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Abstract: Mycosis fungoides (MF) is the most prevalent type of cutaneous T cell lymphomas. Studies
on the prognosis of MF are limited, and no research exists on the potential of artificial intelligence to
predict MF prognosis. This study aimed to compare the predictive capabilities of various machine
learning (ML) algorithms in predicting progression, treatment response, and relapse and to assess
their predictive power against that of the Cox proportional hazards (CPH) model in patients with
early-stage MF. The data of patients aged 18 years and over who were diagnosed with early-stage MF
at Ankara University Faculty of Medicine Hospital from 2006 to 2024 were retrospectively reviewed.
ML algorithms were utilized to predict complete response, relapse, and disease progression using
patient data. Of the 185 patients, 94 (50.8%) were female, and 91 (49.2%) were male. Complete
response was observed in 114 patients (61.6%), while relapse and progression occurred in 69 (37.3%)
and 54 (29.2%) patients, respectively. For predicting progression, the Support Vector Machine (SVM)
algorithm demonstrated the highest success rate, with an accuracy of 75%, outperforming the CPH
model (C-index: 0.652 for SVM vs. 0.501 for CPH). The most successful model for predicting
complete response was the Ensemble model, with an accuracy of 68.89%, surpassing the CPH model
(C-index: 0.662 for the Ensemble model vs. 0.543 for CPH). For predicting relapse, the decision tree
classifier showed the highest performance, with an accuracy of 78.17%, outperforming the CPH
model (C-index: 0.782 for the decision tree classifier vs. 0.505 for CPH). The results suggest that ML
algorithms may be useful in predicting prognosis in early-stage MF patients.

Keywords: machine learning; mycosis fungoides; prognosis

1. Introduction

Mycosis fungoides (MF) is the most prevalent type of cutaneous T cell lymphoma
(CTCL) with an incidence rate of 4.1/1,000,000 person–years, and the majority consists
of early-stage MF patients [1–4]. Despite the vast majority of MF patients remaining in
the early stages for long periods, approximately 20–25% of patients eventually progress
to advanced stages, which can be fatal. Hence, the early detection of patients at risk of
progression to advanced stages is critical [5,6]. Various factors associated with progression
have been identified in the literature, including male gender, advanced age, clinical stage,
elevated levels of lactate dehydrogenase, blood eosinophilia, folliculotropism, and large-cell
transformation [5,7–9]. Benton et al. developed the Cutaneous Lymphoma International
Prognostic Index (CLIPI) based on several of these factors to predict prognosis in patients
with MF [9]. However, there have been ongoing controversies regarding the generalizability
and validation of CLIPI in other cohorts [10,11]. Nevertheless, predicting patients with a
higher risk of progression in MF patients still poses a significant challenge.
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The management of early-stage MF is determined primarily by the stage of the dis-
ease. However, there is no specific algorithm for the treatment of early-stage disease, and
individualized treatments are required according to the patient’s needs, side effect profiles,
and likelihood of relapse. The treatment procedure may be prolonged in patients who
are resistant to treatment or experience a relapse, possibly resulting in decreased patient
compliance to the treatment and decreased quality of life. Therefore, it is crucial to identify
these patients prior to treatment and establish an appropriate treatment regimen [12–14].

The interpretive capabilities of artificial intelligence (AI) and machine learning (ML)
techniques have shown potential in predicting disease progression, determining appropri-
ate treatments, and guiding follow-up strategies. While numerous studies have explored
the use of AI for diagnosing various skin diseases, research specifically focusing on the
application of AI for MF remains limited [15,16]. For instance, Thomsen et al. employed
deep learning (DL), a subset of ML, to distinguish CTCL from eczema by analyzing skin
images. Their binary classification model, VCG-16, achieved an accuracy of 81.46% [17].
Another study utilized a deep convolutional network, the single-shot multibox detector, for
diagnosing MF, atopic dermatitis, and psoriasis, achieving an overall accuracy of 93% in
multi-class classification. When applied specifically to MF diagnosis, the sensitivity and ac-
curacy rates were 94% and 98%, respectively [18]. Furthermore, Karabulut et al. developed
a DL model capable of facilitating MF diagnosis using hematoxylin–eosin-stained micro-
graphs. Initially, nuclei were detected, and their properties were extracted. Subsequently, a
multi-layer perceptron classifier was employed to identify lymphocytes among the detected
nuclei. Finally, the Random Forest classifier method was utilized to distinguish between
MF and non-MF lymphocytes. The algorithm demonstrated an average predictive accuracy
of 94.2% [19]. Despite these advancements in AI applications for the diagnosis of MF, to the
best of our knowledge, there has been no study evaluating AI in predicting the prognosis
of MF in the literature to date. Our study aims to fill this critical gap by evaluating and
comparing the predictive performance of various ML algorithms in determining prognosis,
including disease progression, treatment response, and relapse in early-stage MF patients.

2. Materials and Methods

The data of 185 patients aged 18 years and older, who were admitted to Ankara
University Faculty of Medicine Hospital between January 2006 and February 2024 and
diagnosed histopathologically and immunohistochemically with MF and determined to
be in the early stage according to the International Society of Cutaneous Lymphomas
(ISCL) criteria [2], were retrospectively reviewed. Institutional Review Board approval was
obtained, and informed consent forms were waived due to the retrospective nature of the
study. Gender, age at diagnosis, age of onset of lesions, time to diagnosis, morphological,
histopathological, immunohistochemical, laboratory findings, Tumor–Node–Metastasis–
Blood (TNMB) stage at diagnosis, and initial treatments were recorded. Response to initial
treatment and relapse were recorded according to ISCL clinical endpoints and response
criteria. Complete response was defined as 100% clearance of skin lesions, partial response
as 50% to 99% clearance of skin disease from baseline without tumors, stable disease as less
than 25% increase in skin disease from baseline to less than 50% clearance without tumors,
and progressive as greater than 25% increase in skin disease from baseline or development
of tumors or loss of response (in those with a complete or partial response and nadir plus
skin score increase greater than the sum of the 50% baseline score). Any recurrence of
disease in complete responders was defined as relapse [13]. Response to initial treatment
was evaluated as complete response/no complete response during training and testing of
the models.

The ability of the CLIPI index [9] to predict progression within our cohort was assessed
in this study. The CLIPI index encompasses distinct criteria for early and advanced stages,
with each criterion assigned 1 point. The early-stage criteria encompass male gender,
age over 60 years, plaque lesion, folliculotropism, and N1/Nx status. As per the index,
0–1 points indicate low risk, 2 points suggest medium risk, and 3–5 points indicate high risk.
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In our study, patients were also stratified into groups based on the CLIPI. The significance of
CLIPI groups in predicting progression risk, Concordance index (C-index), and Area Under
the ROC Curve (AUC) values were subsequently determined. Additionally, prognostic
analyses for complete response, relapse, and progression were conducted utilizing the Cox
proportional hazards model. Statistical significance was set at p < 0.05. C-index and AUC
values were calculated for both the multivariate Cox proportional hazards models and the
CLIPI score. Data were analyzed on XLSTAT version 2024.2.2 (statistical analysis software)
at a 95% confidence level.

