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Abstract: Background: The skin prick test (SPT) is used to diagnose sensitization to antigens. This
study proposes a deep learning approach to infer wheal dimensions, aiming to reduce dependence on
human interpretation. Methods: A dataset of SPT images (n = 5844) was used to infer a convolutional
neural network for wheal segmentation (ML model). Three methods for inferring wheal dimensions
were evaluated: the ML model; the standard protocol (MA1); and approximation of the area as an
ellipse using diameters measured by an allergist (MA2). The results were compared with assisted
image segmentation (AIS), the most accurate method. Bland–Altman analysis, distribution analyses,
and correlation tests were applied to compare the methods. This study also compared the percentage
deviation among these methods in determining the area of wheals with regular geometric shapes
(n = 150) and with irregular shapes (n = 150). Results: The Bland–Altman analysis showed that the
difference between methods was not correlated with the absolute area. The ML model achieved a seg-
mentation accuracy of 85.88% and a strong correlation with the AIS method (ρ = 0.88), outperforming
all other methods. Additionally, MA1 showed significant error (13.44 ± 13.95%) for pseudopods.
Conclusions: The ML protocol can potentially automate the reading of SPT, offering greater accuracy
than the standard protocol.

Keywords: deep learning applied to diagnosis; prick test; measurement of wheal area; IgE response;
sensitization to antigens

1. Introduction

The skin prick test (SPT) is a relatively simple and easy-to-perform immediate reading
test for immunoglobulin E (IgE)-mediated reactions, but its accuracy can be limited by the
need for human interpretation [1,2]. The measurements of the wheal dimensions appearing
on the skin after the puncture are made manually, which can cause different types of errors
due to parallax, instrument resolution, and human error. In this way, the evaluation of
the allergic reaction depends on the examiner [3]. Since the wheal area is proportional to
the degree of sensitization (i.e., the stronger the immune response, the larger the wheal),
this parameter is considered the main indicator for diagnosing an SPT [4,5]. A positive
diagnosis is typically based on a wheal diameter 3 mm larger than the negative control and
greater than half the diameter of the histamine response [6].

Subjectivity in wheal assessment arises from variations in its geometric contour, lead-
ing to inconsistent readings by different examiners or even by the same examiner at different
times [3]. As illustrated in Figure 1, wheals can exhibit irregular geometric contours, further
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contributing to interpretation challenges [7]. Skin pigmentation presents another compli-
cation, making it difficult to identify the reaction outline [8]. Additionally, wheal location
(e.g., volar vs. infrascapular region) can influence the result [9]. Therefore, standardized
methods are necessary to address subjectivity in wheal assessment and improve diagnostic
consistency.
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Figure 1. Prick test photography illustrating different wheal areas.

In this regard, several research groups have been developing approaches using cam-
eras, thermographic cameras, 2D or 3D scanners, and computer-aided color analysis for the
automatic or semi-automatic detection of wheals formed in the SPT [7,8,10–14]. A notable
advancement in this field is the Nexkin DSPT®, a commercial medical device designed
to assist in detecting wheals and digitizing allergy skin test readings. This mechatronic
system employs 3D laser technology to automatically locate wheals and measure their area
and diameter [15]. However, it is important to note that, like the Nexkin DSPT®, most
proposed approaches rely on specialized equipment, limiting their widespread adoption in
clinical practice.

Automatic and semi-automatic methods for wheal detection, in addition to enhanc-
ing the objectivity of the SPT, can also lower testing costs. A study conducted a cost–
consequence analysis to evaluate the financial implications of a computer vision-based SPT
system (Nexkin DSPT) at Inselspital, a university hospital in Switzerland [16]. The findings
indicated that the automated method saves an average of CHF 7 per test compared to
manual reading. The main cost difference lies in human resources: the automated method
requires only 3 min of personnel time at a cost of CHF 10.89, while the manual method
takes 5.5 min and costs CHF 19.96. Overall, automated methods can significantly reduce
reading time for SPTs, saving time for allergists and patients, while also leading to further
financial savings. Moreover, most automatic methods for wheal detection significantly
simplify SPT digitization, aiding in the creation of electronic medical records—a growing
trend in healthcare systems [17].

