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Abstract: Alzheimer’s disease (AD) is an age-associated neurodegenerative condition marked by
amyloid plaques, synaptic dysfunction, and neuronal loss. Besides conventional medical care, herbal
therapies, both raw and refined, have attracted researchers for their potential therapeutic effects.
As a proof-of-concept, our study combined HPLC-DAD analysis of bioactive constituents, network
pharmacology, molecular dynamics (MD), molecular docking, post-MD analysis, and experimental
verification to investigate the mechanisms of crude drug formulations as a therapeutic strategy
for AD. We identified nine bioactive compounds targeting 188 proteins and 1171 AD-associated
genes. Using a Venn diagram, we found 47 overlapping targets, forming “herb-compound-target
(HCT)” interaction networks and a protein-protein interaction (PPI) network. Simulations analyzed
binding interactions among the three core targets and their compounds. MD assessed the stability
of the best-ranked poses and beneficial compounds for each protein. Among the top 22 hub genes,
AChE, BChE, and MAO, ranked 10, 14, and 34, respectively, were selected for further analysis.
Two tetraherbal formulations, Form A and Form B, showed notable activity against AChE. Form A
exhibited significant (p < 0.0001) inhibitory activity (IC50 = 114.842 ± 2.084 µg/mL) compared to Form
B (IC50 = 142.829 ± 4.258 µg/mL), though weaker than galantamine (IC50 = 27.950 ± 0.122 µg/mL).
Form B had significant inhibitory effects on BChE (IC50 = 655.860 ± 32.812 µg/mL) compared to
Form A (IC50 = 679.718 ± 20.656 µg/mL), but lower than galantamine (IC50 = 23.126 ± 0.683 µg/mL).
Both forms protected against Fe2+-mediated brain injury by inhibiting MAO. Docking identified
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quercetin (−10.2 kcal/mol) and myricetin (−10.1 kcal/mol) for AChE; rutin (−10.6 kcal/mol) and
quercetin (−9.7 kcal/mol) for BChE; and kaempferol (−9.1 kcal/mol) and quercetin (−8.9 kcal/mol)
for MAO. These compounds were thermodynamically stable based on MD analysis. Collectively,
the results offer a scientific rationale for the use of these specifically selected medicinal herbs as
AD medications.

Keywords: medicinal plants; network pharmacology; experimental analyses; neurodegenerative
disorders

1. Introduction

Alzheimer’s disease (AD) is an age-associated, progressive neurodegenerative con-
dition characterized by amyloid plaques, neuronal cell death, synaptic disorders, and
neurofibrillary tangles. One of the main factors contributing to AD pathogenesis is
the accumulation of β-amyloid, which detrimentally affects synaptic activity, leading
to neurodegeneration [1]. This condition predominantly affects elderly people, represent-
ing a significant global health concern, with dementia impacting 47 million people in 2015, a
number projected to increase to 131 million by 2050. The risk of developing Alzheimer’s dis-
ease is significantly influenced by dietary practices, as various studies have highlighted the
potential preventive effects of bioactive compounds from diverse food sources to potentiate
drug development [2].

Current AD treatments mainly include N-methyl-D-aspartate (NMDA) receptor in-
hibitors and acetylcholinesterase inhibitors (AChE). However, these medicines often target
a single pathway, exhibit low resistance to drug effects, and can cause adverse side effects,
resulting in suboptimal clinical outcomes [3]. In light of the challenges associated with
conventional treatments, there has been a growing interest in traditional herbal remedies
as alternatives that address the limitations of synthetic drugs [4].

Herbal medicine offers several promising strategies for slowing AD progression and
managing symptoms, primarily through mechanisms such as reducing oxidative stress,
modulating inflammatory pathways, inhibiting acetylcholinesterase activity, and promoting
neuroprotection. For instance, the antioxidative properties of certain herbs can mitigate the
oxidative stress implicated in AD pathogenesis, while others may exert anti-inflammatory
effects by downregulating pro-inflammatory cytokines. The production and sale of plant-
derived medications are increasing, underscoring their increasing scientific and financial
importance in healthcare [5].

This research investigated three beneficial herbal plants, Beta vulgaris (root and leaves),
Persea americana (avocado) seeds, and Syzygium aromaticum (cloves), to identify novel treat-
ment strategies for AD. Beta vulgaris is a member of the Chenopodiaceae family and
is valued for its medicinal qualities and juice value [6]. It contains biologically active
components such as flavonoids, ascorbic acid, saponins, nitrate, and polyphenols that con-
tribute to its health benefits, including antioxidant, anti-inflammatory, and antihypertensive
effects [7,8].

Persea americana, or avocado, belongs to the Lauraceae family and is well known
worldwide because of its nutritionally rich fruit [9]. Seeds contain phytocompounds,
including flavonoids, glycosides, alkaloids, phenols, and tannins, which have various
medicinal uses, including for the treatment of diarrhea, dysentery, and hypertension [10].

Syzygium aromaticum, also referred to as clove, is a member of the Myrtaceae family
and is indigenous to parts of India and Indonesia [11]. Cloves are recognized for their
anti-inflammatory, antimicrobial, and antioxidant qualities, attributed to their bioactive
constituents, including vitamin A and beta-carotene [12,13].

To advance drug discovery, the concept of network pharmacology has been intro-
duced. This approach has been increasingly used over the past decade to understand the
mechanisms of herbal formulas by examining the complex interactions between ligands,
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targets, and biological systems [14]. Molecular docking, a computational approach, is also
used to determine the optimal binding configuration of a ligand and a molecular target.
Network pharmacology aims to methodically and systematically examine the regulatory
impacts of drugs on biomolecular networks, thereby advancing experimental studies con-
ducted in vivo, ex vivo, and in vitro [15]. This study investigated the effects of distinct
plant formulations combined with active bioactive compounds in combating AD through
the use of a combination of network pharmacology and molecular dynamics modeling.

2. Methods
2.1. Plant Materials

The selected medicinal plants, namely, Beta vulgaris root and leaves, Persea americana
seeds, and Syzygium aromaticum, were collected from different areas in Nigeria. Specifically,
the plants were collected from the following locations: Beta vulgaris root and leaves from
Jos, Plateau State (latitude 80◦24′ N and longitude 80◦32′), Persea americana seeds from
Ado-Ekiti, Ekiti State (latitude 7.6124◦ N and longitude 5.2371◦ E), and Syzygium aromaticum
from Omu-Aran, Kwara State (latitude 8.1402◦ N and longitude 5.0963◦ E).