Several ML algorithms are utilized in this study to predict complete response, relapse,
and progression. These algorithms include decision trees [20], discriminant classifiers [21],
logistic regression [22], Naive Bayes classifiers [23], Support Vector Machines (SVMs) [23],
k-nearest neighbors (KNNs) [24], ensemble methods [25], and shallow neural networks [26].
Deep learning algorithms are left out of the scope of this study since these algorithms
require a large number of data to perform well [27] and may result in overfitting with
limited data, which reduces the model’s generalization capability [28].

The Bayesian optimization [29] algorithm was employed to identify the optimal hyper-
parameters for the artificial neural network (ANN) architecture, particularly in scenarios
where the computational complexity is high and the objective function is not known.
Bayesian optimization was chosen for its exceptional performance in such situations [30]. It
uses a surrogate probabilistic model, often a Gaussian process, to approximate the objective
function based on past observations. An acquisition function guides the selection of the
next point to evaluate by balancing the trade-off between the exploration of uncertain re-
gions and the exploitation of areas with known high performance. The acquisition function
of “expected improvement per second plus” was utilized for this study with a maximum
of 30 iterations being allowed for each type of ML model.

The effectiveness of ML models can be assessed in various ways. A way to test
classification accuracy is the confusion matrix, where true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) are specified as the principal component of the
matrix. Some of the performance metrics that can be acquired using the confusion matrix
are correct classification (accuracy), true positive rate (TPR), and false negative rate (FNR).
The F1 Score is also a crucial metric for evaluating the performance of a classification,
evaluated in Equation (1) as follows [31]:

F1 Score =
2·Precision·Recall
Precision + Recall

(1)

where Precision = TP
TP+FP is known as the positive predictive value, and Recall = TP

TP+FN
is also referred as the sensitivity.

Typically, ML algorithms employ two sorts of model performance evaluation method-
ologies. Two often-used assessment methods are hold-out validation and k-fold cross-
validation. The hold-out assessment approach partitions the complete dataset into three
distinct groupings. The sets consist of a validation set, a training set, and a hold-out/test set.
The model is trained using the training set, and its validity is assessed using the validation
set. The best parameters for the approach are then determined. The hold-out and test sets
are utilized to assess the performance of the model. A classification algorithm is employed
to evaluate the model. The hold-out approach [32] is a technique used for constructing a
model. K-fold cross-validation is a widely used method in applications where data are
divided into k subsets. The k-fold cross-validation [33] method is an evaluation technique
that involves randomly partitioning a dataset into k equal-sized subsets. In k-fold cross-
validation, subsets are used to build the model, while one subset is reserved for pattern
validation. This indicates that there is a greater emphasis on constructing the model rather
than on the validation approach. Nevertheless, certain research studies have confirmed
that placing greater emphasis on the validation approach can result in an enhancement in
model selection [32]. This evaluation model predicts the outcome that will be obtained in
the dataset of the statistical study. Cross-validation allows for an impartial measurement
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of prediction error without the need to divide the data into separate training and testing
groups. The cross-validation method’s fundamentals are demonstrated in Figure 1. In this
study, the accuracy metric of all models is evaluated by the 10-fold cross-validation [33]
method. The confusion matrix for the best-performing model for each observed output is
also represented by utilizing the whole data, including TPR and FPR values. The flowchart
of the study is summarized in Figure 2.
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3. Results

Demographic and clinical characteristics of patients are summarized in Table 1. Here,
all the data were categorical, except for age at diagnosis, age of onset lesions, follow-up
time, and time from appearance to diagnosis. Of the 185 patients, 94 (50.8%) were female,
and 91 (49.2%) were male, and the average age was 50.8 years. The mean follow-up
time was 5.6 years, and the mean time from the onset of the lesions to diagnosis was
56.3 months. Seventy-six (41%) of the patients were stage IA, seventy-three (39.5%) were
stage IB, and thirty-six (19.5%) were stage IIA. According to morphological features, one
hundred and twenty (64.8%) patients were erythematous, thirty-five (18.9%) patients were
hyperpigmented, thirteen (7%) patients were poikilodermic, nine (4.8%) patients were
folliculotropic, seven (3.8%) patients displayed pigmented purpuric dermatosis-like (PPD-
like) features, three (1.6%) patients were hypopigmented, one (0.5%) patient was of the
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ichthyosiform type, and one (0.5%) patient had Granulomatous Slack Skin (GSS). One
hundred and eight (58.4%) patients reported pruritus. In terms of disease distribution
regions, sixteen patients exhibited involvement in the head and neck region, seventy
patients in the upper extremities, twelve patients in the axilla, one hundred and nine
patients in the trunk, seventy-six patients in the waist area, sixty-nine patients in the gluteal
region, twenty-one patients in the inguinal region, one hundred and twenty-three patients
in the lower extremities, five patients in the palmoplantar area, and two patients in the
genital region. Affected regions according to stages are shown in Figure 3.

Table 1. Demographic and clinical characteristics of patients.

Number of Patients (%)

Gender
Female 94 (50.8)
Male 91 (49.2)

Stage at Diagnosis
IA 76 (41.0)
IB 73 (39.5)

IIA 36 (19.5)

T Stage at Diagnosis T1 88 (47.6)
T2 97 (52.4)

N Stage at Diagnosis
N0 82 (44.3)
Nx 67 (36.2)
N1 36 (19.5)

B Stage at Diagnosis B0 180 (97.3)
B1 5 (2.7)

Patch/Plaque Patch 79 (42.7)
Patch + Plaque 106 (57.3)

Morphological Findings

Erythematous 120 (64.8)
Hyperpigmented 35 (18.9)

Poikiloderma 13 (7.0)
Folliculotropism 9 (4.8)

PPD-like 7 (3.8)
Hypopigmented 3 (1.6)

GSS 1 (0.5)
Ichthyosiform 1 (0.5)

Pruritus
No 77 (41.6)
Yes 108 (58.4)

LDH Levels
Normal 170 (91.9)

High 15 (8.1)

β-2 Microglobulin Levels Normal 121 (65.4)
High 64 (34.6)

Eosinophilia No 174 (94.0)
Yes 11 (6.0)

Histopathological Findings

Classic 119 (64.3)
Folliculotropism 28 (15.1)

LCT 9 (4.8)
PPD-like 5 (2.7)

GSS 1 (0.5)
Syringotropic 1 (0.5)

Granuloma Annulare-like 1 (0.5)

Immunohistochemical
Findings

CD4 (+) CD8 (−) 153 (82.7)
CD4 (−) CD8 (+) 28 (15.1)
CD4 (−) CD8 (−) 2 (1.0)
CD4 (+) CD8 (+) 2 (1.0)

CD30 (+) 4 (2.1)
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Table 1. Cont.

