Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Surgical Procedure
2.3. Protein Identification and Quantification
2.3.1. Protein Isolation
2.3.2. Proteolysis
2.3.3. Mass Spectrometry Analysis
2.4. Bioinformatic Data Analysis
2.4.1. Analysis of Protein Appearance Patterns
2.4.2. Differential Expression Analysis
3. Results
3.1. Differences between Proteomes Measured in Orbital and Subcutaneous Abdominal Fat Tissues
3.2. Differentially Expressed Proteins in Orbital and Subcutaneous Abdominal Fat Tissues
3.3. Proteins Uniquely Detected in Subcutaneous Abdominal and Orbital Fat Tissues
3.4. Gene Ontology Analysis of the Proteomes Extracted from Orbital and Subcutaneous Abdominal Adipose Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- World Health Organization. Obesity and Overweight, 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 26 July 2024).
- Sun, L.; Chen, X.; Liu, G.; Zhang, P. eyelids of Asians: Application to blepharoplasty. Clin. Anat. 2020, 33, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Sires, B.; Saari, J.; Garwin, G.; Hurst, J.; Van Kuijk, F.J. The color difference in orbital fat. Arch. Ophthalmol. 2001, 119, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Nepali, S.; Park, M.; Lew, H. Comparative analysis of human adipose-derived mesenchymal stem cells from orbital and abdominal fat. Stem Cells Int. 2018, 1, 3932615. [Google Scholar] [CrossRef] [PubMed]
- Afanas’eva, D.S.; Gushchina, M.B.; Borzenok, S.A. Comparison of morphology of adipose body of the orbit and subcutaneous fat in humans. Bull. Exp. Biol. Med. 2018, 164, 394–396. [Google Scholar] [CrossRef]
- Wang, G.; Cao, L.; Wang, Y.; Hua, Y.; Cai, Z.; Chen, J.; Chen, L.; Jin, Y.; Niu, L.; Shen, H.; et al. Human eyelid adipose tissue-derived Schwann cells promote regeneration of a transected sciatic nerve. Sci. Rep. 2017, 7, 43248. [Google Scholar] [CrossRef]
- Bujalska, I.J.; Durrani, O.M.; Abbott, J.; Onyimba, C.U.; Khosla, P.; Moosavi, A.H.; Reuser, T.T.Q.; Stewart, P.M.; Tomlinson, J.W.; Walker, E.A.; et al. Characterisation of 11β-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: A comparison with subcutaneous and omental fat. J. Endocrinol. 2007, 192, 279–288. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kelleher, K.J.; Sheils, T.K.; Mathias, S.L.; Yang, J.J.; Metzger, V.T.; Siramshetty, V.B.; Nguyen, D.-T.; Jensen, L.J.; Vidović, D.; Schürer, S.C.; et al. Pharos 2023: An integrated resource for the understudied human proteome. Nucleic Acids Res 2023, 51, D1405–D1416. [Google Scholar] [CrossRef]
- Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; del-Toro, N.; et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014, 42, D358–D363. [Google Scholar] [CrossRef]
- Vitkin, E. Differential expression analysis of binary appearance patterns. ORE 2024, 4, 52. [Google Scholar] [CrossRef]
- Eden, E.; Navon, R. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009, 10, 48. [Google Scholar] [CrossRef] [PubMed]
- Enerly, E.; Steinfeld, I.; Kleivi, K.; Leivonen, S.-K.; Aure, M.R.; Russnes, H.G.; Rønneberg, J.A.; Johnsen, H.; Navon, R.; Rødland, E.; et al. miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS ONE 2013, 6, e16915. [Google Scholar] [CrossRef]
- Eden, E.; Lipson, D.; Yogev, S.; Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput. Biol. 2007, 3, e39. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Shin, S.; Chun, Y.-J. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch. Pharm. Res. 2021, 44, 63–83. [Google Scholar] [CrossRef]
