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Abstract: Autoimmune blistering diseases represent a group of chronic severe, disabling, and
potentially fatal disorders of the skin and/or mucous membranes, primarily mediated by pathogenic
auto-antibodies. Despite their rarity, these diseases are associated with significant morbidity and
mortality and profound negative impact on the patient’s quality of life and impose a considerable
economic burden. Rituximab, an anti-CD-20 monoclonal antibody, represents the first line of therapy
for pemphigus, regardless of severity and a valuable off-label therapeutic alternative for subepidermal
autoimmune blistering diseases as it ensures high rates of rapid, long-lasting complete remission.
Nevertheless, disease recurrence is the rule, all patients requiring maintenance therapy with rituximab
eventually. While innate resistance to rituximab in pemphigus patients is exceptional, acquired
resistance is frequent and may develop even in patients with initial complete response to rituximab,
representing a real challenge for physicians. We discuss the various resistance mechanisms and their
complex interplay, as well as the numerous therapeutic alternatives that may be used to circumvent
rituximab resistance. As no therapeutic measure is universally efficient, individualization of rituximab
treatment regimen and tailored adjuvant therapies in refractory autoimmune blistering diseases
are mandatory.

Keywords: autoimmune blistering diseases; pemphigus; rituximab; mechanism of action; resistance

1. Introduction

Autoimmune blistering diseases are a group of chronic severe, disabling, and po-
tentially fatal disorders of the skin and/or mucous, primarily mediated by pathogenic
auto-antibodies. These diseases include pemphigus, bullous pemphigoid (BP), mucous
membrane pemphigoid (MMP), linear immunoglobulin (Ig) A dermatosis (LABD), der-
matitis herpetiformis (DH), and epidermolysis bullosa acquisita (EBA) [1]. Pemphigus
is characterized by intraepidermal acantholysis triggered by autoantibodies targeting
desmogleins (Dsg 1 and 3 in pemphigus vulgaris and Dsg 1 in pemphigus foliaceus), which
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are crucial for epithelial cell adhesion [1,2]. In contrast, pemphigoid-type and IgA-mediated
bullous diseases are characterized by subepidermal blistering, induced by autoantibodies
directed against basement membrane zone molecules. In BP, autoantibodies target the
230 kilodalton (KDa) type XVII collagen, referred to as bullous pemphigoid antigen (BPAg)1
and BPAg2, a 180 KDa hemidesmosomal protein [3]. In MMP, autoantibodies are directed
against multiple antigens, including BPAg1, BPAg2, laminin 5, α6β4 integrin, and type
VII collagen [3]. IgA1 autoantibodies that mediate LABD usually target two extracellular
components of BPAg2 with a molecular weight of 97 and 120 KDa, respectively, and are
only rarely directed against type VII collagen, laminin 5, or laminin γ1 [4]. DH arises in
genetically predisposed individuals suffering from gluten sensitivity and is characterized
by the production of anti-epidermal transglutaminase IgA autoantibodies. [5]. EBA is
caused by anti-type-VII collagen antibodies, which impair the adhesion of the basement
membrane to the dermis [1,6].

The reported incidence of pemfigus vulgaris (PV), the most common form of pem-
phigus ranges between 0.1–5/100,000/year [1]. While the onset of pempigus usually
takes place during the fifth and sixth decades of life [2], BP and MMP primarily affect
the elderly, typically occurring after the age of 60 [3]. BP has an estimated incidence of
0.4–2.2 cases/100,000/year, being the most common autoimmune blistering disease, espe-
cially in the elderly, reaching an incidence of 18.9 cases/100,000/year in individuals older
than 80 [3]. MMP is rarer, with an incidence of approximately 0.2 cases/100,000/year [3].
The incidence of DH is estimated at 0.4–3.5 cases/100,000/year [5]. LABD and EBA
are very uncommon disorders, with incidences of 0.05–0.23 cases/100,000/year [4] and
0.026 cases/100,000/year, respectively [6].

Despite their rarity, these diseases are associated with significant morbidity and
mortality, profoundly impacting patients’ quality of life. They also impose a considerable
economic burden, as they usually require long-term treatment and frequent, thorough
monitoring due to the high risk of complications from both the disease and its aggressive
treatment. Even with modern therapies, pemphigus still carries a mortality rate of 5–10%,
with a substantial proportion attributable to treatment complications [7].