Number of Patients (%)

Initial Treatment Type
Skin-directed 149 (80.0)

Systemic 6 (3.3)
Combined 30 (16.7)

Initial Treatment

Topical Corticosteroid 6 (3.3)
Bexarotene Gel 1 (0.5)

nbUVB 65 (35.1)
PUVA 77 (41.6)

PUVA + Bexarotene Gel 1 (0.5)
Methotrexate (MTX) 2 (1.0)

Acitretin 3 (1.6)
Interferon (IFN) 1 (0.5)

nbUVB + Acitretin 1 (0.5)
nbUVB + IFN 1 (0.5)

PUVA + Acitretin 2 (1.0)
PUVA + IFN 24 (12.9)

PUVA + MTX 1 (0.5)
ECP + IFN 1 (0.5)

Period (Mean)

Age at Diagnosis (Years) 50.8
Age of Onset of Lesions (Years) 45.9

Follow-up Time (Years) 5.6
Time from Appearance to Diagnosis (Months) 56.3

Pigmented Purpuric Dermatosis (PPD); Granulomatous Slack Skin (GSS); lactate dehydrogenase (LDH); Large
Cell Transformation (LCT); Narrowband Ultraviolet B (nbUVB); Psoralen Ultraviolet A (PUVA); Methotrexate
(MTX); Interferon (IFN); Extracorporeal Photopheresis (ECP).
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Histopathologically, one hundred and nineteen (64.3%) patients were classical, twenty-
eight (15.1%) were folliculotropic, five (2.7%) were PPD-like, one (0.5%) was GSS, one
(0.5%) was syringotropic, one (0.5%) was granuloma annulare-like, and nine (4.8%) patients
had Large Cell Transformation (LCT). In immunohistochemical examination, one hundred
and fifty-three (82.7%) patients were CD4 (+) CD8 (−), twenty-eight (15.1%) patients were
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CD4 (−) CD8 (+), two (1%) patients were CD4 (+) CD8 (+), and two (1%) patients were
CD4 (−) CD8 (−). CD30 (+) was detected in four (2.1%) patients.

According to the type of treatment, one hundred and forty-nine patients received
skin-directed treatment, thirty patients received combined treatment, and six patients
underwent systemic treatment. PUVA therapy was the most commonly used skin-directed
treatment. The most frequently used initial treatment was PUVA therapy (41.6%), followed
by Narrowband UVB (nbUVB, 35.1%).

Complete response to initial treatment was observed in 114 (61.6%) patients. Relapse
occurred in 69 (37.3%) patients after initial treatment. There was progression in 54 (29.2%)
patients during the follow-up period. Of the patients who progressed, seven patients
progressed from stage IA to IB, nine patients from IA to IIA, six patients from IA to IIB,
nine patients from IB to IIA, two patients from IB to IIB, nine patients from IB to IIIA, one
patient from IIA to IIB, ten patients from IIA to IIIA, and one patient from IIA to IVA2.
Patient characteristics according to progression, complete response, and relapse are shown
in Table 2.

Table 2. Patient characteristics according to progression, complete response, and relapse.

Progression n (%) Complete Response
n (%) Relapse n (%)

No Yes No Yes No Yes

Gender
Female 74 (56.5) 20 (37.0) 36 (50.7) 58 (50.9) 25 (55.6) 33 (47.8)
Male 57 (43.5) 34 (63.0) 35 (49.3) 56 (49.1) 20 (44.4) 36 (52.2)

Stage at Diagnosis
IA 54 (41.2) 22 (40.7) 22 (31) 54 (47.4) 24 (53.3) 30 (43.5)
IB 53 (40.4) 20 (37.0) 28 (39.4) 45 (39.5) 16 (35.6) 29 (42.0)

IIA 24 (18.3) 12 (22.3) 21 (29.6) 15 (13.1) 5 (11.1) 10 (14.5)

T Stage at Diagnosis T1 59 (45.0) 29 (53.7) 31 (43.7) 57 (50.0) 26 (57.8) 31 (44.9)
T2 72 (55.0) 25 (46.3) 40 (56.3) 57 (50.0) 19 (42.2) 38 (55.1)

N Stage at Diagnosis
N0 67 (51.1) 15 (27.8) 24 (33.8) 58 (50.9) 24 (53.3) 34 (49.3)
Nx 40 (30.5) 27 (50.0) 26 (36.6) 41 (36.0) 16 (35.6) 25 (36.2)
N1 24 (18.4) 12 (22.2) 21 (29.6) 15 (13.1) 5 (11.1) 10 (14.5)

B Stage at Diagnosis B0 128 (97.7) 52 (96.3) 68 (95.8) 112 (98.3) 45 (100) 67 (95.9)
B1 3 (2.3) 2 (3.7) 3 (4.2) 2 (1.7) 0 (0) 2 (4.1)

Patch/Plaque Patch 59 (45.0) 20 (37.0) 26 (36.6) 53 (46.5) 23 (51.1) 30 (43.5)
Patch + Plaque 72 (55.0) 34 (63.0) 45 (63.4) 61 (53.5) 22 (48.9) 39 (56.5)

Morphological
Findings

Erythematous 88 (67.1) 32 (59.2) 48 (67.6) 72 (63.2) 27 (60.0) 45 (63)
Hyperpigmented 27 (20.6) 8 (14.8) 13 (18.3) 22 (19.3) 8 (17.8) 14 (16.4)

Poikiloderma 6 (4.5) 7 (13.0) 6 (8.5) 7 (6.1) 2 (4.4) 5 (9.6)
Folliculotropism 5 (3.8) 4 (7.4) 5 (5.6) 4 (4.4) 1 (2.2) 3 (5.5)

PPD-like 6 (4.5) 1 (1.9) 1 (1.4) 6 (5.3) 4 (8.9) 2 (4.1)
Hypopigmented 2 (1.5) 1 (1.9) 0 (0) 3 (2.6) 3 (6.7) 0

GSS 0 (0) 1 (1.9) 1 (1.4) 0 (0) - -
Ichthyosiform 0 (0) 1 (1.9) 1 (1.4) 0 (0) - -

Pruritus
No 58 (44.3) 19 (35.2) 28 (39.4) 49 (43.0) 20 (44.4) 29 (42.0)
Yes 73 (55.7) 35 (64.8) 43 (60.6) 65 (57.0) 25 (55.6) 40 (58.0)

LDH Levels
Normal 126 (96.2) 44 (81.5) 61 (86.0) 109 (95.6) 42 (93.3) 67 (97.1)

High 5 (3.8) 10 (18.5) 10 (14.0) 5 (4.4) 3 (6.7) 2 (2.9)

β-2 Microglobulin
Levels

Normal 94 (71.8) 27 (50.0) 36 (50.7) 85 (74.6) 35 (77.8) 50 (72.5)
High 37 (28.2) 27 (50.0) 35 (49.3) 29 (25.4) 10 (22.2) 19 (27.5)

Eosinophilia No 124 (94.7) 50 (92.6) 64 (90.1) 110 (96.5) 44 (97.8) 66 (95.7)
Yes 7 (5.3) 4 (7.4) 7 (9.9) 4 (3.5) 1 (2.2) 3 (4.3)
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Table 2. Cont.