The herbaria were prepared and identified with the help of a taxonomist from the
Forestry Research Institute of Nigeria (FRIN), Ibadan. The identification sample of each
collected medicinal plant was deposited in the herbarium department of FRIN (FHI 114105,
FHI 113162, and FHI 114106). The plant samples were immediately rinsed with water and
cut into small pieces. After that, the samples were completely air-dried. To determine
whether the samples still contained moisture, a weight variation test was performed at
various intervals. Following drying to a constant weight, the samples were ground into a
powder using a grinder and sieved.

2.2. Flavonoid-Rich Extraction and Crude Drug Formulations

Fifty (50) grams of each powdered sample of B. vulgaris leaf, Persea americana seeds,
Beta vulgaris root, and Syzygium aromaticum were steeped in methanol at a concentration of
80% for 72 h to obtain a crude methanolic extract. Flavonoid-rich extraction was performed
following a method described elsewhere [16]. In addition, two formulations were created
by combining ground crude extracts high in flavonoids at the same ratios, as indicated in
Table 1. The obtained crude formulations A and B were used for further experiments.

Table 1. Ratio of crude extracts high in flavonoids utilized during formulation.

Ratio of Crude Extracts High in Flavonoids

Plants Form A Form B

B. vulgaris leaf 2.5 *
Persea americana seeds * 2.5
Beta vulgaris root * 2.5
Syzygium aromaticum 2.5 *

* Not part of formulation.

2.2.1. Analysis of Crude Formulations A and B Using High-Performance Liquid
Chromatography (HPLC–DAD)

HPLC-DAD asnalysis of crude formulations A and B was performed following meth-
ods described elsewhere [16,17].

2.2.2. Determination of the Cholinesterase Activity of Crude Formulations A and B

The inhibitory effects of crude formulations A and B, which are rich in flavonoids,
on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were assessed
using Ellman’s method [18].
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2.3. Ex Vivo Studies
2.3.1. Animals and Preparation of the Brain

Male healthy Wistar rats weighing between 150 and 200 g each were procured from the
Department of Biochemistry, Bowen University, Nigeria. Brain preparation was performed
following the method described by [16]. The study adhered to the approved protocols of the
Bowen University Research Ethics Committee (approval number: BUI/BCH/2024/0005),
which were reported using the ARRIVE guidelines.

2.3.2. Ex Vivo Induction of Brain Injury

Using Fe2+, brain injury was induced ex vivo using the techniques outlined by
Erukainure et al. [19] and Ojo et al. [16].

2.3.3. Evaluation of the Activity of MAO, Also Called Monoamine Oxidase

The monoamine oxidase (MAO) activity was assessed using the method described by
Green and Haughton [20].

3. Network Pharmacology and Molecular Dynamics Studies
3.1. Exploring Flavonoid-Rich Extracts of Crude Formulations A and B for Possible Target Genes
for Biologically Active Compounds

The components in the flavonoid-rich extract of crude formulations A and B, which
were identified as potential targets by HPLC, were predicted using SwissTarget Predic-
tion (http://www.swisstargetprediction.ch/, retrieved on 12 July 2024) [21] while us-
ing a probability filter above zero in the “Homo sapiens” mode [22] and PharmMapper
(http://www.lilab-ecust.cn/pharmmapper/, retrieved on 12 July 2024). The structures of
these molecular bioactive compounds were obtained in SMILES format from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/), which was accessed on 12 July 2024 [23],
and uploaded to the servers. We used the species Homo sapiens to filter the findings
in the SwissTarget Prediction platform, and only targets with a probability of ≥0.1 were
considered. Hit target pharmacophore models, Human Protein Targets Only, and Maxi-
mum Generated Conformations 300 were the parameters utilized in PharmMapper. The
models were sorted by normalized fit score, with scores below 0.5 being eliminated. Finally,
the UniProt database (https://www.uniprot.org/, accessed on 12 July 2024) was used to
acquire the unique matching five gene names and UniProt IDs [24].

3.2. Building the AD Target Database

The genes linked to AD were acquired by means of the DisGeNet database
(https://www.disgenet.org/, retrieved on 12 July 2024) [25], the MalaCards database
(https://www.malacards.org/, retrieved on 12 July 2024) [26], and the Online Mendelian
Inheritance in Man (OMIM, https://www.omim.org/) database retrieved on 12 July
2024) [27]. “Alzheimer’s Disease” was used as the search term. One of the largest public
databases of genes and variations linked to human diseases may be found on the discovery
site DisGeNET. The inclusion of targets with a score of ≥0.1 was considered. Using the
UniProt database, we succeeded in discovering the final gene list and establishing stan-
dard names after merging the three acquired targets and eliminating duplicate targets.
(https://www.uniprot.org/, accessed on 12 July 2024) [24].

3.3. Identification of Bioactive Compound Targets for AD

Once all of the targets associated with AD and the active ingredients in the bioactive
compounds were integrated, the overlapping targets for additional analysis were extracted
using the VENNY 2.1 platform of the R language package (https://bioinfogp.cnb.csic.es/
tools/venny/ accessed on 26 March 2024).

http://www.swisstargetprediction.ch/
http://www.lilab-ecust.cn/pharmmapper/
https://pubchem.ncbi.nlm.nih.gov/
https://www.uniprot.org/
https://www.disgenet.org/
https://www.malacards.org/
https://www.omim.org/
https://www.uniprot.org/
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
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3.4. Construction of Bioactive Compounds from the Flavonoid-Rich Extracts of Crude Formulations
A and B and the AD Target Network

Using the STRING database (https://string-db.org/, retrieved on 12 July 2024) [28],
we constructed a protein–protein interaction network, limiting its scope within the genus
Homo sapiens with a confidence level above 0.9 [28], a graphical user interface that is
freely accessible and can be used to import, explore, and analyze biomolecular interaction
connections visually. The nodes in the network represented the active substances and their
target genes, while the edges displayed the interactions between the active substances and
their target genes. We analyzed the network using the CytoHubba plug-in [29], which
provides an easy-to-use interface for identifying important nodes in biological networks.