Machine learning techniques and deep learning algorithms have emerged as powerful
tools for image-based clinical diagnostics. Studies have shown that machine learning-
generated classifier models outperform human evaluators in determining geometric pa-
rameters from images, such as area, radius, perimeter, and measures of shape complexity
(compactness, smoothness, concavity) [18,19]. Semantic image segmentation is a machine
learning technique utilizing deep learning algorithms, specifically convolutional neural
networks (CNNs), and may be particularly suitable for identifying wheals in SPT images.
It infers models to identify patterns in the image and classify pixels into predefined seg-
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ments (or labels), allowing an accurate segmentation of the wheal area, which is a crucial
requirement in SPT diagnosis [20].

Despite the great potential of CNN-based models, this technique has only recently
been applied to diagnosing prick tests. In this regard, two works are worth mentioning:
The first [21] uses a fringe projection system (consisting of two cameras, two lasers, and
one projector) to acquire 3D images of the patient’s forearm, followed by a preprocessing
step to remove the global surface, and finally utilizes a CNN to produce an output mask
that detects wheals. The second [22] was recently published while we were preparing our
manuscript. This study, similar to ours, proposes the use of CNNs for wheal segmentation,
using only 2D images of wheals as input. However, the inference of this model was
performed on a modestly sized dataset of 46 SPT images, which may explain the model’s
relatively low sensitivity (56.21%).

The present work aimed to develop a deep learning-based computational protocol
for applying image segmentation techniques to prick test photographs captured with
conventional smartphones, intending to enhance the SPT reading method without the need
for specialized equipment. Furthermore, we investigated whether the use of wheal area
measurements, easily obtained with the segmentation model, can be a better indicator of
the geometry of the reaction, and consequently of the sensitization. This approach has
likely not been previously attempted due to limitations in earlier measurement instruments
and has not been discussed in other studies.

2. Methods
2.1. Acquisition of Skin Prick Test Photos

SPT photos used to create the training and testing datasets were obtained from adult
patients aged 18 to 65 years, of both sexes, who had not taken antihistamines or oral corti-
costeroids in the 10 days prior to the study. These patients were selected for convenience,
adhering to all ethical and legal procedures involved in the research. The SPT was per-
formed according to the established method by European Academy of Allergy and Clinical
Immunology [6]. Briefly, the allergist conducted the prick test on the patients, who had
previously signed the consent form. Immediately after 15 min of puncture application,
(i) a square-shaped tag in chroma key color, referred to as the reference tag (RT), with
known dimensions (3 cm × 3 cm), was placed on the forearm or upper back near the
formed wheals; (ii) the smartphone was positioned parallel to the test region at a distance
ranging from 10 cm to 30 cm; (iii) the focus was adjusted; and (iv) the photo was captured.
Subsequently, the images were sent to the research group.

A total of 1461 photos were collected using smartphones of several brands, models,
camera configurations, and operating systems. The image capture protocol did not include
any prior calibration of pixel density or adjustments for resolution, focus, and lighting.
The decision to avoid standardizing these parameters aimed to create a dataset with a
wide diversity of instances (images), allowing the resulting model for wheal segmentation
to be applied without requiring prior adjustments to these parameters. This approach
simplifies the use of the proposed protocol for end users. Figure 2a illustrates a sample
photo acquired using this method.
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Figure 2. Illustration of (a) the original photograph and (b) the respective labeled image (manually
annotated).

2.2. Dataset Standardization

The manual annotation of SPT photos was carried out using Corel Photo-Paint (version
23.1.0.389). Segments (or labels) were created in magenta (R = 255, G = 0, B = 255) for
the pixels corresponding to the wheal area, in black (R = 0, G = 0, B = 0) for the pixels
corresponding to the reference tag (RT), and in red (R = 255, G = 0, B = 0) for the remaining
pixels in the image. Figure 2b shows an example of labeled SPT image. Subsequently, the
ImageMagick software (version 7.1.1-38) [23] was used to resize the image and annotation
pairs to 640 × 480 pixels in order to standardize the dataset and reduce the computational
cost of image processing.

In machine learning models, overfitting occurs when a model becomes too special-
ized to the training data and performs poorly on unseen data. To enrich the dataset
further and potentially reduce the overfitting of the deep learning model, a technique
called data augmentation was employed using the ImageMagick software [24,25]. More
specifically, geometric transformations were applied to the SPT images to make the deep
learning model independent to changes in images position and orientation. For this pur-
pose, each image underwent a sequential transformation process: (i) horizontal mirroring,
(ii) vertical mirroring, and finally, (iii) another horizontal mirroring. This process effectively
quadrupled the dataset size, resulting in 5844 images used for model training.