Progression n (%) Complete Response
n (%) Relapse n (%)

No Yes No Yes No Yes

Histopathological
Findings

Classic 90 (68.7) 29 (53.7) 39 (55.7) 80 (85.1) 30 (66.7) 50 (72.5)
Folliculotropism 15 (11.5) 13 (24.0) 18 (25.7) 10 (10.6) 4 (8.9) 6 (8.7)

LCT 6 (4.6) 3 (5.5) 9 (12.9) 0 (0) - -
PPD-like 4 (3.1) 1 (1.9) 2 (2.9) 3 (3.2) 1 (2.2) 2 (2.9)

GSS 0 (0) 1 (1.9) 1 (1.4) 0 (0) - -
Syringotropic 1 (0.7) 0 (0) 0 (0) 1 (1.1) 0 (0) 1 (1.4)
Granuloma

Annulare-like 1 (0.7) 0 (0) 1 (1.4) 0 (0) - -

Immunohistochemical
Findings

CD4 (+) CD8 (−) 113 (86.3) 40 (74.0) 61 (81.3) 92 (80.9) 33 (73.3) 59 (85.5)
CD4 (−) CD8 (+) 22 (16.8) 6 (11.1) 8 (10.7) 20 (17.5) 11 (24.4) 9 (13.0)
CD4 (−) CD8 (−) 0 (0) 2 (3.7) 1 (1.3) 1 (0.8) 0 (0) 1 (1.4)
CD4 (+) CD8 (+) 1 (0.7) 1 (1.9) 1 (1.3) 1 (0.8) 1 (2.2) 0 (0)

CD30 (+) 1 (0.7) 3 (5.5) 4 (5.4) 0 (0) - -

Initial Treatment Type
Skin-directed 111 (84.7) 38 (70.3) 52 (73.2) 97 (85.1) 39 (86.7) 58 (84.1)

Systemic 1 (0.7) 5 (9.3) 4 (5.6) 2 (1.7) 0 (0) 2 (2.9)
Combined 19 (14.5) 11 (20.4) 15 (21.1) 15 (13.2) 3 (13.3) 12 (13.0)

Initial Treatment

Topical
Corticosteroid 4 (3.1) 2 (3.7) 3 (4.2) 3 (2.6) 0 (0) 3 (5.5)

Bexarotene Gel 1 (0.7) 0 (0) 0 (0) 1 (0.8) 1 (2.2) 0 (0)
nbUVB 51 (38.9) 14 (25.9) 22 (31.0) 43 (37.7) 18 (40.0) 25 (36.2)
PUVA 55 (41.9) 21 (38.8) 27 (38.0) 49 (43.0) 18 (40.0) 31 (44.9)

PUVA + Bexarotene
Gel 0 (0) 1 (1.9) 0 (0) 1 (0.8) 0 (0) 1 (1.4)

Methotrexate (MTX) 1 (0.7) 1 (1.9) 1 (1.4) 1 (0.8) 1 (2.2) 0 (0)
Acitretin 1 (0.7) 2 (3.7) 2 (2.8) 1 (0.8) 1 (2.2) 0 (0)

Interferon (IFN) 0 (0.7) 1 (1.9) 1 (1.4) 0 (0) - -
nbUVB + Acitretin 1 (0.7) 0 (0) 0 (0) 1 (0.8) 1 (2.2) 0 (0)

nbUVB + IFN 0 (0) 1 (1.9) 1 (1.4) 0 (0) - -
PUVA + Acitretin 2 (1.5) 0 (0) 1 (1.4) 1 (0.8) 0 (0) 1 (1.4)

PUVA + IFN 13 (9.9) 11 (20.4) 13(18.3) 11 (9.6) 3 (6.7) 8 (11.6)
PUVA + MTX 1 (0.7) 0 (0) 0 (0) 1 (0.8) 1 (2.2) 0 (0)

ECP + IFN 1 (0.7) 0 (0) 0 (0) 1 (0.8) 1 (2.2) 0 (0)

Age at Diagnosis 50.6 51.2 52.4 49.8 53 47.7

Age of Onset of Lesions (Years) 46.3 44.9 47.6 44.8 48.3 42.5

Follow-up Time (Years) 5.1 6.8 5.7 5.5 3.0 7.1

Time from Appearance to Diagnosis (Months) 52.1 66.5 57.4 55.6 42.5 64.1

Pigmented Purpuric Dermatosis (PPD); Granulomatous Slack Skin (GSS); lactate dehydrogenase (LDH); Large
Cell Transformation (LCT); Narrowband Ultraviolet B (nbUVB); Psoralen Ultraviolet A (PUVA); Methotrexate
(MTX); Interferon (IFN); Extracorporeal Photopheresis.

3.1. Cox Proportional Hazards Models
3.1.1. Progression

Demographic, clinical, histopathological, and laboratory characteristics, treatment
types, and their correlations with progression are depicted in Table 3. Based on the CPH
model, factors such as age, pruritus, elevated LDH levels, and Nx pathology were identified
as correlated with progression. Classic pathology, skin-directed treatment, and PUVA ther-
apy were associated with a decreased risk of progression. Through multivariate analysis,
high LDH levels were linked to progression, while classic pathology was associated with a
reduced progression risk. The C-index for progression in the multivariate CPH model was
determined to be 0.501.
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Table 3. Univariate and multivariate Cox proportional hazards model results for progression.