3.5. Pathway and Functional Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses were used to evaluate the intersecting genes using the Shiny GO 0.77 tool
(http://bioinformatics.sdstate.edu/go/, retrieved on 12 July 2024) [30]. The top ten results
are displayed with a cutoff value of p < 0.05 and an FDR of <0.05.

3.6. Molecular Docking Analysis

Based on the results of the PIP-network interaction, important targets were selected for
molecular docking analysis. Although MOA, which had a far lower score, was considered
because it formed a strong connection with both AChE and BChE and has a great deal
of potential as a viable AD treatment target, AChE and BChE were chosen because they
possessed significantly higher values in the PPI network.

3.7. Molecular Docking Studies of Bioactive Compounds Against Target Substances
3.7.1. Preparation of Protein Structure

The three target protein 3D structures that were obtained from the Protein Data Bank
(http://www.rcsb.org, accessed on 26 March 2024) are human monoamine oxide B com-
plexed with safinamide (PDBID: 2V5Z), human acetylcholinesterase (hAChE) complexed
with donepezil (PDBID: 4EY7), and human butyrylcholinesterase (hAChE) complexed
with decamethonium (PDBID: 6EP4). Using MGL-AutoDockTools (ADT, v1.5.6), missing
hydrogen atoms were added to all crystal structures, while the existing ligands and water
molecules were eliminated [31].

3.7.2. Ligand Preparation

The HPLC-detected phytocompounds from the flavonoid-rich extract of crude for-
mulations A and B as well as the structure data format (SDF) of the reference inhibitors
(donepezil, decamethonium, and safinamide) were retrieved from the PubChem database
(www.pubchem.ncbi.nlm.nih.gov, accessed on 26 March 2024). Open Babel was utilized
to further transform the chemicals into the pdb chemical format [32]. The carbon atoms
were combined with nonpolar hydrogen molecules, and Gasteiger-type polar hydrogen
charges were assigned to the atoms. Additionally, AutoDock Tools was utilized to convert
the ligand molecules into the dockable PDBQT format.

3.7.3. Molecular Docking Protocol Validation

The extracted crystallized ligand from the two proteins was superimposed with the
docked poses of the cocrystallized ligands (donepezil) that had the lowest binding affinity
according to the docking evaluation to verify the procedure employed for the docking
evaluation. This procedure was used to validate the docking methodology used for the
docking of the bioactive substances identified by HPLC. Using Discovery Studio Visualizer
(BIOVIA discovery studio, 2020), the RMSD was calculated following the superimposition.

https://string-db.org/
http://bioinformatics.sdstate.edu/go/
http://www.rcsb.org
www.pubchem.ncbi.nlm.nih.gov
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3.7.4. Molecular Docking of Phytochemicals with Targeted Active Sites

Using AutoDock Vina integrated into PyRx 0.8, active site target molecular docking of
the reference inhibitors and the HPLC-DAD-discovered compounds to the binding site of
the three target proteins was carried out [33]. The bioactive chemicals were imported using
Open Babel and integrated into PyRx 0.8 prior to docking analysis [32]. Moreover, Open
Babel further reduced the number of bioactive components. The universal force field (UFF)
and the optimization procedure were utilized as the energy minimization parameter and
conjugate gradient descent, respectively. Mapping the amino acid residues surrounding
the natural ligand binding site allowed the identification of the binding site coordinates
of the target proteins. Table 2 displays the dimensions of the grid boxes that were created
around the targets’ actives. Discovery Studio Visualizer version 16 was used to perform an
interactive analysis on the chosen conformer from the docking analysis.

Table 2. The target enzyme binding site coordinates.

Dimensions 6ep4 (Å) 2v5z (Å) 4ey7 (Å)

center_x −19.83 51.92 −13.35
center_y −41.39 155.81 −43.63
center_z 47.10 28.67 27.41
Size x 15.81 13.96 19.75
Size y 17.42 14.53 13.23
Size z 14.59 14.59 16.84

3.7.5. Molecular Dynamics

For a 100 ns molecular dynamics simulation, the complexes of the top two phytochem-
icals with 4ey7 and 1b2y were also determined. The GROMACS 2019.2 and GROMOS96
43a1 force fields were used in the investigation. Charmm GUI was used to create topology
files for the proteins and ligands [16,34,35]. The solvation system, periodic boundary con-
ditions, physiological conditions, system minimization, and equilibration under constant
number of atoms, pressure, and temperature (NPT) in the simulation were consistent with
those employed in our previous study [16,36–38]. The temperature was maintained at
310 K, and the pressure was maintained at 1 atm using a Parrinello–Rahman barostat and
velocity rescales. A leap-frog integrator was utilized with a 2-femtosecond time step. Every
system had a 100 ns simulation, during which 1000 frames—a snapshot every 0.1 ns—were
captured for every system. H-bonds, ROG, SASA, RMSD, and RMSF were obtained from
the MD trajectories.

3.7.6. Calculation of the Binding Free Energy with MM-GBSA

The Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method, along
with decomposition analysis using the gmx MMPBSA package, was employed to obtain
the binding energies of amino acids within 0.5 nm of the ligand. This analysis aimed to
determine the binding free energy of the two top-docked phytochemicals from the initial
docking study [39,40]. The techniques employed were the same as those described in our
earlier reports [16,37,38].

3.7.7. Data Analysis

The data were analyzed using one-way ANOVA, and the mean ± standard deviation
(n = 3) represents the output. We subsequently used Tukey’s multiple range post hoc test
to determine statistically significant differences (p < 0.05). For graph charting, GraphPad
Prism version 9.0 was used.
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4. Results
4.1. HPLC-DAD Analyses of Flavonoid-Rich Extracts of Crude Formulations A and B

HPLC-DAD analysis of crude formulation A revealed the presence of six (6) bioactive
flavonoids, namely, caffeic acid, syringic acid, gallic acid, kaempferol, quercetin, and rutin,
while Form B contained seven bioactive flavonoids, namely, myricetin, rutin, gallic acid,
caffeic acid, quercetin, p-coumaric acid, and methyl gallate (Table 3, Figures S1 and S2).

Table 3. Bioactive compounds identified in crude drug formulations.