2.3. Machine Learning Model Training and Wheal Clustering

A generic and extensible fully convolutional neural (FCN) network developed
by [20,26] was used to train the ML model for wheals segmentation. The network was
implemented in Python using the TensorFlow library [27]. It begins with an input layer
that accepts images of size 640 × 480 pixels with three color channels (RGB) and five
convolutional blocks, identical to those proposed in the VGG-16 architecture [28], which
serves as the encoder of the network. Each block is followed by max-pooling layers that
progressively halve the spatial dimensions of the feature maps.

Following the encoding phase, two additional convolutional layers are introduced, fea-
turing 4096 filters with sizes of 7 × 7 and 1 × 1, respectively. Subsequently, a
1 × 1 convolution is applied to incorporate class information, where the number of filters
corresponds to the number of classes. The output of the last convolution proceeds to a 2×
upsampling layer and is summed with the output of the fourth pooling layer, which was
adjusted using a 1 × 1 convolution. The result of this operation is then upsampled again
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by a factor of 2 and similarly added to the output from the third pooling layer. Finally, the
resulting output is upsampled by a factor of 8 and passed through a softmax layer, which
converts the outputs into probabilities. All other layers use the ReLU activation function.

The model training was performed for 400 epochs with a batch size of 32 and a
learning rate of 0.0001. The optimizer employed was Adam, and the loss function used
was cross-entropy. The computational setup utilized for training included the following
specifications: Processor: Intel® Xeon® E-2146G (6C/12T @ 3.50 GHz); RAM: 64 GB DDR4-
2666; Segregated Operating System SSD: 960 GB SATA; Hard Disk: 2 TB SATA 6Gb/s; and
GPU: nVidia® GeForce® GTX 1660 (1408 CUDA® Cores, 6 GB).

Finally, a Python algorithm was developed using the Open Source Computer Vision
Library (OpenCV) [29] to determine the area of each wheal after the segmentation. The
algorithm first performs the pixel clustering of the instances classified as wheals by the ML
model. Finally, the clustered pixels are used to estimate the individual wheal area using a
simple proportion between the number of pixels of a wheal and the number of pixels of the
RT, which has known area.

2.4. Evaluation of the Machine Learning Model Performance

An independent validation dataset consisting of 30 images containing 150 wheals
was established to evaluate the performance of the proposed computational protocol.
The images were obtained and segmented following the same procedures described in
Sections 2.1 and 2.2, with one key difference: a qualified allergist marked the contours of
the wheal with a pen, which was used as a guide for the manual labeling of the images.
This process, here referred to as assisted image segmentation (AIS), provided a reliable
reference for assessing the ML model performance.

To assess the predictive performance of the ML model, we evaluated detection ac-
curacy, segmentation accuracy, sensitivity, specificity, Dice similarity coefficient (DSC),
and intersection over union (IoU). Detection accuracy was determined using Equation (1),
where type I errors refer to the detection of non-existing wheals. The other metrics were
evaluated from the variables of a confusion matrix derived from a cluster of pixels around
the wheal (described in Section 2.3). The expected labels used in these analyses are those
generated by the AIS method. The choice of cluster evaluation was made to specifically
assess the predictive performance metrics in the segmentation of individual wheals.

Detection accuracy (%) =
Correct detection

Expected detection + Type I errors
× 100 (1)

The agreement between the inferred model (ML) and the standard medical method
(largest diameter of the wheal, Medical LD, and its perpendicular diameter, Medical PD, as
measured by a professional) was evaluated based on the concordance analysis proposed by
Bland and Altman [30]. We estimated the wheal area values from Medical LD and Medical
PD using Equations (2) and (3) to compare the methods. Specifically, MA1 represents the
area of a circle with a diameter equal to the mean of Medical LD and Medical PD, while
MA2 represents the area of an ellipse with the major axis equal to Medical LD and the
minor axis equal to Medical PD. To verify whether the sample size of the validation set was
representative, we performed 15 data shuffles and analyzed the behavior of the cumulative
mean and standard error. Paired Wilcoxon signed rank tests [31] and correlation tests
were performed between the area values obtained by each method. Finally, the cumulative
distribution function was determined for the areas estimated using the four methods (ML,
AIS, MA1, and MA2).