Progression

Univariate Analysis Multivariate Analysis

p-Value Hazard
Ratio %95 CI p-Value Hazard

Ratio %95 CI

Age at diagnosis 0.029 * 1.023 1.002–1.043 0.261 1.013 0.990–1.036

Age of Onset of Lesions (Years) 0.214 1.012 0.993–1.031 - - -

Time from Appearance to Diagnosis
(Months) 0.064 1.003 1.000–1.005 - - -

Gender (Male) 0.715 1.111 0.630–1.962 - - -

Patch/Patch + Plaque (Patch + Plaque) 0.958 1.015 0.580–1.777 - - -

Morphological Findings

Hyperpigmentation (Yes) 0.092 0.522 0.245–1.112 - - -

Erythema (Yes) 0.787 1.079 0.620–1.878 - - -

Pruritus (Yes) 0.035 * 1.906 1.046–3.473 0.153 1.624 0.835–3.155

Histopathological Findings

Classic (Yes) 0.015 * 0.498 0.051–0.873 0.022 * 0.477 0.258–0.901

Folliculotropism (Yes) 0.085 2.502 0.882–7.096 - - -

CD8 (+) (Yes) 0.920 0.960 0.431–2.139 - - -

Stage at Diagnosis
IB 0.890 0.957 0.516–1.776 - - -

IIA 0.667 0.856 0.421–1.740 - - -

T Stage at Diagnosis
(T2) 0.319 0.756 0.437–1.310 - - -

N Stage at Diagnosis

Nx 0.009 * 2.404 1.250–4.623 0.905 0.951 0.417–5.555

N1 0.272 1.520 0.720–3.210 - - -

β-2 Microglobulin (High) 0.238 1.388 0.805–2.391 - - -

LDH (High) 0.038 * 2.107 1.041–4.267 0.004 * 3.424 1.475–7.947

Eosinophilia (Yes) 0.112 2.350 0.820–6.735 - - -

Initial Treatment Type

Skin-directed 0.005 * 0.415 0.210–0.770 0.581 0.809 0.382–1.716

Combined 0.170 1.615 0.814–3.205 - - -

Initial Treatment

NB-UVB 0.096 1.694 0.911–3.149 - - -

PUVA 0.022 * 0.524 0.112–0.911 0.313 0.722 0.384–1.359

PUVA + IFN 0.757 1.146 0.484–2.710 - - -

* p < 0.05 significant relationship. p > 0.05 no significant relationship; CI: confidence interval; LDH: lactate
dehydrogenase; NB-UVB: Narrowband Ultraviolet B; PUVA: Psoralen + Ultraviolet A; IFN: Interferon.

CLIPI

The p-value for CLIPI regarding progression risk was 0.011 (p < 0.05), with a corre-
sponding C-index of 0.278 (CPH model). The AUC value was at 0.655.
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3.1.2. Complete Response

Demographic, clinical, histopathological, and laboratory characteristics, treatment
types, and their correlations with complete response are depicted in Table 4. In the univari-
ate CPH analysis, factors such as age, gender, disease stage, beta-2-microglobulin levels,
and initial treatment were linked to complete response. Male gender, stage IIA disease,
elevated β-2 microglobulin levels, and NB-UVB treatment were associated with reduced
complete response, whereas PUVA therapy correlated with improved complete responses.
In the subsequent multivariate analysis, male gender, β-2 microglobulin levels, and PUVA
treatment emerged as significant predictors of complete response. The C-index for complete
response in the multivariate CPH model was 0.543.

Table 4. Univariate and multivariate Cox proportional hazards model results for complete response.

Complete Response

Univariate Analysis Multivariate Analysis

p-Value Hazard
Ratio %95 CI p-Value Hazard

Ratio %95 CI

Age at Diagnosis 0.043 * 1.014 1.001–1.028 0.065 1.015 0.999–1.030

Age of Onset of Lesions (Years) 0.140 1.010 0.997–1.022 - - -

Time to Diagnosis (Months) 0.314 1.001 0.999–1.003 - - -

Gender (Male) 0.030 * 0.660 0.250–0.960 0.028 * 0.638 0.150–0.952

Patch/Patch + Plaque (Patch + Plaque) 0.056 0.696 0.480–1.009 - - -

Morphological Findings
Hyperpigmentation (Yes) 0.377 0.815 0.519–1.282 - - -

Erythema (Yes) 0.069 1.444 0.972–2.145 - - -

Pruritus (Yes) 0.369 1.191 0.813–1.743 - - -

Histopathological Findings
Classic (Yes) 0.770 1.062 0.708–1.593 - - -

Folliculotropism (Yes) 0.870 1.078 0.437–2.659 - - -
CD8 (+) (Yes) 0.360 1.254 0.772–2.037 - - -

Stage at Diagnosis
IB 0.718 0.930 0.627–1.380 0.813 1.050 0.703–1.567

IIA 0.003 * 0.402 0.192–0.737 0.863 1.194 0.159–8.960

T Stage at Diagnosis
(T2) 0.552 0.894 0.618–1.294 - - -

N Stage at Diagnosis
Nx 0.059 0.382 0.141–1.039 - - -
N1 0.680 0.809 0.296–2.214 - - -

β-2 Microglobulin (High) 0.003 * 0.535 0.110–0.812 0.012 * 0.567 0.254–0.883

LDH (High) 0.059 0.382 0.141–1.039 - - -

Eosinophilia (Yes) 0.680 0.809 0.296–2.213 - - -

Initial Treatment Type
Skin-directed 0.571 1.155 0.702–1.900 - - -

Combined 0.850 0.952 0.573–1.583 - - -

Initial Treatment
NB-UVB 0.001 * 0.538 0.250–0.785 0.769 0.922 0.536–1.587

PUVA 0.001 * 1.990 1.338–2.961 0.018 * 1.870 1.114–3.139
PUVA + IFN 0.118 5.114 0.663–39.463 - - -

* p < 0.05 significant relationship. p > 0.05 no significant relationship; CI: confidence interval; LDH: lactate
dehydrogenase; NB-UVB: Narrowband Ultraviolet B; PUVA: Psoralen + Ultraviolet A; IFN: Interferon.
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3.1.3. Relapse

Demographic, clinical, histopathological, and laboratory characteristics, treatment
types, and their correlations with relapse are depicted in Table 5. In the univariate CPH
model, variables, including the duration from lesion onset to diagnosis, DBUVB treatment,
and PUVA therapy, were found to be associated with recurrence. A longer duration between
lesion onset and diagnosis, as well as NBUVB treatment, were linked to an elevated risk
of relapse, while PUVA treatment was correlated with a reduced risk of relapse. In the
multivariate analysis, the time to diagnosis and PUVA treatment were specifically identified
as factors associated with relapse. The C-index for complete response in the multivariate
CPH model was 0.505.

Table 5. Univariate and multivariate Cox proportional hazards model results for relapse.

Relapse

Univariate Analysis Multivariate Analysis

p-Value Hazard
Ratio %95 CI p-Value Hazard

Ratio %95 CI

Age at Diagnosis 0.585 1.005 0.987–1.023 - - -

Age of Onset of Lesions (Years) 0.615 0.996 0.980–1.012 - - -

Time to Diagnosis (Months) 0.032 * 1.002 1.001–1.005 0.037 * 1.003 1.001–1.005

Gender (Male) 0.474 0.837 0.515–1.361 - - -

Patch/Patch + Plaque (Patch + Plaque) 0.177 0.709 0.431–1.167 - - -

Morphological Findings
Hyperpigmentation (Yes) 0.211 0.691 0.387–1.233 - - -

Erythema (Yes) 0.909 1.030 0.625–1.695 - - -

Pruritus (Yes = 1) 0.515 1.176 0.722–1.914 - - -

Histopathological Findings
Classic 0.270 0.753 0.455–1.246 - - -

Folliculotropism 0.579 1.392 0.433–4.477 - - -
CD8 (+) 0.895 0.957 0.501–1.830 - - -

Stage at Diagnosis
IB 0.281 0.786 0.457–1.351 - - -

IIA 0.518 0.892 0.460–1.733 - - -

T Stage at Diagnosis
(T2) 0.815 0.944 0.583–1.529 - - -

N Stage at Diagnosis
Nx 0.560 0.827 0.483–1.416 - - -
N1 0.492 0.815 0.412–1.613 - - -