Compounds

Form A Conc (mg/mL) Form B Conc (mg/mL)

Gallic acid 6.68 Myricetin 4.63
Caffeic acid 8.92 p-coumaric acid 5.24

Syringic acid 2.18 Gallic acid 6.72
Rutin 4.14 Caffeic acid 8.26

Kaempferol 2.47 Quercetin 1.67
Quercetin 1.18 Methyl gallate 6.26

Rutin 5.48

4.2. Inhibitory Action of Butyrylcholinesterase and Acetylcholinesterase

We assessed the potential of the formulations to inhibit AChE and BChE, pivotal
enzymes in modulating acetylcholine levels crucial for nerve transmission. The percent-
age inhibition at varying concentrations is depicted in Figures 1 and 2, illustrating the
dose-dependent inhibitory effects on both enzymes. The flavonoid-rich extracts of crude
formulations A (IC50 = 112.842 ± 2.084 µg/mL) and B (IC50 = 142.829 ± 4.258 µg/mL) exhib-
ited notable inhibitory activity (p < 0.0001) against AChE, despite being less potent than the
typical control, galantamine (IC50 = 27.950 ± 0.122 µg/mL), as shown in Figure 1. Similarly,
the flavonoid-rich extracts of crude drug formulations A (IC50 = 679.718 ± 20.656 µg/mL)
and B (IC50 = 655.860 ± 32.812 µg/mL) had notable (p < 0.0001) inhibitory effects on BChE,
although the effects were weaker than those of galantamine (IC50 = 23.126 ± 0.683 µg/mL),
as indicated in Figure 2.
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Figure 2. Effect of flavonoid-rich crude drug formulations (A,B) on butyrylcholinesterase activity
Legend: The mean ± SD (n = 3) is used to describe the data; t tests show that p < 0.001. Stan-
dard medication: galantamine. *** is significant at p < 0.001 when Form A and B is compared
to galantamine.

4.3. Activity of Monoamine Oxidase

The inhibitory effects of flavonoid-rich crude drug formulations A and B on monoamine
oxidase activity (MAO) in the oxidized brain were evaluated, and the results are shown
in Figure 3. The experiment showed that the untreated rats had increased MAO activity
(p < 0.0001). However, we observed a notable decrease in rat brains treated with various
doses of the formulations (p < 0.0001). The inhibitory effect of the extracts rich in flavonoids
from crude drug formulations A and B on enzyme activity was concentration-dependent;
the effect increased as the concentration of the crude formulations decreased, with the
greatest inhibitory effect recorded at 1000 µg/mL.
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Figure 3. Effect of different concentrations of flavonoid-rich crude drug formulations A and B on
the activity of rat brain monoamine oxidase (MAO) ex vivo. There was a significant decrease in
monoamine oxidase activity in the range of extracts rich in flavonoids from crude drug formulations
A and B when compared to the group induced exclusively with FeSO4. Legend: the mean ± SD
(n = 3) is used to describe the data.

4.4. Screening of Bioactive Compounds and Databases for AD Targets

The screening of gallic acid, caffeic acid, syringic acid, rutin, quercetin, kaempferol,
methyl gallate, p-coumaric acid, and myricetin in the SwissTarget and PharmMapper
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databases revealed 188 targets, while after the duplicates were removed, we obtained
1171 genes associated with AD from the DisGeNet, MalaCards, and Online Mendelian
Inheritance in Man Databases. Using a Venn diagram, common AD genes and targets
associated with bioactive compounds were identified. Forty-seven putative anti-AD genes
were chosen and regarded as important targets. This schematic is displayed in Figure 4.
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Figure 4. Venn diagram showing the genes linked to AD and the bioactive chemicals from
flavonoid-rich crude drug formulation A- and B-associated targets. Forty-seven genes related to both
Alzheimer’s disease (AD) and C. sativa were identified.

4.5. Analysis of the Target Protein-Protein Interaction Network

Figure 5 displays the diagrammatic form of the PPI network. There were 326 edges and
47 nodes, with an average node degree of 13.9. The network was then loaded into Cytoscape
3.8.2 to identify important subnetworks. The network clustering process was carried out
using proximity and degree metrics based on the scores determined by CutyoHubba and
CytoNca. According to the values of genes that were greater than the median across
all the results, the top 22 targets were filtered out. The top five targets are the PIK3CA,
APP—amyloid-beta precursor, AKT1 GSK3B, and TLR4 proteins. Also, among the several
targets that were identified, AChE, BChE, and MAO, which were ranked as 10, 14, and
34 based on the closeness parameter, respectively. These proteins have been identified to be
inhibited by the formulation in the in vitro assays that were used to validate the activities of
the formulations; hence, they were selected for further analysis.

4.6. Enrichment Analysis of Overlapping Targets

Gene Ontology (GO) enrichment revealed the top 22 out of the 47 overlapping targets
for each enrichment. According to our biological process (BP) analysis (Figure 6A), the
functions of the bioactive compounds were primarily focused on the response to com-
pounds containing oxygen and the response to peptides containing oxygen. The majority
of the genes encoded proteins in the endoplasmic reticulum lumen, cell membrane ratio
and microdomains, mitochondria, and, notably, synapses (Figure 6B). The molecular func-
tion (MF) elements (Figure 6C) primarily included identical proteins, binding to enzymes,
cholinesterase and nuclear estrogen receptor activity, and, notably, amyloid-beta binding.
The bioactive compounds were primarily linked to endocrine resistance, lipids, cancers,
and most notably, AD, according to Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis (Figure 6D).
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Figure 6. Representation of functional annotation and enriched pathways. (A) GO biological
processes. (B) Cellular components of GO. (C) Molecular function of GO. (D) KEGG pathway
analysis.

