Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Propagation
2.2. Calculation of Colony Trajectories and Migration Measures
2.3. Diffusion Models and MSD Fitting
2.4. Statistical Analysis
3. Results
3.1. General Plan of the Study
3.2. Variability of Migration Characteristics Across Morphological Phenotypes
3.2.1. Mean Colony Speed
3.2.2. Total Distance
3.2.3. Meandering Index and Outreach Ratio
3.2.4. Velocity Autocorrelation Function
3.3. Diffusion Models Characterizing hPSC Colony Migration
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rowe, R.G.; Daley, G.Q. Induced Pluripotent Stem Cells in Disease Modelling and Drug Discovery. Nat. Rev. Genet. 2019, 20, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Ebert, A.D.; Svendsen, C.N. Human Stem Cells and Drug Screening: Opportunities and Challenges. Nat. Rev. Drug Discov. 2010, 9, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huangfu, D. Human Pluripotent Stem Cells: An Emerging Model in Developmental Biology. Development 2013, 140, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, O.A.; Gursky, V.V.; Chabina, A.S.; Kulakova, K.A.; Alekseenko, L.L.; Panova, A.V.; Kiselev, S.L.; Neganova, I.E. Prognostic Analysis of Human Pluripotent Stem Cells Based on Their Morphological Portrait and Expression of Pluripotent Markers. Int. J. Mol. Sci. 2022, 23, 12902. [Google Scholar] [CrossRef]
- Mamaeva, A.; Krasnova, O.; Khvorova, I.; Kozlov, K.; Gursky, V.; Samsonova, M.; Tikhonova, O.; Neganova, I. Quality Control of Human Pluripotent Stem Cell Colonies by Computational Image Analysis Using Convolutional Neural Networks. Int. J. Mol. Sci. 2023, 24, 140. [Google Scholar] [CrossRef]
- Vedeneeva, E.; Gursky, V.; Samsonova, M.; Neganova, I. Morphological Signal Processing for Phenotype Recognition of Human Pluripotent Stem Cells Using Machine Learning Methods. Biomedicines 2023, 11, 3005. [Google Scholar] [CrossRef]
- Gursky, V.; Krasnova, O.; Sopova, J.; Kovaleva, A.; Kulakova, K.; Tikhonova, O.; Neganova, I.; Gursky, V.; Krasnova, O.; Sopova, J.; et al. How Morphology of the Human Pluripotent Stem Cells Determines the Selection of the Best Clone; IntechOpen: Rijeka, Croatia, 2023; ISBN 978-1-83769-262-0. [Google Scholar]
- Hu, Y.; Becker, M.L.; Willits, R.K. Quantification of Cell Migration: Metrics Selection to Model Application. Front. Cell Dev. Biol. 2023, 11, 1155882. [Google Scholar] [CrossRef]
- Svensson, C.-M.; Medyukhina, A.; Belyaev, I.; Al-Zaben, N.; Figge, M.T. Untangling Cell Tracks: Quantifying Cell Migration by Time Lapse Image Data Analysis: Untangling Cell Tracks. Cytometry 2018, 93, 357–370. [Google Scholar] [CrossRef]
- Huang, Y.L.; Tung, C.-K.; Zheng, A.; Kim, B.J.; Wu, M. Interstitial Flows Promote Amoeboid over Mesenchymal Motility of Breast Cancer Cells Revealed by a Three Dimensional Microfluidic Model. Integr. Biol. 2015, 7, 1402–1411. [Google Scholar] [CrossRef]
- Masuzzo, P.; Van Troys, M.; Ampe, C.; Martens, L. Taking Aim at Moving Targets in Computational Cell Migration. Trends Cell Biol. 2016, 26, 88–110. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Mech, F.; Zitzmann, C.; Hasenberg, M.; Gunzer, M.; Figge, M.T. Automated Characterization and Parameter-Free Classification of Cell Tracks Based on Local Migration Behavior. PLoS ONE 2013, 8, e80808. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.C.; Loza, A.; Antrim, L.; Talbot, P. Video Bioinformatics Analysis of Human Pluripotent Stem Cell Morphology, Quality, and Cellular Dynamics. STEM CELLS Transl. Med. 2021, 10, 1343–1359. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.T.; Sasaki, K.; Kino-oka, M. Development of a Kinetic Model Expressing Anomalous Phenomena in Human Induced Pluripotent Stem Cell Culture. J. Biosci. Bioeng. 2021, 131, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, P.; Klages, R.; Preuss, R.; Schwab, A. Anomalous Dynamics of Cell Migration. Proc. Natl. Acad. Sci. USA 2008, 105, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Neganova, I.; Chichagova, V.; Armstrong, L.; Lako, M. A Critical Role for p38MAPK Signalling Pathway during Reprogramming of Human Fibroblasts to iPSCs. Sci. Rep. 2017, 7, 41693. [Google Scholar] [CrossRef]