β-2 Microglobulin (High) 0.679 0.899 0.541–1.492 - - -

LDH (High) 0.210 2.475 0.599–10.226 - - -

Eosinophilia (Yes) 0.869 0.887 0.214–3.674 - - -

Initial Treatment Type
Skin-directed 0.787 1.098 0.557–2.165 - - -

Combined 0.940 0.974 0.494–1.920 - - -

Initial Treatment
NB-UVB 0.001 * 2.860 1.693–4.831 0.134 1.672 0.853–3.277

PUVA 0.000 * 0.375 0.101–0.628 0.034 * 0.485 0.210–0.947
PUVA + IFN 0.327 1.693 0.729–2.578 - - -

* p < 0.05 significant relationship. p > 0.05 no significant relationship; CI: confidence interval; LDH: lactate
dehydrogenase; NB-UVB: Narrowband Ultraviolet B; PUVA: Psoralen + Ultraviolet A; IFN: Interferon.
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3.2. Implementation of Machine Learning Models
3.2.1. Data Preprocessing and Feature Importances

Before performing any kind of modeling study, it is best practice to analyze the data
and consider data or feature elimination, augmentation, or cleaning. To this end, we have
utilized MRMR and ANOVA feature scoring algorithms to deduce the most important
features for progression, complete response, and relapse. The MRMR algorithm tends to
select a subset of features having the most correlation with the output, while the ANOVA
algorithm favors the selection of attributes characterized by minimal intra-class variance
and maximal inter-class variance [34]. Figure 4 illustrates the ten most important features, in
order, for each output and algorithm. Since there were no significantly prevalent estimators
for progression, complete response, and relapse, all the features are kept as is for the
obtainment of ML models in the next section. However, there were five patients with
null data for several features, and thus, these data were eliminated whilst modeling. The
elimination of these data does not affect the statistics given in Table 1 significantly since the
presence of null data was random, and the eliminated data are of low proportion when
compared to the whole dataset.
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3.2.2. Progression

The most successful model in predicting progression was SVM, with an accuracy of
75.00% and an F1 Score of 49.44% (given in Table 6). The sensitivity (TPR) of the model
was 40.7%, and the specificity (TNR) was 89.7% (Figure 5). The AUC of the model was
0.73927. The ROC Curve for the SVM was also illustrated in Figure 2. The optimum
hyperparameters were also obtained by utilizing the Bayesian optimization for the SVM
model. Accordingly, the optimum kernel function was determined as linear with a kernel
scale of 1, the optimum box constraint level was 4.8087, and the optimum multiclass method
was one-vs-all.

Table 6. Ten-fold cross-validation results of the ML models in the estimation of progression.

Model Type Accuracy % F1 Score %

SVM 75.00 49.44
Discriminant 73.89 48.35
KNN 72.78 24.62
BGLM Logistic Regression 72.22 41.86
Efficient Logistic Regression 71.67 37.04
Efficient Linear SVM 71.67 38.55
Ensemble 71.11 23.53
Tree 70.56 18.46
Neural Network 68.89 46.15
Naive Bayes 65.56 41.51

The most successful model is marked in bold.

Life 2024, 14, x FOR PEER REVIEW 14 of 21 
 

 

KNN 72.78 24.62 
BGLM Logistic Regression 72.22 41.86 
Efficient Logistic Regression 71.67 37.04 
Efficient Linear SVM 71.67 38.55 
Ensemble 71.11 23.53 
Tree 70.56 18.46 
Neural Network 68.89 46.15 
Naive Bayes 65.56 41.51 
The most successful model is marked in bold. 

 
Figure 5. Confusion matrix and ROC Curve of the best-performing model in the estimation of 
progression. 

The C-index of the SVM model in the estimation of progression was 0.652. 
Comparison of the C-indexes and AUC values of the multivariate CPH, CLIPI, and SVM 
models in the estimation of progression are shown in Table 7. 

Table 7. The C-indexes and AUC values of the best-performing machine learning model, CILIPI, 
and the CPH model in the estimation of progression. 

 C-Index AUC 
CPH 0.501 0.451 
SVM 0.652 0.73927 
CLIPI 0.278 0.655 

3.2.3. Complete Response 
The most successful model in predicting the complete response was the Ensemble 

model, with 68.89% accuracy and an F1 Score of 75.44% achieved (given in Table 8). The 
sensitivity (TPR) of the model was 78.9%, and the specificity (TNR) was 53.5% (Figure 6). 
The AUC of the model was 0.68226. The ROC Curve for the Ensemble model was also 
illustrated in Figure 3. The optimum hyperparameters were also obtained by the Bayesian 
optimization for the Ensemble model. Accordingly, the optimum ensemble method was 
determined as GentleBoost, and the optimum value for the maximum number of splits 
was 14, the number of learners was 15, and the learning rate was 0.001. 

Table 8. Ten-fold cross-validation results of the ML models in the estimation of complete response. 

Model Type Accuracy % F1 Score % 
Ensemble 68.89 75.44 
Neural Network 66.11 74.26 
SVM 66.11 74.69 

Figure 5. Confusion matrix and ROC Curve of the best-performing model in the estimation
of progression.

The C-index of the SVM model in the estimation of progression was 0.652. Comparison
of the C-indexes and AUC values of the multivariate CPH, CLIPI, and SVM models in the
estimation of progression are shown in Table 7.

Table 7. The C-indexes and AUC values of the best-performing machine learning model, CILIPI, and
the CPH model in the estimation of progression.

C-Index AUC

CPH 0.501 0.451

SVM 0.652 0.73927

CLIPI 0.278 0.655
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3.2.3. Complete Response

The most successful model in predicting the complete response was the Ensemble
model, with 68.89% accuracy and an F1 Score of 75.44% achieved (given in Table 8). The
sensitivity (TPR) of the model was 78.9%, and the specificity (TNR) was 53.5% (Figure 6).
The AUC of the model was 0.68226. The ROC Curve for the Ensemble model was also
illustrated in Figure 3. The optimum hyperparameters were also obtained by the Bayesian
optimization for the Ensemble model. Accordingly, the optimum ensemble method was
determined as GentleBoost, and the optimum value for the maximum number of splits was
14, the number of learners was 15, and the learning rate was 0.001.

Table 8. Ten-fold cross-validation results of the ML models in the estimation of complete response.

Model Type Accuracy % F1 Score %

Ensemble 68.89 75.44
Neural Network 66.11 74.26
SVM 66.11 74.69
KNN 65.56 72.81
Naive Bayes 65.00 75.1
BGLM Logistic Regression 65.00 72.96
Efficient Logistic Regression 63.33 72.5
Discriminant 61.11 69.03
Efficient Linear SVM 61.11 71.77
Tree 60.00 72.73

The most successful model is marked in bold.