The mainstay of therapy for these conditions has traditionally been represented by sys-
temic corticosteroids (CS) combined with steroid-sparing agents, especially conventional
immunosuppresants. Although these treatments have significantly reduced mortality, the
adverse effects of long-term, high-dose systemic corticotherapy and immunosuppressive
agents are redoubtable. Prolonged corticotherapy may lead to cardiovascular complications
(arterial hypertension, ischemic heart disease, cardiac failure), endocrine and metabolic
adverse effects (diabetes mellitus, dyslipidemia, obesity, iatrogen Cushing’s syndrome,
growth suppression), gastrointestinal side effects (gastritis or gastric/duodenal ulcer),
musculoskeletal disorders (myopathy, osteoporosis, aseptic osteonecrosis), ocular com-
plications (cataract, glaucoma), neuropsychiatric disorders (from anxiety and irritability
to frank psychosis), increased risk of infection, and cutaneous side effects (skin atrophy,
purpura, striae, impaired wound healing, acne, hirsutism) [7,8]. Corticosteroid-sparing
immunosuppressants like azathioprine, mycophenolate mofetil, cyclophosphamide, and
cyclosporine further increase the patients’ risk of infection, may cause myelosuppression,
gastrointestinal complications, impaired renal and liver function, and increased risk of
malignancy [7,8]. Additionally, severe forms of autoimmune blistering diseases refractory
to conventional anti-inflammatory and immunosuppressive therapies are not uncommon
and often necessitate alternative treatment strategies, like plasmapheresis or high dose
intravenous immunoglobulins. In recent decades, the use of anti-CD20 monoclonal anti-
bodies in patients with severe, unresponsive autoimmune blistering diseases has proven
highly effective, leading to the recommendation of rituximab as first line treatment not only
for moderate or severe, but also for mild cases of pemphigus, according to the European
Academy of Dermatology and venereology (EADV) pemphigus treatment guidelines [8].
Subepidermal autoimmune blistering diseases also greatly benefit from the off-label use of
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rituximab, which achieves high rates of long-lasting complete clinical remission, as well as
serological remission in patients who fail conventional treatment [9–12].

2. Mechanism of Action of Rituximab in Autoimmune Blistering Diseases

Rituximab is a chimeric monoclonal antibody composed of human IgG1 immunoglob-
ulin constant regions and murine variable regions, specifically targeting CD20, a transmem-
brane protein structurally similar to the β subunit of the high-affinity immunoglobulin E
receptor (FcεR) I, important for the differentiation, growth, and activation of B lympho-
cytes [13]. Originally intended for treating B-cell-hematologic malignancies, rituximab has
proven effective in numerous autoimmune diseases given its complex mechanism of action.

The primary effect of rituximab is the rapid and long-lasting depletion of CD20+ B cells,
including peripheral mature B cells, as well as bone marrow immature B cells, autoantigen-
activated marginal zone and follicular B cells. This depletion is achieved principally,
but not exclusively, through antibody-dependent cellular cytotoxicity (ADCC). Direct
induction of apoptosis, antibody-mediated phagocytosis, and complement-dependent
cytotoxicity (CDC) contribute to CD20+ B cells death (Figure 1) [14]. Autoreactive memory
B-cells (MBCs) are particularly affected by rituximab, which accounts for its prompt and
sustained therapeutic effect in autoantibody-mediated autoimmune conditions [14–18].
Notably, rituximab does not impact CD20− pro-B cells, allowing repopulation of peripheric
blood with B cells within 6–12 months [16]. Long-lived plasma cells (LLPCs), which are
CD20−, are also spared, explaining the insignificant variation in total serum antibody levels
and anti-infectious antibody levels following treatment with rituximab [16]. Upon B-cell
repopulation, defined by Albers et al. as the presence of ≥5 CD19+ cells/µL [19], apart from
the markedly increased naive/MBC ratio, the expansion of circulating regulatory B-cells
(Bregs) occurs [17]. Most of these Bregs are transitional interleukin 10 (IL-10) producing B
cells, able to reduce the antigen-presenting potential of dendritic cells, as well as CD4+ T
cells responses [17]. This contributes to the maintenance of immune tolerance and disease
remission even after reemergence of mature B cells [20]. While the population of IL-10
producing B cells increases following treatment with rituximab or IVIg, this does not occur
following corticotherapy and treatment with conventional immunosuppressive agents [21].
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Several other mechanisms confer rituximab its curative valences. Although it does
not influence the total number and function of peripheral CD4+ and CD8+ T cells [22,23],
rituximab induces a swift and prolonged decline in autoreactive CD4+ T cells owing to
the loss of the stimulation exerted by autoreactive B cells acting as antigen-presenting
cells [24]. Another possible explanation is the depletion of CD20+ T helper (Th) 17 cells,
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as demonstrated in patients with rheumatoid arthritis [25]. The number of autoreactive
T cells correlates with the serum levels of autoantibodies and with the clinical activity of
the disease [23,24]. Moreover, circulatory regulatory T cells (Treg) numbers are reduced in
PV patients, contributing to the overactivity of autoreactive B cells [26,27]. Unlike other
autoimmune diseases, in PV they decrease even more after rituximab administration, only
to be detected in higher numbers in lesional skin [28], suggesting an increased Tregs skin
homing meant to contain the cutaneous autoimmune process [29]. This rituximab-specific
response further aids in disease control.