MA1
(

cm2
)
= π ×

(
(Medical LD (cm) + Medical PD (cm))/2

2

)2
(2)

MA2
(

cm2
)
= π × Medical LD (cm)

2
× Medical PD (cm)

2
(3)
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All these analyses were performed using the R software (version 4.2.2, R Foundation
for Statistical Computing, Vienna, Austria) [32] and Python3 (version 3.9, Python Software
Foundation) [33].

2.5. Comparison of Area Estimates for Regular and Irregular Geometric Shapes Using
Different Methods

Previous studies have demonstrated that computationally assisted methods can devi-
ate from the standard protocol for measuring wheal dimensions, particularly when dealing
with irregularly shaped wheals [34]. To evaluate these potential divergences, two distinct
groups of segmented images were created. The first group (Group 1—Regular Shapes)
consists solely of shapes with regular outlines, which can be approximated by circles or
ellipses. The second group (Group 2—Irregular Shapes) comprised exclusively shapes
with highly irregular geometric contours. Figure 3 presents a sample of each group here
described. In all images, a square with known dimensions (3 cm × 3 cm), similar to the RT,
was inserted to provide a scale for determining the shapes’ diameters and areas.

The image files from Group 1—Regular Shapes and Group 2—Irregular Shapes contain
10 different segmented shapes (as shown in Figure 3). Each group comprised a total of
15 images files, resulting in 150 shapes for Group 1 and 150 shapes for Group 2. The
shape pixels in each image were clustered using the protocol proposed in this study
(see Section 2.3). Additionally, the largest diameter (Computational LD) and diameter
perpendicular to the largest diameter (Computational PD) were computationally determined.
Using these parameters, the shape areas were also estimated as the area of a circle with
a diameter equal to the average of computational LD and computational PD (similar to
Equation (2)), and as an ellipse with the major axis equal to computational LD and the
minor axis equal to computational PD (similar to Equation (3)). We also assessed the area of
the figures using the function “pixel distribution histogram”, available in Corel Photo-Paint
software, here referred to as Corel Area. The percentage deviation between the methods
was calculated and used to evaluate their performance in predicting the areas of shapes
with regular and irregular geometric contours.
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Figure 3. Sample of a segmented image containing only (a) shapes with regular geometric contour;
(b) shapes with irregular geometric contour. The shapes are colored magenta and the RT is col-
ored black.

3. Results

The proposed ML protocol was able to segment and cluster wheals in SPT images. The
area of each wheal was estimated using a simple proportion between the number of pixels
from RT (with a known area) and from the segmented wheal. The ML protocol generated
an image containing the segmented wheals, each identified with a number, accompanied
by a report in the upper left corner summarizing the wheal areas in cm2. Figure 4 shows an
example of an SPT image segmentation performed by the ML protocol.
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Figure 4. An example of an image containing the segmented wheals identified by a number and a
report in the upper left subtitle containing the wheal areas in cm2.

The ML model for wheals segmentation had its performance measured on a validation
dataset with 30 different images and 150 wheals. In this dataset, nine wheals were not
correctly detected, with three detections of non-existing wheals (type I error) and six wheals
that existed but were not detected (type II error), which resulted in a Detection accuracy
of 94.12%. In the 144 correctly detected wheals, the segmentation model on average
obtained a segmentation accuracy of 85.88%, a sensitivity of 70.29%, a specificity of 98.94%,
a DSC of 80.85%, and an IoU of 69.65%. Figure 5 illustrates the average behavior of the
cumulative mean of the areas determined by the ML model, along with the standard error.
The number of wheals in this dataset clearly resulted in the stabilization of the mean and
the minimization of the standard error, demonstrating that it is representative to evaluate
the predictive performance of the model.
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Figure 5. (a) Average curve of the cumulative mean of the areas determined by the ML model. The
shaded area represents the region between the cumulative mean ± standard error. (b) shows the
decay of the standard error as a function of sample size.