Life 2024, 14, x FOR PEER REVIEW 15 of 21 
 

 

KNN 65.56 72.81 
Naive Bayes 65.00 75.1 
BGLM Logistic Regression 65.00 72.96 
Efficient Logistic Regression 63.33 72.5 
Discriminant 61.11 69.03 
Efficient Linear SVM 61.11 71.77 
Tree 60.00 72.73 
The most successful model is marked in bold. 

 
Figure 6. Confusion matrix and ROC Curve of the best-performing model in the estimation of 
complete response. 

The C-index of the Ensemble model in the estimation of complete response was 0.662. 
Comparison of the C-indexes and AUC values of the multivariate CPH and Ensemble 
models in the estimation of complete response are shown in Table 9. 

Table 9. The C-indexes and AUC values of the best-performing machine learning model and the 
CPH model in the estimation of complete response. 

 C-Index AUC 
CPH 0.543 0.36 

Ensemble 0.662  0.68226 

3.2.4. Relapse 
The most successful model in predicting relapse was the Tree model, and 78.17% 

accuracy was achieved, with an F1 Score of 78.91 (given in Table 10). The sensitivity of the 
model was 79.5%, and the specificity was 76.8% (Figure 7). The AUC of the model was 
0.77546. The ROC Curve for the decision tree classifier is also illustrated in Figure 4. The 
optimum hyperparameters were also obtained by the Bayesian optimization for the Tree 
model. Accordingly, the optimum maximum number of splits was determined as eight, 
and the split criterion was Gini’s diversity index. 

Table 10. Ten-fold cross-validation results of the ML models in the estimation of relapse. 

Model Type Accuracy % F1 Score % 
Tree 78.17 78.91 
Ensemble 77.46 78.08 
SVM 70.42 71.62 
Discriminant 62.68 62.94 
KNN 62.68 60.74 
Efficient Linear SVM 62.68 62.94 
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complete response.

The C-index of the Ensemble model in the estimation of complete response was 0.662.
Comparison of the C-indexes and AUC values of the multivariate CPH and Ensemble
models in the estimation of complete response are shown in Table 9.

Table 9. The C-indexes and AUC values of the best-performing machine learning model and the
CPH model in the estimation of complete response.

C-Index AUC

CPH 0.543 0.36

Ensemble 0.662 0.68226

3.2.4. Relapse

The most successful model in predicting relapse was the Tree model, and 78.17%
accuracy was achieved, with an F1 Score of 78.91 (given in Table 10). The sensitivity of the
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model was 79.5%, and the specificity was 76.8% (Figure 7). The AUC of the model was
0.77546. The ROC Curve for the decision tree classifier is also illustrated in Figure 4. The
optimum hyperparameters were also obtained by the Bayesian optimization for the Tree
model. Accordingly, the optimum maximum number of splits was determined as eight,
and the split criterion was Gini’s diversity index.

Table 10. Ten-fold cross-validation results of the ML models in the estimation of relapse.

Model Type Accuracy % F1 Score %

Tree 78.17 78.91
Ensemble 77.46 78.08
SVM 70.42 71.62
Discriminant 62.68 62.94
KNN 62.68 60.74
Efficient Linear SVM 62.68 62.94
Naive Bayes 60.56 67.44
Neural Network 59.15 57.35
Efficient Logistic Regression 57.75 58.9
BGLM Logistic Regression 57.04 57.93

The most successful model is marked in bold.
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The C-index of the decision tree classifier in the estimation of relapse was 0.782.
Comparisons of the C-indexes and AUC values of the multivariate CPH and decision tree
models in the estimation of relapse are shown in Table 11.

Table 11. The C-indexes and AUC values of the best-performing machine learning model and the
CPH model in the estimation of relapse.

C-Index AUC

CPH 0.505 0.489

Decision Tree 0.782 0.77546

4. Discussion

The significance of artificial intelligence in the practice of dermatology is increasing.
Existing academic research primarily focuses on diagnosing diseases using artificial in-
telligence [17,18]. Nevertheless, the literature does contain studies on the use of ML in
predicting the prognosis of malignancies [35]. Cheraghlou et al. employed the modified
classification and regression tree method, an ML technique, to estimate survival rates in
patients with Merkel cell carcinoma. Patient demographic and clinical data were analyzed
for risk stratification, and the algorithm demonstrated a noteworthy accuracy in survival
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prediction [36]. In another study, Damiani and colleagues evaluated the data of squa-
mous cell carcinoma patients using an artificial neural network (ANN)-based algorithm
to identify patterns of patients with higher risk of postradiotherapy recurrence [37]. In
our research, we evaluated the performances of several ML algorithms in predicting the
initial treatment response, relapse, and progression in early-stage MF patients by using
patient data.

The machine learning (ML) methods employed in this study are generally more adept
at multi-class prediction and handling intricate decision boundaries when compared to
conventional statistical techniques, such as Cox proportional hazards (CPH) models and
multivariate regression analyses. Traditional statistical methods often encounter challenges
with nonlinear relationships and datasets featuring a high dimensionality [38]. In contrast to
ML techniques, which exhibit high flexibility and operate without predefined assumptions,
traditional statistical methodologies rely on strict assumptions necessitating an explicit
specification of the relationship between independent and dependent variables (e.g., inter-
action terms, polynomial terms). Moreover, traditional statistical models are limited by the
researcher’s capacity to formulate hypotheses concerning these connections [39].

ML models excel at capturing nonlinear associations among variables, accommo-
dating high-dimensional data, and performing effectively with smaller sample sizes [39].
Numerous studies have revealed that ML models, particularly in tasks related to disease
progression and prediction, frequently outperform traditional statistical methods regarding
predictive accuracy and adaptability across diverse clinical scenarios [40,41]. In accordance
with the existing literature, our study illustrated that ML methods surpassed CPH models
regarding the prediction of progression, relapse, and complete response, as indicated by
superior C-index and AUC outcomes.

Numerous studies have been conducted previously on the prognosis of mycosis
fungoides. CLIPI prognostic index was devised using overall survival (OS) and progression-
free survival (PFS) as key endpoints. The index identifies distinct criteria for patients in both
the early and advanced stages of MF and demonstrates a strong correlation to overall and
progression-free survival rates in both patient groups [9]. However, subsequent research
did not validate the association between the CLIPI index and prognosis [10,11]. The
study’s definition of PFS—the time from diagnosis to stage progression (excluding changes
from T1a to T1b or T2a to T2b) or disease-specific death—differed from the commonly
accepted definitions set by the ISCL, including those used in our study [13]. The definition
determined by the ISCL and applied in our study is more detail-oriented and, thus, may be
more useful and decisive in early-stage MF. Additionally, using OS as an endpoint may
introduce bias, especially in early-stage MF, due to short follow-up periods in most studies.
Furthermore, likely due to these aforementioned pitfalls, CLIPI could not be validated
in other cohorts with early-stage MF [11]. Similarly, the CLIPI index was inferior to the
SVM model in predicting progression in our cohort (C-index: 0.652 for SVM vs. 0.278 for
CLIPI; AUC: 0.73 for SVM vs. 0.65 for CLIPI). Nevertheless, upon comparing significant
factors, in the CLIPI study, male gender, age over 60 years, plaque lesion, folliculotropism,
and lymphadenopathy were statistically linked with PFS in the early stage [9]. In our
study, factors evaluated using ML algorithms were prioritized based on their significance
in predicting the risk of progression. Gender and folliculotropism emerged as the most
important factors for progression, similar to the CLIPI study. However, age, lesion type,
and lymphadenopathy were not among the most important factors in progression.