Rituximab exerts other specific effects, as depicted in Figure 2. It causes a substantial
decrease in the number of autoreactive T follicular helper (Tfh) cells in peripheral blood,
although the circulating Tfh cells total number is not modified. The drop in autoreactive
Tfh cells numbers is associated with a considerable decrease in serum IL-21 levels [30]. The
latter correlates with B-cell depletion given the critical role of IL-21 in B-cell maturation,
particularly MBC generation [30]. On the other hand, as demonstrated by Baumjohann
et al., to maintain their phenotype, Tfh cells require constant antigenic stimulation by B
cells. Therefore, the impact is bidirectional, as the depletion of autoreactive B cells hampers
autoreactive Tfh cells development and maintenance [31].
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B cells repopulate the peripheral blood 6–12 months after the administration of rit-
uximab [16]. However, these are naïve B cells. B cell maturation is hindered for a much
longer period of time, delaying the reappearance of MBCs [32]. The naive/MBC ratio is
markedly increased, explaining the lack of increase in serum autoantibody levels after
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B-cell repopulation [16]. Furthermore, the newly generated B cells display rearrangement
of their Ig repertoire, converting from oligoclonal to polyclonal [17]. Despite this, per-
sistently high autoantibody levels have been reported in 16–40% of patients in complete
remission [33,34]. These are most likely non-pathogenic antibodies, targeting different
epitopes [17]. Thus, B cell repopulation of the peripheral blood is usually not associated
with disease recurrence [32].

The serum level of B cell-activating factor (BAFF), a key factor in B-cell maturation,
is high while MBCs are absent from peripheral blood and greatly decreases upon B-cell
recovery, signaling the risk of disease recurrence [35]. Rituximab specifically decreases
BAFF-R mRNA in non-autoreactive, as well as in reemerging autoreactive B cells, an effect
that contributes to sustained remissions despite B cell repopulation [36].

3. Disease Relapse after Rituximab Administration

Disease relapse occurs in virtually all patients with autoimmune blistering diseases
after a variable period of time, usually 6 to 24 months following administration of ritux-
imab [19,37]. This is due to several interconnected processes.

Autoreactive MBCs can persist in the spleen and lymph nodes given the intense
survival signals in these areas [15]. This incomplete MBC depletion does not always lead
to an early relapse, as these cells may remain dormant in lymphoid organs for years, even
decades [15]. Persistence of autoreactive CD4+ Th cells is also possible.

The other main mechanism underlying disease recurrence is the emergence of new
lineages of autoantigen-specific B cells. Autoantibody-producing LLPCs may also induce
disease recurrence [16].

Given these factors, all patients need maintenance treatment eventually, yet the op-
timal regimen is to be established. The current EADV guidelines for the management of
pemphigus recommend maintenance treatment with rituximab administered 6 months
after the initial cycle in doses ranging from 500 mg to 1 g in patients who achieved complete
remission, especially patients with severe PV at initial presentation and/or patients with
high anti-Dsg antibodies levels at month 3 and a full cycle (two infusions of 1 g two weeks
apart) in patients without complete remission. Subsequently, a dose of 500 mg of rituximab
every 6 months is recommended [8]. However, some experts argue that additional doses of
rituximab should be administered only in patients with incomplete response or disease
recurrence. We also endorse this approach, as the majority of our patients have experienced
long-lasting complete remission, ranging from 18 months to 13 years, without any specific
treatment following rituximab administration.

In the absence of large, randomized controlled trials, data on the use of rituximab in
other autoimmune blistering diseases stems from case reports and case series. Recurrences
after the initial rituximab cycle occurred after a mean interval of 10 months and were
successfully treated with additional doses of rituximab [9,12].

In our view, frequent administration of rituximab, a profoundly immunosuppressive
therapy, in patients with sustained complete remission is unnecessary and unjustified. We
believe maintenance therapy should be individualized. Ideally, subsequent administrations
of rituximab should be prompted by the detection of biomarkers that signal an imminent
recurrence of the autoimmune blistering disease. Such biomarkers are under investigation
and include circulating CD19+ B cell counts, the speed of B cell depletion and repopula-
tion [28], CD4+ T cell counts, pathogenic anti-Dsg autoantibody serum levels, BAFF serum
level, as well as several genetic markers predicting response to rituximab [19,38,39].

4. Mechanisms of Resistance to Rituximab and Strategies to Overpass It

Innate resistance to rituximab in patients with autoimmune blistering diseases is
exceptional and is usually due to low CD20 expression or accelerated drug clearance [13].
Acquired resistance, on the other hand, is frequent and can develop even in patients with ini-
tial complete response to rituximab. Apart from the evading mechanisms already discussed,
a series of additional mechanisms may be involved in the development of rituximab resis-
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tance, such as CD20 downregulation, especially on MBCs [40]; impaired rituximab–CD20
binding due to the release of human anti-chimeric antibodies (HACAs) to rituximab [41];
and CD20 alterations like CD20 alternative transcript (D393–CD20) [42] or lipid raft sig-
naling biochemical changes [43]. Certain comorbidities, previous treatments and genetic
variations and mutations also impact the immunological effects of rituximab [43].