4.7. Molecular Docking of Bioactive Compounds with Important Targets

We used molecular docking based on the PPI network to assess whether AD-related
core targets and bioactive compounds could bind. The basis for the selection of target
proteins stems from their enrichment in the PPI and related to the prior in vitro assay that
was used to validate the activity of the formulation. Prior to the bioactive compounds
being docked to the target proteins’ active sites, the process was verified, and the super-



Life 2024, 14, 1222 12 of 24

imposed docked conformations of donepezil and safinamide were superimposed against
the crystalized conformation. The computed RMSD for both compounds were 0.4642 and
1.0496 Å, respectively (Figure 7). The binding energies of the bioactive compounds with
respect to the three target proteins are shown in Figure 7. Donepezil, decamethonium,
and safinamide, the native ligands of the 4EY7, 6EP4, and 2V5Z targets, presented bind-
ing energies of −12.2, −5.4, and −9.9 kcal/mol, respectively. The two compounds with
the lowest binding energies to the targets were chosen. Quercetin (−10.2 kcal/mol) and
myricetin (−10.1 1 kcal/mol) are the top two compounds for 4EY7; rutin (−10.6 kcal/mol)
and quercetin (−9.7 kcal/mol) are for 6EP4; and kaempferol (−9.1 kcal/mol) and quercetin
(−8.9 kcal/mol) are for 2V5Z. The top two compounds of 6EP4 had lower binding energies
than did the reference compound (decamethonium, −5.4 kcal/mol), but the binding ener-
gies for the 4EY7 and 2V5Z targets were rather close to those of the reference compounds.
Moreover, at least two of the protein targets showed repeated high binding inclinations to
quercetin, and rutin 16 (Figure 8).
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conformer, while the red conformation represents the conformation extracted from 4EY7 and 2V5Z.

Life 2024, 14, x FOR PEER REVIEW 13 of 26 
 

 

 
Figure 8. Binding energies of bioactive compounds from flavonoid-rich extracts of crude drug for-
mulations A and B that were identified by HPLC against target proteins. 

4.8. Amino Acid Interactions of the Top Two Compounds from the Docking Analysis and 
Reference Molecules with the Five Protein Targets 

The connections between the reference molecule and the top two compounds from 
the docking study with residues from the target protein binding site are shown in Figures 
9–11. A validation study revealed that donepezil was stretched in the long, narrow, and 
hydrophobic gorge of 4ey7 in a binding configuration similar to that of the natural ligand. 
There was a single hydrogen bond between Phe295 and the carbonyl oxygen of the in-
denone ring. Two Pi-alkyl interactions were generated by Tyr337 and Tyr341 of 4ey7 with 
the donepezil piperidine ring. With Donepezil’s 1-benzyl unit, Trp86 and His447 partici-
pate in an aromatic pi-pi stacking interaction. It was discovered that the 5-methoxy unit 
of inden-1-one and the piperidine rings Trp286 and Phe338 have two pi-sigma bonds (Fig-
ure 9). 

As shown in Table 4, myricetin and quercetin, the best bioactive compounds docked 
to the 4EY7 target, were docked similarly to each other in the gorge’s active site, generat-
ing many hydrogen bonds and hydrophobic contacts. The interaction of myricetin in the 
active site was stabilized by 12 hydrogen bonds, 3 carbon hydrogen bonds, 2 pi-pi T 
shapes, and pi-pi stacking, while quercetin was stabilized by 12 hydrogen bonds, 3 carbon 
hydrogen bonds, 2 pi-pi T shapes, and pi-pi stacking. Decamethonium was stabilized in 
the active site of 6EP4 with major hydrophobic interactions such as pi-alkyl interactions 
with His438 and Trp82 and an attractive charge with Asp70 without hydrogen bonds. 
Quercetin and rutin, on the other hand, were stabilized by several hydrogen and hydro-
phobic contacts, including pi-sigma (Ala328), pi-pi stacking (Phe329), and pi-pi T-shaped 
contacts with Trp430 of 6EP4 (Figure 10). The reference compound for 2V5Z, safinamide, 
was stabilized with catalytic residues through several hydrophobic contacts, including pi-
sigma (Leu171), pi-sulfur (Cys172), and pi-pi T-shaped interactions and one hydrogen 
bond with Gln206 of 2V5Z. In addition, the two top docked bioactive compounds pro-
duced multiple hydrophobic interactions and additional hydrogen bonds with the cata-
lytic residues. Kaempferol forms eight hydrogen bonds with 2V5Z and hydrophobic 

-14

-12

-10

-8

-6

-4

-2

0

Sa
fin

am
id

e

Do
ne

pe
zil

De
ca

m
et

ho
ni

um

Q
ue

rc
et

in

M
yr

ice
tin

Ka
em

pf
er

ol

Ru
tin

Q
ue

rc
et

rin

fe
ru

lic
_a

cid

Ca
ffe

ic_
ac

id

p-
co

um
ar

ic_
ac

id

M
et

hy
l_

ga
lla

te

Ga
lli

c_
ac

id

Sy
rin

gi
c_

ac
id

Bi
nd

in
g 

en
er

gy
 (k

ca
l/m

ol
)

Axis Title

Bioactive compounds

4EY7 6EP4 2V5Z

Figure 8. Binding energies of bioactive compounds from flavonoid-rich extracts of crude drug
formulations A and B that were identified by HPLC against target proteins.
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4.8. Amino Acid Interactions of the Top Two Compounds from the Docking Analysis and Reference
Molecules with the Five Protein Targets

The connections between the reference molecule and the top two compounds from the
docking study with residues from the target protein binding site are shown in Figures 9–11.
A validation study revealed that donepezil was stretched in the long, narrow, and hy-
drophobic gorge of 4ey7 in a binding configuration similar to that of the natural ligand.
There was a single hydrogen bond between Phe295 and the carbonyl oxygen of the in-
denone ring. Two Pi-alkyl interactions were generated by Tyr337 and Tyr341 of 4ey7
with the donepezil piperidine ring. With Donepezil’s 1-benzyl unit, Trp86 and His447
participate in an aromatic pi-pi stacking interaction. It was discovered that the 5-methoxy
unit of inden-1-one and the piperidine rings Trp286 and Phe338 have two pi-sigma bonds
(Figure 9).
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Figure 9. Interactions of top-ranked compounds and the reference inhibitor (donepezil) with amino
acids in the 4EY7 active site. Sticks are used to represent the ligands. (ia,ib,ic) Three dimensional
interactions, (ii) two dimensional interactions, and (S) cartoon representation showing ligands in the
active site (a) Donepezil, (b) myricetin, and (c) quercetin.