- Li, F.; Jiang, C.; Larsen, M.C.; Bushkofsky, J.; Krausz, K.W.; Wang, T.; Jefcoate, C.R.; Gonzalez, F.J. Lipidomics reveals a link between CYP1B1 and SCD1 in promoting obesity. J. Proteome Res. 2014, 13, 2679–2687. [Google Scholar] [CrossRef]
- Melki, R.; Lefort, N.; Brezin, A.P.; Garchon, H.-J. Association of a common coding polymorphism (N453S) of the cytochrome P450 1B1 (CYP1B1) gene with optic disc cupping and visual field alteration in French patients with primary open-angle glaucoma. Mol. Vis. 2005, 11, 1012–1017. [Google Scholar]
- Falero-Perez, J.; Sorenson, C.M.; Sheibani, N. Retinal astrocytes transcriptome reveals Cyp1b1 regulates the expression of genes involved in cell adhesion and migration. PLoS ONE 2020, 15, e0231752. [Google Scholar] [CrossRef]
- Liu, X.; Huang, T.; Li, L.; Tang, Y.; Tian, Y.; Wang, S.; Fan, C. CYP1B1 deficiency ameliorates obesity and glucose intolerance induced by high fat diet in adult C57BL/6J mice. Am. J. Transl. Res. 2015, 7, 761–771. [Google Scholar]
- English, S.B.; Butte, A.J. Evaluation and integration of 49 genome-wide experiments and the prediction of previously unknown obesity-related genes. Bioinformatics 2007, 23, 2910–2917. [Google Scholar] [CrossRef]
- Jeanne Dit Fouque, K.; Kaplan, D.; Voinov, V.G.; Holck, F.H.; Jensen, O.N.; Fernandez-Lima, F. Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Anal. Chem. 2021, 93, 9575–9582. [Google Scholar] [CrossRef]
- Berthias, F.; Cooper-Shepherd, D.A. Full separation and sequencing of isomeric proteoforms in the middle-down mass range using cyclic-ion mobility and electron capture dissociation. Anal. Chem. 2023, 95, 11141–11148. [Google Scholar] [CrossRef] [PubMed]
- Garabedian, A.; Baird, M.A.; Porter, J.; Fouque, K.J.D.; Shliaha, P.V.; Jensen, O.N.; Williams, O.D.; Fernandez-Lima, F.; Shvartsburg, A.A. Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Anal. Chem. 2018, 90, 2918–2925. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, P.P.; O’Connor, P.B. Differentiation of isomeric amino acid residues in proteins and peptides using mass spectrometry. Mass Spectrom. Rev. 2012, 31, 609–625. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, L. Recent technical progress in sample preparation and liquid-phase separation-mass spectrometry for proteomic analysis of mass-limited samples. Anal. Meth 2021, 13, 1214–1225. [Google Scholar] [CrossRef] [PubMed]
- Zinnel, N.F.; Pai, P.-J.; Russell, D.H. Ion mobility-mass spectrometry (IM-MS) for top-down proteomics: Increased dynamic range afford increased sequence coverage. Anal. Chem. 2012, 84, 3390–3397. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.R.; Ruse, C.I.; Nakorchevsky, A. Proteomics by mass spectrometry: Approaches, advances, and applications. Annu. Rev. Biomed. Eng. 2009, 11, 49–79. [Google Scholar] [CrossRef]
- Ankney, J.A.; Muneer, A.; Chen, X. Relative and Absolute Quantitation in Mass Spectrometry-Based Proteomics. Annu. Rev. Anal. Chem. 2018, 11, 49–77. [Google Scholar] [CrossRef]
- Shuken, R. An Introduction to Mass Spectrometry-Based Proteomics. J. Proteome Res. 2023, 22, 2151–2171. [Google Scholar] [CrossRef]
Patient | Age | BMI | Sex | Medical Background |
---|---|---|---|---|