1. Interference with rituximab’s mechanisms of action

CD46, CD59, and CD55 are membrane proteins that inhibit complement activation and
the formation of the membrane attack complex. B cells that overexpress these complement
activation regulators are resistant to rituximab because they are not susceptible to CDC. This
might represent a result of selective pressure due to previous exposure to rituximab [43].
The purine analog fludarabine seems to act synergically with rituximab, an effect explained
by its ability to decrease CD55 activity [44], making it a useful adjuvant therapy in such
cases of resistance to rituximab. However, as the role of complement activation regulators
in the protection of normal cells against CDC is crucial, aggressive downregulation of these
proteins would be unquestionably detrimental.

Rituximab-induced CDC may also be hindered by the consumption of complement
proteins. Klepfish et al. proved that coadministration of fresh frozen plasma with rituximab
successfully counteracts this deficiency and restores rituximab’s efficacy [45].

Nevertheless, there is a very fine line between benefit and harm with such interferences.
As previously discussed, rituximab exerts its destructive effect on B cells mainly through
ADCC. The ability of natural killer (NK) cells to perform ADCC is impeded by C3b,
therefore complement depletion favors this process [46]. Furthermore, upregulation of
human leukocyte antigen (HLA) I on B cells can render them resistant to NK-cell-mediated
ADCC [47].

ADCC is also hindered by a defective binding of rituximab to its target and by con-
formational changes in the CD20/rituximab complex [43]. In some patients, FcR polymor-
phisms may be the cause of rituximab failure to induce ADCC. Alteration of the lipid rafts
of B cells membranes in patients receiving statins was demonstrated to induce in vitro
resistance to ADCC [48]. Some authors also point to vitamin D deficiency as potentially
involved in rituximab-mediated ADCC resistance [49]. Administering rituximab in com-
bination with granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage
colony stimulating factor (GM-CSF), interferon (IFN)-γ, IL-2, IL-12, and IL-15 may help
surpass ADCC resistance by increasing the function of NK cells [43]. Most studies have
focused on the effects of G-CSF and GM-CSF, which upregulate the expression of neutrophil
adhesion molecules [50] and IL-2, which also augments ADCC [51]. The potential of CpG
oligonucleotides, bromohydrin pyrophosphate, and Toll-like-receptor 9 (TLR-9) agonists to
enhance ADCC is currently under investigation [52–54].

Last but not least, after several courses of rituximab, B cells may become resistant to
rituximab—induced apoptosis, mainly due to the excessive activation of the nuclear factor—
κB (NF-κB) pathway, known to markedly stimulate cellular antiapoptotic mechanisms. This
triggers overexpression of the anti-apoptotic proteins belonging to the Bcl-2 family, whereas
Bax and Bak, the pro-apoptotic members of the Bcl-2 family proteins, are substantially
down-regulated, leading to resistance not only to rituximab but also to chemotherapy [55].
Combination therapy with rituximab and Bcl-2 inhibitors like oblimersen has shown
encouraging results in follicular NHL patients, achieving response rates of 60%, even in
rituximab—resistant cases [56]. Several other therapeutic agents, such as temsirolimus,
bortezomib, and histone deacetylase inhibitors, also sensitize lymphoma cells to rituximab
in vitro [57,58]. Moreover, in lymphoma patients, resistance to apoptosis can be overcome
by combined treatment with rituximab and cytotoxic agents [43]. Researchers are exploring
techniques to increase CD20 expression in order to restore B cells susceptibility to rituximab-
induced apoptosis.
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2. Altered CD20 expression

Apart from the development of resistance to rituximab-induced CDC, ADCC, and
direct apoptosis, other factors may impact the treatment’s effectiveness. Among these,
the most important is represented by the altered expression of CD20 on the surface of
B cells, which may be caused by a variety of processes, such as lipid raft reorganization
and perturbed signaling, CD20 internalization upon repeated administration of rituximab,
and genetic variations [43]. CD20 gene deletion mutations affecting the C-terminal region
impair antibody binding [43]. The exon 2–216 C/T polymorphism of the gene encoding
CD20, believed to influence its expression and mRNA stability greatly impacts the response
to rituximab in B cell lymphoma patients, C/C homozygotes achieving significantly greater
remission rates compared to T/T homozygotes or heterozygotes [59]. In addition, Shimizu
et al. explored the epigenetic factors linked to decreased CD20 expression and demonstrated
the ability of valproic acid and romidepsin, both histone deacetylase inhibitors to increase
CD20 expression in vitro and subsequently amplify rituximab-induced CDC [58].

3. Removal of CD20-rituximab complexes from the B-cell surface

Another interesting resistance mechanism is the removal from the B cell surface of
CD20-rituximab complexes upon recognition by FcR on macrophages and monocytes.
However, this so-called “shaving” of CD20-rituximab complexes can be avoided by adding
intravenous immune globulines (IVIGs) to the treatment regimen [60].