As shown in Table 4, myricetin and quercetin, the best bioactive compounds docked
to the 4EY7 target, were docked similarly to each other in the gorge’s active site, generating
many hydrogen bonds and hydrophobic contacts. The interaction of myricetin in the active
site was stabilized by 12 hydrogen bonds, 3 carbon hydrogen bonds, 2 pi-pi T shapes, and
pi-pi stacking, while quercetin was stabilized by 12 hydrogen bonds, 3 carbon hydrogen
bonds, 2 pi-pi T shapes, and pi-pi stacking. Decamethonium was stabilized in the active site
of 6EP4 with major hydrophobic interactions such as pi-alkyl interactions with His438 and
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Trp82 and an attractive charge with Asp70 without hydrogen bonds. Quercetin and rutin,
on the other hand, were stabilized by several hydrogen and hydrophobic contacts, including
pi-sigma (Ala328), pi-pi stacking (Phe329), and pi-pi T-shaped contacts with Trp430 of 6EP4
(Figure 10). The reference compound for 2V5Z, safinamide, was stabilized with catalytic
residues through several hydrophobic contacts, including pi-sigma (Leu171), pi-sulfur
(Cys172), and pi-pi T-shaped interactions and one hydrogen bond with Gln206 of 2V5Z.
In addition, the two top docked bioactive compounds produced multiple hydrophobic
interactions and additional hydrogen bonds with the catalytic residues. Kaempferol forms
eight hydrogen bonds with 2V5Z and hydrophobic contacts, including pi-sigma (Leu171
and Ile199), pi-pi T-shaped (Tyr326), amide-pi stacking (Ile198), and pi-alkyl (Ile316, Leu171
and Ile199) interactions. Quercetin was stabilized with four hydrogen bonds in the active
site of 2V5Z and several hydrophobic contacts, including pi-sigma (Ile199 and Leu171),
pi-pi T-shaped (Tyr398), and pi-pi stacking (Tyr326) (Figure 11).
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Figure 10. Interactions of top-ranked compounds and reference inhibitor (decamethonium) with
amino acids in the 6EP4 active site. Sticks are used to represent the ligands. (ia,ib,ic) Three dimen-
sional interactions, (ii) two dimensional interactions, and (S) cartoon representation showing ligands
in the active site (a) Decamethonium, (b) rutin, and (c) quercetin.
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Figure 11. Interactions of top-ranked compounds and reference inhibitor (Safinamide) with amino
acids in the 2V5Z active site. Sticks are used to represent the ligands. (ia,ib,ic) Three dimensional
interactions, (ii) two dimensional interactions, and (S) cartoon representation showing ligands in the
active site. (a) Safinamide, (b) kaempferol, and (c) quercetin.

Table 4. Interaction of the phytochemicals selected from the docking analysis with the target proteins.

Compounds Protein
Targets

Hydrogen Bonds Hydrophobic Interaction

Interacting Residues Interacting Residues

Donepezil

4EY7

Phe295 Trp86 Phe338 His447
Tyr337 Tyr341 Trp286

Myricetin
Tyr133 Ser203 Glu202 Gly126
Trp86 Ser125 Gln71 Tyr72 Asp74
Tyr341 Tyr337

Trp86 Tyr124

Quercetin
Glu202 His447 Tyr341 Tyr337
Ser125 Asp74 Tyr72 Gln71 Trp86
Gly126 Tyr133

Tyr124 Trp86

Decamethonium

6EP4

His438 Trp82 Asp70 yr332
Thr120 Asn83

Rutin

Trp82 Tyr128 Thr122 Glu197
Ser198 Ser287 Thr120 Gly116
Gln119 Ala328 Asn68 His438
Asn83 Trp430 Gly78 Asp70

Phe329 Trp430 Ala328

Quercetin Tyr440 Trp430 Gly78 Trp82 His438
Tyr128 Glu197 Thr120 Gln119 Trp82 Gly115
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Table 4. Cont.

Compounds Protein
Targets

Hydrogen Bonds Hydrophobic Interaction

Interacting Residues Interacting Residues

Safinamide

2V5Z

Gln206 Cys172 Ile316 Ile199
Tyr326 Tyr398 Leu171

Kaempferol Pro120 Ile199 Ty326 Gln206
Cys172 Ile198 Tyr4335 Leu164

Ile316 Leu171 Tyr326
Ile198 Ile199 Cys172

Quercetin Tyr435 Cys172 Pro102 Tyr326 Ile199 Leu171 Cys172
Tyr326 Tyry398

4.9. Molecular Dynamics Simulations

To compare the thermodynamic stability of the top two bioactive compounds com-
plexed with the 4EY7 protein with that of the reference chemical-bound system, the number
of intramolecular hydrogen bonds as well as the RMSD, ROG, and SASA were assessed
during the simulation. Table 5 displays the averages and standard deviations of all ther-
modynamic parameter values, while Figure 12 displays the parameter’s time-dependent
spectra. The RMSD trajectory illustrates how a complex’s structure deviates over time
from its unbound structure. Generally, an RMSD value of less than 3 Å is acceptable [41].
The 4EY7 complex RMSD graphs indicated equilibrium before 10 ns, and for the duration
of the run, the system fluctuated very little (Figure 12a). By measuring the RMSF, the
thermodynamic flexibility of amino acid residues following the binding of myricetin and
quercetin to the 4EY7 active site was examined (Figure 12b).

During an MD simulation, the ROG, another thermodynamic stability metric, mea-
sures a complex’s time-dependent compactness; the lower the value is, the more stable and
compact the complex is. The complex systems of the top-docked compounds presented
similar mean ROG values to those of donepezil (23.20 Å, 23.19 Å, and 23.22 Å) (Figure 12c).
It is commonly assumed that the binding of the top-docked compounds significantly im-
pacts the structural integrity of the protein, which could lead to the unfolding of the protein
structure. A strong positive correlation between the RMSD and ROG usually indicated a
distortion of the protein structure. In this study, even though a higher RMSD value was
recorded, a close mean ROG value was reported for the top docked compounds compared
to the reference compound (donepezil).

The SASA is a measure of protein folding and surface area changes during a simulation;
greater SASA values imply an increase in protein volume ([42]). Along with the mean
SASA values of donepezil, those of the top-docked complexes were similar. The findings
from the SASA analysis corroborate those of the mean ROG, indicating that the binding of
the top-docked compound did not cause unfolding of the protein (Figure 12d). The average
number of H-bonds created in the molecules as a whole did not vary significantly during
the experiment. A close number of hydrogen bonds were observed in the ligand-bound
complexes (Figure 12e).