The paired Wilcoxon signed rank test showed a statistically significant difference
between the areas MA1, MA2, AIS, and ML (p-value < 0.001 in all tests). Despite this
result, the Bland–Altman analyses (Figure 6) indicated that the difference between the
measurement methods is concentrated around a bias (mean difference), indicating no
correlation between the difference obtained between the measurement methods and the
magnitude of the variable area.
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Figure 6. Bland–Altman analyses for (a) ML × MA2, (b) ML × AIS, and (c) MA2 × AIS. Correlation
plots between (d) ML and MA2, (e) ML and AIS, and (f) MA2 and AIS. It should be noted that
the slope of the lines is close to 1.0, while the intercepts are close to the Bland–Altman bias value,
especially in the line relating the AIS and ML methods. The results for MA1 and MA2 are similar and,
for simplicity, the graphs for MA1 are not presented in this figure.

We also determined the cumulative distribution function of the areas estimated by the
four methods, ML, AIS, MA1, and MA2 (Figure 7). This analysis confirmed the statistically
significant difference observed in the paired Wilcoxon signed rank test, and clarified that
the distributions can be superimposed by shifting the curves in the bias value. Thus, biases
can be used to relate the areas obtained by different methods. Furthermore, the different
methods can also be related using linear equations.
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Figure 7. Cumulative distribution functions for the areas estimated by the four methods for (a) the
original data, and (b) adding the bias between ML, AIS, MA1, and MA2.

It can be noted in Figures 6 and 7 that there is a uniform pattern in the scatter of points
in all analysis performed for MA1 or MA2, and it should be clarified that this does not
represent a bias in the dataset. This pattern occurred because the MA1 and MA2 were
determined using a measuring instrument with precision of 1 mm. As a result, the graphical
representation of these values (or the direct analyses performed with them) tends to show
a pattern of points discretization. However, this pattern was not observed for the ML and
AIS methods. This difference can be explained by the fact that the computational variables
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used to determine the area of the wheals were declared as floating types (i.e., real numbers),
which have a precision of 10−8. This precision is relatively high, so the graphs for the
results from ML and AIS methods did not show point discretization. This consideration
is important because it highlights that the conventional method of determining wheal
dimensions has an accuracy limited by the precision of the measuring instrument used for
the SPT (not to mention other possible sources of error). In contrast, the computational
method performs a pixel-by-pixel analysis, in which the accuracy is limited by the image
resolution. Generally, any current smartphone can capture images with sufficient resolution
to surpass the accuracy obtained using the MA1 and MA2 methods.

The following results show the performance of the methods evaluated in this study
to determine the LD, PD, and area of shapes with regular geometric contours (circles or
ellipses) and irregular geometric contours (corresponding to pseudopods). The proposed
method for determining Computational LD and Computational PD values yielded results that
closely matched the mathematically expected LD and PD values for the regular images.
Figure 8 illustrates an example of an image from each group (regular shapes and irregular
shapes) where Computational LD and Computational PD were calculated. For the regular
shapes in Figure 8a, the mean percentage deviations of Computational LD and Computational
PD were 0.3754% and 0.5410%, respectively. The minor deviations observed in the regular
shapes are likely due to the fact that the images represent circles and ellipses rather than
ideal mathematical objects. Since our computational method for determining the diameter
is invariant to the geometric shape and relies solely on the estimate of the geometric center
(easily determined by averaging the coordinates of the shape), we believe that this method
provides accurate estimates of Computational LD and Computational PD for the irregular
dataset. This accuracy is further confirmed visually.
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Figure 8. Computational LD and Computational PD determined for the (a) regular and (b) irregular
geometric shapes of the segmented images presented in Figure 3. This figure demonstrates that the
computationally determined diameters serve as reliable estimates of LD and PD.