4. Production of antibodies against rituximab

No large studies have analyzed the production of HACAs in patients receiving ritux-
imab. The available evidence indicates that HACAs are more often detected in patients
treated with rituximab for autoimmune diseases, particularly systemic lupus erythemato-
sus, compared to patients with NHL [41]. However, the production of HACAs to rituximab
is a rare phenomenon and interestingly occurs late, usually 18 to 44 weeks after the first
dose of rituximab [41]. Additionally, in some patients, HACA production proved transient.
The infusion protocol and concomitant use of immunosuppressants do not seem to influ-
ence HACAs production [41]. The clinical importance of HACAs to rituximab is still a
matter of debate, but the risk of hypersensitivity reactions and incomplete control of the
disease should not be overlooked.

5. Genetic factors

Other genetic alterations influence rituximab pharmacokinetics, efficacy and safety in
autoimmune diseases [37].

Given the crucial role of FcγR, particularly that of the stimulatory FCγRIIIA in the
activity of macrophages and NK cells, the influence of FCGR3A gene polymorphisms
on rituximab efficacy has been investigated [61–63]. FCγRIIIA displays stronger affinity
for IgG, leading to enhanced cytotoxicity and B cell depletion and, implicitly, a superior
response to rituximab in carriers of FCGR3A-158V (rs396991; T > G) polymorphism [64–67],
i.e., valine homozygotes (V/V) compared to phenylalanine homozygotes (F/F) and het-
erozygotes (V/F) [68–71]. Secondary resistance to rituximab was only reported in the
latter two patient cathegories [66]. FCGRA-158 F/F carriers also present a higher risk of
hypogammaglobulinaemia [72] and sepsis [73] following rituximab treatment. On the other
hand, FCGRA-158 V/V and FCGRA-158 V/F polymorphisms are associated with a higher
risk of rituximab-related late-onset neutropaenia [74].

The structure of FcγRIIA, a stimulating receptor expressed by macrophages and
monocytes also impacts the receptor’s antibody binding intensity and the clinical response
to rituximab. FCGR2A-131 histidine homozygotes (H/H) proved considerably more
responsive to rituximab than arginine homozygotes (R/R) or heterozygotes (H/R) [75–77].
Moreover, FCGR2A-131 H/H and FCGR2A-131 H/R carriers have an increased risk of
anemia, hypogammaglobulinemia and sepsis post-rituximab treatment compared to R/R
homozygotes [78,79].
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Polymorphisms of genes encoding cytokines essential for the survival, proliferation
and maturation of B cells also greatly influence the response to rituximab [37]. Among
them, GC/GG genotypes of the IL-6 promoter at position −174 (rs1800795) are associated
with a better response to rituximab 6 months after the initial cycle, accompanied by a
significant decrease in IL-6 serum levels in rheumatoid arthritis patients [80]. On the
contrary, −174 CC homozygotes are much less likely to respond to rituximab and present a
much lesser decrease in IL-6 levels 6 months after rituximab administration [80].

Daien et al. studied the influence of 9 gene variations and 13 single nucleotide
polymorphisms (SNPs) on the response to rituximab in patients diagnosed with rheumatoid
arthritis and reported a positive correlation between SNPs at transforming growth factor
(TGF)-β1 codon 25 (rs1800471—the G/C genotype) and codon 10 (rs1800470—the C/T
genotype) and rituximab efficacy [81]. This is not surprising considering the inhibitory role
of TGF-β1 on the activation of B cells and antibody production [81].

The impact of numerous interferon (IFN) type I response genes (IRGs), like LY6E,
HERC5, IFI44L, ISG15, MxA, MxB, EPSTI1, RSAD2, and OAS1 on rituximab efficacy in
rheumatoid arthritis patients was evaluated in several studies [82,83]. Both the three IRGs
cluster (Mx1, ISG15 and OAS1) and the eight IRGs cluster (LY6E, HERC5, IFI44L, ISG15,
MxA, MxB, EPSTI1, RSAD2) showed a strong inverse correlation with the clinical response
to rituximab, independent of other predictive factors, such as the presence of autoantibod-
ies and the previous use of biologic treatments, disease modifying antirheumatic drugs
(DMARDs), and statins [82,83]. Cantaert et al. hypothesized that B cells play a less sig-
nificant role in the pathogenesis of rheumatoid arthritis in patients with high IFN-α and
-β serum levels [84]. This hypothesis has been contradicted by other authors considering
that IRG expression does not vary depending on the presence of absence of autoantibod-
ies [85]. Cambridge et al. suggested the possible association of high IFN type I levels with
rituximab-insensitive B cells [85].

The impact of a series of SNPs for IFN regulatory factor 5 (IRF5) (rs2004640), IRF7
(rs1131665) tyrosine kinase (TYK) 2 (rs2304256, rs280519 and rs12720356), signal transducer
and activator of transcription (STAT) 4 (rs7574865), and osteopontin (SPP1) (rs11439060 and
rs9138) on rituximab effectiveness have also been assessed [86]. SPP1 rs9138 A/A and IRF5
rs2004640 G/T or G/G genotypes strongly correlated with a good response to rituximab,
independent of the presence or absence of autoantibodies [86]

The G/T polymorphism of the IL2/IL21 region (rs6822844) also affects rituximab
efficacy in patients with systemic lupus erythematosus, G/G homozygotes responding
better to rituximab [87]. This correlation did not apply to patients with other autoimmune
diseases [87].

