Large retinal conglomerates located between the RPE and the neurosensory retina | Negative impact on visual acuity regardless of its disposition and associated with a lower increase of the visual function after treatment |
Vitreomacular interface alterations | ||
Adhesion | Strong adhesions between the posterior hyaloid and the retina due to the development of the neovascular membrane | Less responsive to anti-VEGF therapy |
Traction | Important traction of the retina exerted by the posterior hyaloid may cause alteration of the inner and outer retinal layers | Less responsive to anti-VEGF therapy Benefit from the surgical removal of the traction |
Alterations in choroidal morphology | ||
Sub-RPE hyperreflective columns | Sign of broken RPE Blood, fluid, and neovessels enter the subretinal space | Negative prognostic value |
Prechoroidal clefts | Spindle-shaped hyporeflective cavities located between the choroid and the fibrous component of a multilayered PED | Less impact on visual acuity Possible protective effect on the outer retinal layers |
Choroidal caverns | Hyporeflective sub-RPE structures | No prognostic value on VA |
Subfoveal choroidal thickness | Assessed by SS-OCT High variability | No prognostic value on VA |
Choroidal vascular index | The choroidal vascular lumen area reported to the choroidal stromal area | No prognostic value on VA Correlates choroidal hypoxia |
Outer retinal tubulations | Non-specific lesions in which photoreceptors rearrange in a circular manner Hyperreflective borders surrounding a hyporeflective space located in the outer nuclear layer Located at the border between an atrophic lesion and normal retinal tissue, with the RPE absent or altered | Negative prognostic value |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraru, A.D.; Danielescu, C.; Iorga, R.E.; Moraru, R.L.; Zemba, M.; Branisteanu, D.C. Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration. Life 2024, 14, 1220. https://doi.org/10.3390/life14101220
Moraru AD, Danielescu C, Iorga RE, Moraru RL, Zemba M, Branisteanu DC. Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration. Life. 2024; 14(10):1220. https://doi.org/10.3390/life14101220
Chicago/Turabian StyleMoraru, Andreea Dana, Ciprian Danielescu, Raluca Eugenia Iorga, Radu Lucian Moraru, Mihail Zemba, and Daniel Constantin Branisteanu. 2024. "Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration" Life 14, no. 10: 1220. https://doi.org/10.3390/life14101220
APA StyleMoraru, A. D., Danielescu, C., Iorga, R. E., Moraru, R. L., Zemba, M., & Branisteanu, D. C. (2024). Review of Guideline Recommendations for Optimal Anti-VEGF Therapy in Age-Related Macular Degeneration. Life, 14(10), 1220. https://doi.org/10.3390/life14101220