1 | 68 | 23.8 | F | Hypertension, hypercholesteremia, glaucoma |
2 | 71 | 27.3 | F | Hypertension |
3 | 69 | 19.7 | F | Hypothyroidism, osteoporosis |
4 | 75 | 29.2 | F | Type II diabetes, hypertension, hypothyroidism, dyslipidemia |
5 | 73 | 30.5 | F | Asthma |
6 | 68 | 23.8 | F | Dyslipidemia |
7 | 71 | 27.3 | F | Spinal muscular atrophy |
8 | 69 | 19.7 | M | Gout |
9 | 75 | 29.2 | M | Healthy |
10 | 84 | 28.4 | M | Hypertension, type II diabetes, hypercholesterolemia, ischemic heart disease |
Protein ID | Protein Name | % of Patients | p-Value | Database | Pathways |
---|---|---|---|---|---|
Q16678 | Cytochrome P450 1B1 | 90% | 5.23 × 10−5 | KEGG | Steroid hormone biosynthesis, tryptophan metabolism, metabolism of xenobiotics by Cytochrome P450, ovarian steroidogenesis, chemical carcinogenesis—DNA adducts, MicroRNAs in cancer, chemical carcinogenesis—receptor activation, chemical carcinogenesis—reactive oxygen species. |
O94788 | Retinal dehydrogenase 2 | 50% | 9.82 × 10−3 | KEGG | Metabolic pathways, retinol metabolism |
P02812 | Basic salivary proline-rich protein 2 | 40% | 2.53 × 10−2 | KEGG | Salivary secretion |
Q13740 | CD166 antigen | 40% | 2.53 × 10−2 | KEGG | Cell adhesion molecules |
P08582 | Melanotransferrin | 40% | 2.53 × 10−2 | PHAROS | Protein metabolism, post-translational protein modification, post-translational modification: synthesis of GPI-anchored proteins, post-translational protein phosphorylation, regulation of insulin-like growth factor transport and uptake by insulin-like growth factor binding proteins |
Protein ID | Protein Name | % of Patients | p-Value | Database | KEGG Pathway |
---|---|---|---|---|---|
P28330 | Long-chain specific acyl-CoA dehydrogenase, mitochondrial | 60% | 3.41 × 10−3 | KEGG | Fatty acid degradation, fatty acid metabolism, metabolic pathways, PPAR signaling pathway |
Q96HY7 | Probable 2-oxoglutarate dehydrogenase E1 component DHKTD1, mitochondrial | 60% | 3.41 × 10−3 | KEGG | Lysine degradation, tryptophan metabolism, lipoic acid metabolism, metabolic pathways, biosynthesis of secondary metabolites, 2-oxocarboxylic acid metabolism |
P04440 | HLA class II histocompatibility antigen, DP beta 1 chain | 60% | 3.41 × 10−3 | UNIPROT | Downstream TCR signaling, CD3 and TCR zeta chain phosphorylation, translocation of ZAP-70 to immunological synapse, generation of second messenger molecules, Presentation of MHC class II antigens |
P47712 | Cytosolic phospholipase A2 | 50% | 9.82 × 10−3 | see 23 pathways in the link | https://www.genome.jp/dbget-bin/www_bget?hsa:5321 (accessed on 10 May 2024) |
Q8IWW8 | Hydroxyacid-oxoacid transhydrogenase, mitochondrial | 50% | 9.82 × 10−3 | HMDB | Oncogenic action of D-2-hydroxyglutarate in hydroxygluaricaciduria, oncogenic action of L-2-hydroxyglutarate in hydroxygluaricaciduria |
Q10713 | Mitochondrial-processing peptidase subunit alpha | 50% | 9.82 × 10−3 | PHAROS | Mitochondrial calcium ion transport, 3-phosphoinositide degradation, mitochondrial protein import, processing of SMDT1, protein localization, small molecule transport |
Q6GTX8; Q6ISS4 | Leukocyte-associated immunoglobulin-like receptor 1 | 50% | 9.82 × 10−3 | PHAROS | Adaptive immune system (R-HSA-1280218), immune system (R-HSA-168256), immunoregulatory interactions between lymphoid and non-lymphoid cells (R-HSA-198933), innate immune system (R-HSA-168249), neutrophil degranulation (R-HSA-6798695) |