Genetic variations of another key factor for B cell survival and maturation, BAFF,
have been analyzed, leading to the conclusion that in patients with rheumatoid arthritis,
homozygous C/C genotypes of BAFF promoter at position 871 (rs9514828) are associated
with a superior response to rituximab than T/T genotypes [88]. Additionally, patients with
the TTTT BAFF promoter haplotype (871 C > T, 2704 T > C, 2841 T > C and 2701 T > A)
show a better response to rituximab [89]. Contrarily, C/C homozygotes for BAFF-2704 and
carriers of SNP rs3759467 in the 5′ regulatory region of BAFF gene who received rituximab
for the treatment of anti-neutrophil cytoplasmic antibody (ANCA) vasculitis were more
frequently resistant to rituximab [90].

In addition, a positive correlation has been observed in seropositive rheumatoid
arthritis patients between rituximab efficacy and the presence of allele 2 of HS1.2A enhancer
of the 3′ regulatory region of the heavy Ig chain, explained by its role in B cell maturation
and autoantibody production [91].

The intensity of rituximab-induced CDC is positively correlated with the serum levels
of the complement fragment C1q [92]. However, G/A polymorphisms of C1QA-276 have a
contradicting effect, the A/A genotype being associated with lower serum C1q levels [93],
but at the same time with greater remission rates and a more durable response in patients
with B cell lymphomas compared to A/G and G/G genotypes [92,94].
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6. Previous treatments

Previous treatments received by the patient may also influence rituximab efficacy. In a
large observational study, Chatzidionysiou et al. analyzed the data provided by 10 coun-
tries registries regarding 2019 rheumatoid arthritis patients treated with rituximab and
concluded that the most important predictors of response to rituximab were seropositivity
for rheumatoid factor or anti cyclic citrullinated peptide antibodies, not having previously
received biologic treatment or having undergone treatment with only one biological agent
before rituximab [95]. Resistance to rituximab was more frequently observed among pa-
tients who had been unsuccessfully treated with more than one anti-tumor necrosis factor
(TNF) α agent [95]. These findings are supported by the results of other studies [77,96].
Moreover, previous studies showed co-administration of classical DMARDs leads to a
more sustained clinical benefit after the first cycle of rituximab in patients with rheumatoid
arthritis [95]. Although this is also true for patients with autoimmune blistering diseases,
the concomitant administration of conventional immunosuppressive agents is usually
avoided due to the greater risk of adverse effects, especially infections [97].

7. Rituximab pharmacokinetics

As higher serum concentrations of rituximab were detected in responders vs. non-
responders in B cell non-Hodgkin lymphoma (NHL) patients [43], it is only intuitive that
higher doses or more frequent administrations could benefit non-responders with autoim-
mune blistering diseases. Serum concentrations of rituximab depend on multiple factors,
among which are genetic factors, disease type and tumor burden [43]. FcγRIII gene poly-
morphism is one such factor, shown to influence rituximab concentrations and efficacy [98].
Dayde et al. demonstrated an inverse correlation between rituximab serum concentrations
and tumor burden in NHL patients as rituximab readily infiltrated highly vascularized
tumors given the abundance and availability of antigens [99]. While rituximab’s highly
variable pharmacokinetics most probably plays a key role in resistance, the minimum
effective rituximab serum concentration remains unclear. Although some authors support
the use of higher doses of rituximab (e.g., 1 g/m2) in non-responders [100], no large studies
have addressed this issue so far.

Interestingly, intralesional rituximab is a valuable therapeutic option even in patients
refractory to intravenous rituximab. Vinaj et al. reported marked improvement of the
oral lesions in three PV patients refractory to conventional immunosuppressants and
intravenous rituximab [101]. Yuan et al. detected the accumulation of Dsg-3 and Dsg-1
specific B-cells in pemphigus cutaneous lesions and postulated that the skin acts as a tertiary
lymphoid organ, with infiltrating auto-reactive B-cells releasing anti-Dsg autoantibodies
due to an intense cross-talk between B cells and IL-21- and IL-17A-producing CD4+ T
cells. Thus, lesions resistant to intravenous rituximab may remain susceptible to the
intralesional administration of the drug [102]. Table 1 summarizes the mechanisms of
resistance to rituximab.

Table 1. Mechanisms of resistance to rituximab and strategies to overpass it.

Cathegory Mechanism Cause Premise Strategies to
Circumvent Resistance

Interference with
rituximab’s
mechanisms of
action

Impaired CDC

Overexpression of
complement activation
regulators CD46, CD59
and CD55 on the
surface of B cells [43]

Selective pressure due to
prior exposure to
rituximab

Combination therapy
with fludarabine, which
decreases CD55
activity [44]

Consumption of
complement proteins

Consumption during
CDC

Coadministration of
fresh frozen plasma [45]
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Table 1. Cont.