Male gender, advanced age, stage increase, plaque lesions, raised lactate dehydro-
genase and ß2 microglobulin levels, blood eosinophilia, folliculotropism, and large-cell
transformation in pathology have been defined as poor prognostic factors; conversely, char-
acteristics like patch lesions, hypopigmentation, poikiloderma, lymphomatoid papulosis,
and CD8 positivity in immunohistochemical analyses are defined as favorable prognostic
factors [4,7,9,42–44]. Despite the isolated prognostic insights these factors provide, there
is a lack of research that cumulatively integrates these factors to predict the prognosis of
MF. Our study fills this gap by recording comprehensive patient data, including demo-
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graphic, clinical, laboratory, and pathological information, and subsequently training ML
algorithms for predictive purposes. The most successful predictions for progression were
obtained with the SVM algorithm, with an accuracy of 75%. The algorithm demonstrated a
sensitivity of 40.7% and a specificity of 89.7%. The most important features in predicting
progression in the current study were folliculotopism, lymphomatoid papulosis, gender,
LDH, and β-2 microglobulin levels consistent with the literature. Remarkably, the LDH
value proved to be significant in predicting progression in both univariate and multivariate
CPH models, as well as in ML analyses. The significance of skin-directed treatment, shown
to be effective in the univariate analysis and machine learning, may be attributed to its pref-
erence among patients believed to be at low risk of progression. As the follow-up duration
extends, the detection of progression and recurrence becomes more straightforward. The
noteworthy impact of the follow-up period in our research emphasizes the necessity for
vigilant monitoring of patients at risk of progression and recurrence.

The therapeutic objective for early-stage MF involves ensuring total lesion regression
and preventing relapses. Numerous clinical, laboratory, and pathological features linked
with treatment response and relapse have been described in the literature [12,45–48]. Fea-
tures such as folliculotropism, hyperpigmented morphology, lymphomatoid papulosis,
LDH level, eosinophilia, disease stage, and skin-directed treatment were identified as impor-
tant features influencing complete response, as in progression in our research. Furthermore,
β-2 microglobulin levels emerged as a crucial feature in both the CPH multivariate anal-
ysis and machine learning models. Patients with these features may exhibit incomplete
responses to initial treatment. In contrast, a complete response is more probable in cases of
lymphomatoid papulosis and the hyperpigmented morphological type, which are linked to
an indolent disease course [49]. Regarding recurrence, the primary characteristics included
the duration of follow-up, age at onset of lesions, age at diagnosis, gender, and time to
diagnosis. Patients experiencing recurrence tended to have a longer follow-up period and
time to diagnosis and a shorter duration between the onset of lesions and diagnosis age,
with a predominance of male gender. The Tree algorithm was the most successful algorithm
in predicting relapse, with 78.17% accuracy, 79.5% sensitivity, and 78.8% specificity. The
Ensemble algorithm demonstrated the highest level of accuracy in predicting treatment
response, although its accuracy rates were somewhat lower compared to predictions of
progression and relapse, with an accuracy of 68.89% (showing high sensitivity at 78.9%
and lower specificity at 53.5%). Despite these findings, the ML algorithms’ success rates
could be enhanced by training with larger sample groups. These results suggested that
such algorithms could be leveraged to predict the course of MF using patient data and
assist medical professionals in planning patient management.

In our research, while predicting progression, relapse, and complete response, several
discrepancies were observed between the variables deemed significant by the CPH model
and those identified as important by the machine learning methods. These differences
may be explained by several factors beyond those already discussed. First, the heightened
influence of the top five features in the machine learning assessment, compared to other
factors that, while still important, rank lower in significance, could be crucial in this
context [50]. Second, the limitations of incorporating an insufficient number of variables
in the CPH model hinder its ability to comprehensively evaluate all parameters [51].
Additionally, the abundance of predictors, combined with the relatively modest sample
size of our dataset, may also contribute to these discrepancies [52].

There are certain limitations to our study. First, it can be considered that the retro-
spective design of our study is a limitation as it may cause patient selection bias. Secondly,
since it is a single-center study, the sample size is relatively restricted.

5. Conclusions

While our study demonstrates the potential of ML models such as decision trees,
discriminant classifiers, logistic regression, Naive Bayes classifiers, SVMs, KNNs, Ensemble
methods, and shallow neural networks in predicting treatment response, progression, and
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risk of relapse in early-stage MF patients, several limitations should be acknowledged. One
key limitation is that these models often require careful feature selection and tuning to
perform well in clinical datasets with limited sample sizes, such as ours. Furthermore, their
generalizability may be restricted due to the heterogeneity of data across different cohorts.
Although deep learning models were not included in this study due to their need for larger
datasets to achieve optimal performance, they represent a promising avenue for future
research as more data become available with multi-center collaborations. Potential appli-
cations of ML in MF prognosis extend beyond the prediction of progression and relapse,
including personalized treatment planning and identifying novel prognostic biomarkers.
However, challenges such as the interpretability of complex models, the risk of overfitting,
and the need for external validation in diverse patient populations must be addressed to
ensure clinical utility and widespread adoption.
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44. Bahalı, A.G.; Su, O.; Cengiz, F.P.; Emiroğlu, N.; Ozkaya, D.B.; Onsun, N. Prognostic factors of patients with mycosis fungoides.
Postep. Dermatol. Alergol. 2020, 37, 796–799. [CrossRef]

45. Rattanakaemakorn, P.; Ploydaeng, M.; Udompanich, S.; Thadanipon, K.; Rutnin, S.; Rajatanavin, N. Phototherapy as a treatment
of early-stage mycosis fungoides and predictive factors for disease recurrence: A 17-year retrospective study. Indian. J. Dermatol.
Venereol. Leprol. 2021, 87, 645–650. [CrossRef]

46. Pavlotsky, F.; Dawood, M.; Barzilai, A. Potential of narrow-band ultraviolet B to induce sustained durable complete remission
off-therapy in patients with stage I mycosis fungoides. J. Am. Acad. Dermatol. 2019, 80, 1550–1555. [CrossRef]

47. Hernández, Z.; Peñate, Y.; Hernández-Machín, B.; Pérez-Méndez, L.; Suárez-Hernández, J.; Hernández, J.; Fernández-de-Misa, R.
Treatment of stage Ia and Ib mycosis fungoides with psoralen UVA monotherapy: An observational study in tertiary hospitals in
the Canary Islands. Int. J. Dermatol. 2014, 53, 1417–1422. [CrossRef]
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