Table 5. The means and standard deviations of several metrics that were examined from the MDS
trajectories of the top-docked in complex with their corresponding targets.

Complexes
Thermodynamic Parameters

RMSD (Å) RMSF (Å) SASA (Å2) RoG (Å) H-Bonds

4EY7_Donepezil 1.68 ± 0.24 0.87 ± 0.71 23,047.9 ± 465.99 23.20 ± 0.10 114.39 ± 9.33
4EY7_Quercetin 1.71 ± 0.21 0.85± 0.41 23,048.4 ± 49.53 23.19 ± 0.09 114.90 ± 8.41
4EY7_Myricetin 1.72 ± 0.22 0.84 ± 0.53 23,147.3 ± 487.87 23.22 ± 0.09 114.53 ± 9.41
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Figure 12. Plots of thermodynamic parameters computed from the analysis of the MD trajectories of 4EY7 complex systems: (a) Backbone-Root Mean Square
Deviation (RMSD), (b) per residue Root Mean Square Fluctuations (RMSF), (c) radius of gyration, (d) Surface Accessible Surface Area (SASA), and (e) number of
hydrogen atoms.
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4.10. Molecular Mechanics Generalized Born Surface Area (MM-GBSA) Analysis

The binding free energy of the two topmost phytochemicals docked to the protein
4ey7 was determined using the MMGBSA technique. Among the top-docked compounds,
myricetin had the highest negative binding free energy of −25.78 ± 4.04 kcal/mol to 4EY7;
this binding energy was greater than that of donepezil (−19.92 ± 3.62). Notably, the binding
free energies of both phytocompounds are greater than those of donepezil. Table 6 lists the
different parts that add up to the overall binding free energy. Using decomposition analysis,
the contributing amino acids that make up the overall binding energy were examined
and are shown in Figure 13. The majority of the binding free energy was attributed to the
interacting residues during static docking.

Table 6. The means and standard deviations of several energy components that contribute to the free
energy of binding between top-docked phytochemicals and target proteins.

SYSTEM ∆VDWAALS ∆EEL ∆EGB ∆ESURF ∆GGAS ∆GSOLV ∆TOTAL

4EY7_Donepezil −42.77 ± 3.09 −9.72 ± 11.54 38.57 ± 10.55 –5.99 ± 0.417 −52.59 ± 12.34 32.7 ± 11.5 −19.92 ± 3.62
4EY7_
quercetin −31.26 ± 4.20 −15.10 ± 7.52 28.27 ± 5.27 −4.10 ± 0.54 −46.38 ± 9.35 24.20 ± 5.10 −22.20 ± 5.19
4EY7_
Myricetin −38.23 ± 3.74 −34.178± 10.25 51.67 ± 6.76 −5.10 ± 0.31 −72.37 ± 9.56 46.59 ± 6.75 −25.78 ± 4.04
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Figure 13. Plot of the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) showing
the amino acid residues of hAChE that contribute to the total binding free energy of (a) donepezil,
(b) quercetin, and (c) myricetin.

5. Discussion

Many Alzheimer’s patients are currently interested in complementary or alternative
therapies that use readily available herbal products. In the interim, a variety of elements
have a direct impact on the selection criteria for herbal formulations used in illness treat-
ment. The stage at which the disease progresses, the kinds of comorbidities that are present,
the accessibility and cost of the herbs, and their safety profile are all taken into consideration
when choosing herbal treatments for Alzheimer’s disease [43]. Three medicinal plants were
chosen for the study based on these facts as well as the use of herbal medicines for their
neuroprotective properties by different indigenous and ethnic groups in different parts
of Nigeria.

The medicinal value of the majority of plants is attributable to their respective sec-
ondary metabolites. Secondary metabolites are organic substances found in plants that
are produced from primary metabolites and have chemically distinct structures. These
secondary metabolites primarily belong to the following classes: phenolics, terpenoids,
alkaloids containing nitrogen, and substances containing sulfur [44]. Secondary metabolites
found in plants are important radical scavengers. According to a study by Yu-Jie et al. [45],
the two primary MD simulation categories of antioxidant phytochemicals are carotenoids
and polyphenols. The five types of dietary and herbal polyphenols are as follows: tan-
nins, coumarins, stilbenes, phenolic acid, and flavonoids [45]. Additional classifications for
flavonoids include isoflavonoids, anthocyanidins, flavonols, flavones, flavanols, flavanones,
and flavonols, all of which have been linked to antioxidant properties.

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that
degrade acetylcholine, leading to reduced neurotransmission and progressive cognitive
decline. Inhibiting these enzymes can enhance cholinergic transmission, thereby alleviat-
ing Alzheimer’s disease (AD) symptoms, including memory loss, and reducing mortality
risk [46]. Consequently, cholinesterase inhibitors are currently the only approved ther-
apy for AD and neurodegenerative dementia [47]. Cholinergic dysfunction is marked
by increased AChE activity, making it a viable target for therapeutic interventions [48].
Additionally, AChE inhibition not only improves cholinergic signaling but also reduces
amyloid-beta peptide formation and aggregation in AD [49]. In our study, the flavonoid-
rich crude formulations A and B exhibited notable inhibition of AChE and BChE, sug-
gesting their potential neuroprotective effects on the management of AD. This inhibition
implies the ability of the crude drug formulations to mitigate AD-related enzyme activity,
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thereby showing promise as therapeutic agents. Our findings are consistent with previous
reports [16].

The inhibition of monoamine oxidase (MAO) is a crucial biomarker in the management
of AD. The ability of the flavonoid-rich crude formulations A and B to inhibit this enzyme
suggests potential therapeutic benefits for AD. This reduction in MAO activity, attributed
to the crude drug formulations, could increase the levels of amine neurotransmitters such
as dopamine and serotonin, while also preventing the degradation of amines by reactive
oxygen species (ROS) [50].