Cathegory Mechanism Cause Premise Strategies to
Circumvent Resistance

Interference with
rituximab’s
mechanisms of
action

Impaired ADCC

Defectuous binding of
rituximab to its target
Conformational
changes in the
CD20/rituximab
complex [43]

FcR polymorphisms
Alteration of the lipid
rafts of B cells
membranes in patients
recieving statins [48]
Vitamin D deficiency
[49]

Combination therapy
with G-CSF, GM-CSF,
IFN-γ, IL-2, IL-12, and
IL-15, which upregulate
the expression of
neutrophil adhesion
molecules [50] and
increase NK cells
activity [43]
CpG oligonucleotides,
bromohydrin
pyrophosphate, and
TLR-9 agonists seem to
enhance ADCC and are
currently investigated
[52–54]

Impaired direct
apoptosis

Excessive activation of
NF-κB pathway

Overexpression of the
anti-apoptotic proteins
and downregulartion of
pro-apoptotic proteins
[55]

Combination therapy
with
Bcl-2 inhibitors like
oblimersen [56],
temsirolimus,
bortezomib, and histone
deacetylase inhibitors
that sensitize lymphoma
cells to rituximab
in vitro [57,58]
or
cytotoxic agents in
lymphoma patients [43]

Altered CD20
expression [43]

Lipid raft
reorganization Perturbed signaling Biochemical changes

Valproic acid and
romidepsin, both
histone deacetylase
inhibitors seem to
increase CD20
expression in vitro [58]

CD20 internalization Perturbed signaling Repeated administration
of rituximab

Genetic alterations

CD20 gene deletion
mutations affecting the
C-terminal region,
impairing antibody
binding [43]

Altered CD20 expression
and mRNA stability

−216 C/T
polymorphism in exon
2 of CD20 gene [59]

Epigenetic factors
[58]

Decreased CD20
expression

Altered binding of
rituximab to CD20

Removal of
CD20-rituximab
complexes from the
B-cell surface

“Shaving” of
CD20-rituximab
complexes

Removal of
rituximab-CD20
complexes upon
recognition by FcR on
macrophages and
monocytes

Saturation of the
phagocytic system by
previously cleared
rituximab opsonized
cells and divertion of the
rest of
rituximab-opsonized
cells to different
pathways that lead to
removal of
CD20-rituximab
complexes [60]

Combination therapy
with IVIGs [60]
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Table 1. Cont.

Cathegory Mechanism Cause Premise Strategies to
Circumvent Resistance

Rapid rituximab
clearance

Production of
anti-chimeric
antibodies to
rituximab [41]

Immune response
against rituximab’s
murine components

Neutralizing antibodies
block rituximab’s active
site

Concomitant
administration of
conventional
immunosuppressive
agents

Genetic factors

FCGR3A-158
polymorphisms [66]

Phenylalanine
homozygotes (F/F)
Phenylalanine/valine
heterozygotes (V/F)
[68–71]

Reduced cytotoxicity
and B cell depletion

FCGR2A-131
polymorphisms
[75–77]

Arginine homozygotes
(R/R)
Histidine/arginine
heterozygotes (H/R)

Lower antibody binding
intensity

-174 IL-6 promoter
polimorphisms [80] CC homozygotes

Lesser decrease in IL-6
levels and poorer
response to rituximab

IRGs [82,83]

Three IRGs cluster
(Mx1, ISG15 and
OAS1)
Eight IRGs cluster
(LY6E, HERC5, IFI44L,
ISG15, MxA, MxB,
EPSTI1, RSAD2)

B cells might play a less
significant role in the
pathogenesis of
rheumatoid arthritis in
patients with high IFN-α
and -β serum levels [84]
Possible association of
high IFN type I levels
with
rituximab-insensitive B
cells [85].

BAFF
polymorphisms

T/T genotypes of
BAFF promoter at
position 871 [88]
C/C homozygotes for
BAFF-2704 [90]
Carriers of SNP
rs3759467 in the 5′
regulatory region of
BAFF [90]

BAFF is a key factor for
B cell survival and
maturation.

The use of BAFF
targeting therapies such
as belimumab and
atacicept [103]

C1QA-276
polymorphisms

A/G and G/G
genotypes [92,94]

The intensity of
rituximab-induced CDC
is positively correlated
with C1q serum levels
[92].

Coadministration of
fresh frozen plasma [45]

Previous treatments

Treatment with ≥2
biological agents
prior to rituximab
[95]

Influence on the
biologic effect,
immunogenicity of
rituximab and drug
clearance

Immunologic
consequencies of prior
biologic therapies

Use of rituximab as
first-line biologic
treatnent

Rituximab
phamacokinetics

Lower serum
concentrations [43]

Genetic factors
Disease type
Tumor burden [43]

Rituximab readily
infiltrates highly
vascularized tumors
given the abundance.
and availability of
antigens [99].