The LD and PD are essential parameters for evaluating the accuracy of the standard
medical protocol used to infer wheal dimensions. MA1 assumes that the wheal contour can
be approximated as a circle with a diameter equal to the average of LD and PD, while MA2
assumes the wheal has an elliptical shape, with the major axis corresponding to LD and the
minor axis corresponding to PD. Thus, the area of the wheal can be estimated as described
in Equations (2) and (3). However, in this study, we propose that approximating the wheal
area as an ellipse or circle may be inaccurate, particularly for wheals with irregular contours.
Instead, we suggest that using a simple proportion between the pixel count from RT and
the pixel count from the wheal may provide more accurate results, regardless of the shape
of the wheal. To support the proposed statement, the results for two distinct groups of
shapes are presented below: Group 1—Regular shapes and Group 2—Irregular shapes.
The cumulative distribution of the area values estimated by the different methods and the
boxplots of the percentage deviation values between the methods were determined for
both groups, and the analyses are shown in Figures 9 and 10.
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Figure 9. Cumulative distribution functions for the areas estimated by different methods. In (a)
Group 1—Regular shapes; in (b) Group 2—Irregular shapes. The expected area was calculated from
the axes defined to create the ellipses and circles, the Corel Area was determined using the pixel
distribution histogram function available in the Corel Photo-Paint software, and protocols similar to
the AIS area, MA1, and MA2 were calculated similarly to the AIS area (or also to the ML area), MA1,
and MA2, respectively. Note that for areas similar to MA1 and similar to MA2, the computationally
determined diameter was used.
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Figure 10. Boxplot for percentage deviations of area values between different methods for: (a) Group
1—Regular shapes and (b) Group 2—Irregular shapes. In (a), the values obtained by the different
methods were compared with the expected area. The boxplot for the area similar to MA1 was omitted
for clarity; its minimum, mean, and maximum values were 0.02%, 5.65% ± 13.04%, and 96.10%,
respectively. In (b), the boxplot names were coded for better illustration, and their meanings are
as follows: (1) similar to AIS × Corel Area; (2) similar to AIS × similar to MA2; (3) similar to AIS ×
similar to MA1; (4) Corel Area × similar to MA2; (5) Corel Area × similar to MA1; and (6) similar to
MA2 × similar to MA1.

In Group 1—Regular Shapes, the mean percentage deviations of the Corel Area, the
protocol similar to AIS, and the protocol similar to MA2 values relative to the expected area
were 3.82% ± 1.97%, 1.38% ± 0.64%, and 1.18% ± 0.94%, respectively. It is noteworthy
that although the mean deviation of values calculated similarly to AIS is slightly higher
than that calculated similarly to MA2, the maximum deviation for values similar to MA2 is
greater (4.31% compared to 3.33%). Overall, all methods performed well in estimating the
area of regular shapes; among them, the least effective methods were Corel Area and the
protocol similar to MA1.

The area calculation method similar to AIS (simple proportion using an RT) is invariant
to the geometric shape of the figure and showed low deviations from the expected areas in
Group 1—Regular Shapes. Therefore, we used this method as a reference for analyzing
irregular figures, as we had no mathematical means of determining their expected areas. In
Figure 9b, it can be seen that the order of adherence to the area values calculated similarly
to AIS was in decreasing order: Corel Area, Similar to MA2, and Similar to MA1 (Boxplots
(1), (2), and (3)). This result is consistent because, although the areas calculated using the
Corel Photo-Paint pixel distribution histogram function exhibited larger deviations than
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methods similar to AIS and similar to MA2 in regular figures, this method is also invariant
to geometric shape and seems to have maintained the magnitude of its deviations relative
to values calculated similarly to AIS. In contrast, MA1 and MA2 are approximations highly
dependent on the geometric shape of the figure, resulting in larger deviations from the
expected area values. What should be emphasized in these results is that for figures with
irregular contours, the standard medical protocol can lead to large deviations from the
expected area values, thus compromising the quality of the diagnosis.

4. Discussion

Regarding the three instances that presented type I errors in the validation dataset, it
was observed that two puncture marks in the negative control were detected as wheals.
The third type I error is shown in Figure 11 and refers to a small reddish mole on the
patient’s arm that was segmented by the ML model. The light conditions used to take the
picture, the patient’s skin color, or the small size of the wheal were possible causes of type
II errors. Although the detection accuracy was considered satisfactory, both error types
tend to decrease with the increment of the number of instances (images) in the training
dataset, which can be performed and evaluated in future studies. In addition, for clinical
uses of the ML approach, it is expected that the wheal segmentation performed by the ML
model will always be interpreted and validated by a health professional since the developed
protocol aims to provide a tool to support humans to perform a faster and more accurate
diagnosis, and not replace them.
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Figure 11. (a) Patient’s arm 15 min after the punctures. (b) ML model segmentation where a type I
error was identified.

The cumulative distribution functions confirm that the ML method produces measures
closer to the AIS distribution than the MA1 and MA2. Moreover, the values obtained by
the ML method have a more continuous distribution than those obtained by the Medical
Diameters, which may indicate a higher analysis resolution. This characteristic probably
occurred because the Medical Diameters has its resolution linked to the graduation of the
instrument used to measure the wheal diameter (usually a ruler or caliper). In contrast, the
ML and AIS methods perform a pixel-by-pixel analysis.