Q13424 | Alpha-1-syntrophin | 50% | 9.82 × 10−3 | KEGG | TGF-beta signaling pathway, ECM-receptor interaction, Renin-angiotensin system, JAK-STAT signaling pathway |
Q5TFE4 | 5-nucleotidase domain-containing protein 1 | 50% | 9.82 × 10−3 | Not found | |
Q92552 | 28S ribosomal protein S27, mitochondrial | 50% | 9.82 × 10−3 | Mitochondrial translation | |
Q96GG9 | DCN1-like protein 1 | 50% | 9.82 × 10−3 | Neddylation, post-translational protein modification | |
Q14008 | Cytoskeleton-associated protein 5 | 40% | 2.53 × 10−2 | See super pathways and contained pathways in the link | https://www.genecards.org/cgi-bin/carddisp.pl?gene=CKAP5#pathways_interactions (accessed on 10 May 2024) |
Q6L8Q7 | 2,5-phosphodiesterase 12 | 40% | 2.53 × 10−2 | PHAROS | Antiviral mechanism by IFN-stimulated genes, cytokine signaling in immune system, immune system, interferon signaling, OAS antiviral response |
P10619 | Lysosomal protective protein | 40% | 2.53 × 10−2 | KEGG | Other glycan degradation, glycosaminoglycan degradation, SNARE interactions in vesicular transport, autophagy—animal, endocytosis |
P27918 | Properdin | 40% | 2.53 × 10−2 | PHAROS | Complement cascade, immunoregulatory interactions between a lymphoid and a non-lymphoid cell, cell recruitment (pro-inflammatory response) |
Q9BYT8 | Neurolysin, mitochondrial | 40% | 2.53 × 10−2 | Renin-angiotensin system | |
O94925 | Glutaminase kidney isoform, mitochondrial | 40% | 2.53 × 10−2 | KEGG | Citrate cycle (TCA cycle), pyrimidine metabolism, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, D-amino acid metabolism, nitrogen metabolism |
P06454 | Prothymosin alpha | 40% | 2.53 × 10−2 | PHAROS | Validated targets of C-MYC transcriptional activation |
GO Class | GO Term | Description | p-Value | FDR q-Value |
---|---|---|---|---|
PROCESS | GO:0043062 | Extracellular structure organization | 6.39 × 10−8 | 6.16 × 10−4 |
PROCESS | GO:0030198 | Extracellular matrix organization | 1.28 × 10−7 | 6.17 × 10−4 |
FUNCTION | GO:0005201 | Extracellular matrix structural constituent | 1.27 × 10−7 | 3.15 × 10−4 |
COMPONENT | GO:0005604 | Basement membrane | 2.83 × 10−7 | 3.76 × 10−4 |
COMPONENT | GO:0031224 | Intrinsic component of membrane | 2.96 × 10−7 | 1.97 × 10−4 |
COMPONENT | GO:0016021 | Integral component of membrane | 5.80 × 10−7 | 2.57 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castel, N.; Vitkin, E.; Shabo, S.; Berl, A.; Wise, J.; Duenyas, A.; Cohen, E.M.A.; Golberg, A.; Shalom, A. Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues. Life 2024, 14, 1308. https://doi.org/10.3390/life14101308
Castel N, Vitkin E, Shabo S, Berl A, Wise J, Duenyas A, Cohen EMA, Golberg A, Shalom A. Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues. Life. 2024; 14(10):1308. https://doi.org/10.3390/life14101308
Chicago/Turabian StyleCastel, Noam, Edward Vitkin, Sharon Shabo, Ariel Berl, Julia Wise, Amir Duenyas, Eliyahu Michael Aharon Cohen, Alexander Golberg, and Avshalom Shalom. 2024. "Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues" Life 14, no. 10: 1308. https://doi.org/10.3390/life14101308
APA StyleCastel, N., Vitkin, E., Shabo, S., Berl, A., Wise, J., Duenyas, A., Cohen, E. M. A., Golberg, A., & Shalom, A. (2024). Proteome Expression Signatures: Differences between Orbital and Subcutaneous Abdominal Adipose Tissues. Life, 14(10), 1308. https://doi.org/10.3390/life14101308