Administering higher
doses of rituximab in
non-responders [100]
Using intralesional
rituximab [101]

Abbreviations: CDC—complement-dependent cytotoxicity; ADCC—antibody dependent cytotoxicity; FcR—Fc
receptor; G-CSF—granulocyte-colony-stimulating factor; GM-CSF—granulocyte-macrophage-colony-stimulating
factor; IFN-γ—interferon-γ; IL—interleukin; NK cells—natural killer cells; TLR-9—toll like receptor-9;
IVIGs—intravenous immunoglobulins; IRGs—interferon type I response genes; BAFF—B cell-activating fac-
tor; SNP—single nucleotide polymorphism; C1q—complement fragment 1q.
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Other Strategies to Overpass Rituximab Resistance

An alternative approach in rituximab resistant cases is the use of second and third
generation humanized or completely human anti-CD20 monoclonal antibodies. These
possess a series of advantages over rituximab, including significantly lower immunogenic-
ity and superior efficacy due to higher affinity for FcR, enhanced ADCC (ocrelizumab,
GA-101), enhanced ADCC, and direct apoptosis (obinutuzumab), greater binding avidity,
improved CDC, and slower dissociation rates (veltuzumab), more potent CDC due to
the stronger binding to CD20 at a more proximal site to the cell membrane and a slower
dissociation rate, as well as resistance to the effects of complement-regulatory molecules
(ofatumumab) [43,104–106]. As evidence of their ability to surmount rituximab resistance
mechanisms stems from a limited number of case reports, further studies are needed to
assess their efficacy in resistant cases of autoimmune blistering diseases.

BAFF-targeting therapies such as belimumab and atacicept have also been successfully
used in PV patients resistant to rituximab [103].

Treatment with ibrutinib is another appealing strategy in rituximab-resistant patients
with autoimmune blistering diseases. The Bruton kinase (BTK) inhibitor has proven
highly effective not only in patients with B-cell lymphomas, but also in pemphigus. BTK is
principally expressed on B-cells, except plasma cells and its activation leads to stimulation of
p38MAPK, NFkB and MEK/ERK pathways, resulting in B-cell proliferation and maturation,
autoantibody production and Ig class switching [103,107,108], which implicitly favor Tfh
cells differentiation. Furthermore, topical p38MAPK inhibitors may prove useful and safe
adjuvants in refractory patients [103].

Janus kinases (JAK) 1 and 3 inhibitors (tofacinib) may also be used as adjuvants in
refractory PV, even as a topical treatment as they suppress the activation of Dsg-specific
Tfh cells and their influence on B cells phenotype and function [103,109].

STAT 3 inhibitors (rapamicin, mTOR inhibitors such as sirolimus, or STAT3 inhibitor XVIII)
were shown to be effective in PV in animal studies by increasing Dsg3 expression [110,111].

Effects of anti CD19+ monoclonal antibodies (inebilizumab), which also act on plasma
cells are studied in PV given that the production of anti-Dsg autoantibodies by LLPCs
represents one of the mechanisms of rituximab resistance. CD19-directed CAR-T-cell
therapy and Dsg3-CAAR T cells are also being studied in PV, showing very promising
preliminary results [112,113].

Considering the significant decrease of Dsg-specific Tregs observed in PV patients, the
benefit of autologous polyclonal Tregs infusion in PV and PF patients is under investigation
in a phase-1 open-label multicenter trial (NCT03239470) [114].

5. Conclusions

The therapeutic landscape of autoimmune bullous diseases has dramatically changed
with the introduction of anti-CD20 monoclonal antibodies. Nowadays, rituximab repre-
sents the first line of therapy for pemphigus, regardless of severity, as it ensures high rates of
rapid, long-lasting complete remission, often without the need for systemic corticotherapy
or conventional immunosuppressive therapy, while maintaining a favorable safety profile.
Rituximab is also a valuable off-label therapeutic alternative in subepidermal autoimmune
blistering diseases refractory to standard anti-inflammatory and immunosuppressive treat-
ment. Nevertheless, disease recurrence is the rule, all patients requiring maintenance
therapy with rituximab eventually. In order to avoid unnecessary supplementary doses,
inherent side effects and additional costs, there is an urgent need to identify and validate
biomarkers predictive of imminent disease recurrence that would allow the implementation
of optimal, personalized therapeutic regimens.

Rituximab resistance in patients with severe, recalcitrant autoimmune blistering dis-
eases remains a significant challenge for the physician. Despite the numerous interesting
therapeutic alternatives that offer theoretical promise of circumventing rituximab resistance,
clinical studies are warranted in order to prove their potential. The large array of resis-
tance mechanisms and their complex interplay suggest that no single therapeutic approach
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will be universally effective. Therefore, individualized rituximab treatment regimen and
tailored adjuvant therapies for refractory cases are mandatory.
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