The Pearson correlation coefficients between the measurement methods are shown in
Figure 6. A strong correlation was found between the areas inferred through the ML and AIS
methods (ρ = 0.88), which was considerably more significant than the correlation between
the AIS and MA1 (ρ = 0.80) and MA2 (ρ = 0.82) and was consistent with the results of
Bland–Altman’s analysis. In previous studies carried out by our group [34], we determined
a statistically significant Pearson correlation coefficient between skin temperature variation
in the wheal (during the SPT) and the area determined by a similar AIS method. Since the
ML method had a strong correlation with the AIS method, it is reasonable to assume that
the ML method is also associated with the wheal temperature during the skin sensitization
reaction, which is a characteristic known to be proportional to the intensity of sensitivity to
the antigen.

Some patients with high levels of sensitization to an antigen may be more susceptible
to developing wheals with irregular contours and the formation of pseudopods [35]. In
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these cases, approaches that use medical diameters to infer sensitization may not be the
most appropriate. These methods approximate wheal areas using only the values of LD
and PD (or by calculating the mean of both diameters) [4,6]. In other words, the method
for determining the area of the wheals approximates the sensitization area by assuming an
elliptical shape, in which the major axis corresponding to LD and the minor axis to PD, or,
alternatively, by using a circle with a diameter equal to the average of LD and PD. However,
for irregular shapes, such as pseudopods, this approximation may differ significantly from
the real area of the wheals, as our results suggest. Moreover, the standard protocol to infer
skin sensitization can be associated with other problems, such as parallax error, which may
further reduce diagnostic accuracy.

It should be highlighted that the standard medical protocol for inferring the area of
skin sensitization was developed based on the measurement tools that were available and
feasible at the time the protocol was defined. These instruments are essentially tools for
measuring linear dimensions, such as rulers or calipers. However, our results, along with
findings from other studies, indicate that new technologies can be used to more accurately
determine the area of skin sensitization. All of this points to the need to review and update
the standard prick test protocol to improve its diagnostic accuracy.

Our model was inferred using an FCN architecture for image segmentation. This
uses the VGG-16 as an encoder and is a classic network architecture introduced by [20].
It has been extensively used in semantic image segmentation studies. Currently, new
architectures have been developed and applied to this type of problem, with U-Net being
particularly prominent [36]. U-Net has shown good performance in medical imaging
studies [37]. In this context, future studies could benchmark our current FCN with U-Net
architectures applied to the problem of wheals segmentation in SPT. Furthermore, we
believe that our model has achieved sufficient performance to assist in the annotation of
new images, thereby facilitating the expansion of the training dataset for future studies.

In this study, we propose that segmentation techniques using deep learning or other
computationally assisted methods can be applied to determine the wheal areas. These
techniques can be fully automated, making the prick test diagnosis entirely objective and
independent of the professional’s experience or interpretation when measuring the wheal
dimensions. The need for manual measurement using tools such as rulers or calipers is
eliminated, saving time for both the professional and the patient. The proposed method-
ology can also expedite patient care, potentially leading to significant cost savings for
healthcare services performing the SPT. Furthermore, it can be easily integrated into hos-
pital information systems, facilitating the generation of reports and medical records that
include SPT images and patient history.

5. Conclusions

The results indicate that the measurements obtained from the developed ML method
were consistent with those from the other evaluated methods (AIS and Medical Diameters).
Specifically, for figures with irregular contours, the proposed method for calculating wheal
area offers more accurate estimates compared to those based on medical diameters. This
is because the simple proportion between the RT pixel count and the wheal pixel count
does not rely on a predefined shape (circle or ellipse), making it invariant to the geometric
contour of the wheal. These findings suggest that the proposed protocol has the potential
to automate the assessment of the SPT reaction and can be used in clinical practice. This
would render the prick test diagnosis entirely objective, free from dependence on the
professional’s experience or interpretation when measuring wheal dimensions. However,
further extensive studies are necessary, primarily to standardize the use of area values for
diagnosing antigen sensitization during SPT. Overall, these results underscore the need to
reevaluate the prick test protocol in light of the new technological tools currently available.
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6. Patents

The method presented in this paper resulted in a computer program registered at
Brazil’s National Institute of Industrial Property (INPI) (Process No.: BR512021000570-8).
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