Our study provides insights from the combination of molecular docking, network
pharmacology, and MD to assess the possible active ingredients of flavonoid-rich crude
drug formulations A and B against AD in intricate processes. The screening results revealed
1171 genes linked to AD and 188 AD targets from the DisGeNet, MalaCards, and Online
Mendelian Inheritance in Man databases. Through 47 potential anti-AD gene targets, the
“active ingredient-target” interaction network and Venn diagram allowed for an intuitive
understanding of the precise relationship between crude drug formulations and AD. Eleven
related active bioactive compounds were identified by our network analysis, all of which
may play a relatively significant role in the anti-Alzheimic effect of crude drug formulations
on AD.

A protein–protein interaction (PPI) network was constructed and then put into Cy-
toscape using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)
database. In this network, the 38 target proteins are nodes, and the connections between
proteins are edges. The complex bioactive-target network reflected that the bioactive com-
pounds in the flavonoid-rich crude drug formulations A and B corresponded to multiple
bioactive constituents, thus revealing multicomponent properties. The target proteins with
high confidence, defined as those with a score higher than 0.9, were chosen. The highest
correlation suggested a strong correlation between the targeted genes, suggesting that each
of these genes may be a significant target [51].

The intersection targets were subjected to GO and KEGG pathway enrichment analysis
using the Shiny GO 0.77 tool. The 47 overlapping targets of the top 22 enriched targets
were identified. Among the GO-enriched categories, peptides and their reactions to oxygen-
containing chemicals were the primary subjects of BP enrichment. The majority of genes
encode proteins in the rat cell membrane, microdomains, endoplasmic reticulum lumen,
mitochondria, and, notably, synapses. Additionally, among other factors, the enhanced
items in the molecular function (MF) category were primarily linked to the binding of
cholinesterase, amyloid-beta, and protein kinase.

The intersecting proteins involved in the extracellular environment, such as membrane
rafts, membrane microdomains, microtubule cytoskeletons, and synapses, were classified
as enriched in cellular components (CCs).

Overall, our GO enrichment results showed that targets in the cytoplasm, cell mem-
brane, or extracellular space that are closely related to the regulation of amyloid beta, the
cellular response, and metabolism during the onset and progression of AD may bind to
anti-AD targets of crude drug formulations. KEGG enrichment analysis was then carried
out to identify possible signaling pathways involved in the effects of crude medication
formulations on AD by merging genomes with cellular and species data. According to
our research, endocrine resistance pathways in cancer and AD signaling pathways are the
primary targets shared by AD and crude drug formulations.

We used molecular docking based on the PPI network to assess whether AD-related
core targets and bioactive drugs could bind. Prior to the bioactive chemicals being docked
to the target proteins’ active sites, the process was verified, and the docked conformations
of donepezil and safinamide were superimposed on the crystallized conformation. For
AChE (4EY7), quercetin and myricetin were the top two compounds; for BChE (6EP4), rutin
and quercetin; and for monoamine oxidase A (2V5Z), kaempferol and quercetin were the
top two compounds. The top two compounds of 6EP4 had higher binding energies than
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did the reference compound (decamethonium, −5.4 kcal/mol), but their binding energies
for the 4EY7 and 2V5Z targets were rather close to those of the reference compounds.

A validation study revealed that donepezil was stretched in the long, narrow, hy-
drophobic gorge of 4ey7 in a binding configuration akin to that of the natural ligand. There
was one hydrogen bond between Phe295 and the carbonyl oxygen of the indenone ring.
Two Pi-alkyl interactions were generated by Tyr337 and Tyr341 of 4ey7 with the donepezil
piperidine ring. With donepezil’s 1-benzyl unit, Trp86 and His447 participate in an aromatic
pi-pi stacking interaction.

The mean RMSD values of the complexes of quercetin and myricetin fluctuated greatly,
although they were still quite close to those of the reference compound donepezil. It can
be deduced from the RMSD analysis of the trajectories that the binding of myricetin and
quercetin did not generally affect the thermostructural stability of the protein [52]. The
ability of atoms and residues in a protein structure to form stable intra- and intermolecular
bonds is taken into account by the RMSF value, which measures the average fluctuation
of these elements over the course of a simulation. The stronger the bonds are and the
greater the affinity of the ligand for the protein is, the less fluctuation there is, especially
in the active site where ligand binding and catalysis occur [53]. Compared to that of the
reference inhibitor, the binding of the top-docked ligands in the present study did not
result in a change in the protein residues. The greatest variation was observed for amino
acid residues 243 and 375. Terminal fluctuations are the cause of the fluctuations at the
end of the spectrum. In this study, the top-docked substances showed similar mean ROG
values compared to the reference compound (donepezil), despite the greater RMSD value
being recorded. During a simulation, the SASA measures changes in surface area and
protein folding; higher SASA values indicate higher protein volumes [42]. Compared
to the mean SASA values of donepezil, those of the top-docked complexes were similar.
The results of the SASA analysis support the mean ROG results, suggesting that protein
unfolding was not triggered by the binding of the top-docked molecule. The stability of
a protein structure is mostly dependent on intramolecular hydrogen bonds and distance,
which can be assessed to ascertain how ligand binding impacts a protein’s stability during
simulation [41].

The binding free energy measures the energy differential between the ligand and
receptor that are bound and unbound in a complex; the larger the negative value is, the
greater the ligand’s affinity for the protein [41]. The binding free energy estimates offer
comprehensive data on the binding mechanisms of the top-docked compounds that are
critical to the preliminary stages of drug discovery and development [54].

6. Conclusions

This study provides compelling evidence that flavonoid-rich crude drug formulations
have significant potential as therapeutic agents in the treatment of Alzheimer’s disease
(AD). By integrating molecular docking, network pharmacology, and molecular dynamics
(MD) simulations, we identified key bioactive compounds from the formulations that
target crucial AD-related proteins. The inhibitory effects of these formulations on acetyl-
cholinesterase (AChE), butyrylcholinesterase (BChE), and monoamine oxidase (MAO)
highlight their potential in modulating cholinergic transmission and reducing oxidative
stress, which are central to AD pathogenesis. The molecular interactions observed in dock-
ing studies and the stability of the compounds during MD simulations further reinforce
the therapeutic promise of these formulations. These findings offer a scientific rationale
for the use of selected medicinal herbs in managing AD and underscore the importance of
exploring natural compounds as viable alternatives to conventional AD treatments. The
top enriched targets that were not considered in the presented studies are suggested for
further study.
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