- Panova, A.V.; Kulikova, K.S.; Klementieva, N.V.; Krylov, I.D.; Snezhko, I.O.; Tiulpakov, A.N.; Kiselev, S.L. Generation of an Induced Pluripotent Stem Cell Line HPCASRi002-A from a Patient with Neonatal Severe Primary Hyperparathyroidism Caused by a Compound Heterozygous Mutation in the CASR Gene. Stem Cell Res. 2021, 54, 102414. [Google Scholar] [CrossRef]
- Wolfram Research, Inc. Mathematica; Version 12.0.0; Wolfram Research, Inc.: Champaign, IL, USA, 2021. [Google Scholar]
- Barkai, E.; Silbey, R.J. Fractional Kramers Equation. J. Phys. Chem. B 2000, 104, 3866–3874. [Google Scholar] [CrossRef]
- Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of the Brownian Motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Gursky, V.V.; Kozlov, K.N.; Nuzhdin, S.V.; Samsonova, M.G. Dynamical Modeling of the Core Gene Network Controlling Flowering Suggests Cumulative Activation From the FLOWERING LOCUS T Gene Homologs in Chickpea. Front. Genet. 2018, 9, 547. [Google Scholar] [CrossRef]
- Liu, C.; Oikonomopoulos, A.; Sayed, N.; Wu, J.C. Modeling Human Diseases with Induced Pluripotent Stem Cells: From 2D to 3D and Beyond. Development 2018, 145, dev156166. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Cerneckis, J.; Cai, H.; Shi, Y. Induced Pluripotent Stem Cells (iPSCs): Molecular Mechanisms of Induction and Applications. Signal Transduct. Target. Ther. 2024, 9, 1–26. [Google Scholar] [CrossRef]
- Wakao, S.; Kitada, M.; Kuroda, Y.; Ogura, F.; Murakami, T.; Niwa, A.; Dezawa, M. Morphologic and Gene Expression Criteria for Identifying Human Induced Pluripotent Stem Cells. PLoS ONE 2012, 7, e48677. [Google Scholar] [CrossRef]
- Wakui, T.; Negishi, M.; Murakami, Y.; Tominaga, S.; Shiraishi, Y.; Carpenter, A.E.; Singh, S.; Segawa, H. Predicting Reprogramming-Related Gene Expression from Cell Morphology in Human Induced Pluripotent Stem Cells. Mol. Biol. Cell 2023, 34, ar45. [Google Scholar] [CrossRef]
- Witmer, A.; Bhanu, B. Generative Adversarial Networks for Morphological-Temporal Classification of Stem Cell Images. Sensors 2021, 22, 206. [Google Scholar] [CrossRef]
- Ludwig, T.E.; Bergendahl, V.; Levenstein, M.E.; Yu, J.; Probasco, M.D.; Thomson, J.A. Feeder-Independent Culture of Human Embryonic Stem Cells. Nat. Methods 2006, 3, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Gulbranson, D.R.; Hou, Z.; Bolin, J.M.; Ruotti, V.; Probasco, M.D.; Smuga-Otto, K.; Howden, S.E.; Diol, N.R.; Propson, N.E.; et al. Chemically Defined Conditions for Human iPSC Derivation and Culture. Nat. Methods 2011, 8, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Harkness, L.; Chen, X.; Gillard, M.; Gray, P.P.; Davies, A.M. Media Composition Modulates Human Embryonic Stem Cell Morphology and May Influence Preferential Lineage Differentiation Potential. PLoS ONE 2019, 14, e0213678. [Google Scholar] [CrossRef] [PubMed]
- Shuzui, E.; Kim, M.-H.; Kino-oka, M. Anomalous Cell Migration Triggers a Switch to Deviation from the Undifferentiated State in Colonies of Human Induced Pluripotent Stems on Feeder Layers. J. Biosci. Bioeng. 2019, 127, 246–255. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kino-oka, M. Maintenance of an Undifferentiated State of Human Induced Pluripotent Stem Cells through Migration-Dependent Regulation of the Balance between Cell-Cell and Cell-Substrate Interactions. J. Biosci. Bioeng. 2015, 119, 617–622. [Google Scholar] [CrossRef]
Cell Line | Number of Trajectories | |||
---|---|---|---|---|
mTESR1/MG | E8/GT | |||
“Good” | “Bad” | “Good” | “Bad” | |
AD3 | 1030 | 208 | 383 | 49 |
CaSR | 213 | 60 | 84 | 108 |
H9 | 606 | 139 | – | – |
Parameter | Definition | Description |
---|---|---|
Instantaneous colony velocity at time t | Velocity vector v = (vx, vy) at time t | |
Mean colony speed over a time interval | Absolute value of the instantaneous velocity averaged over a given time interval | |
Net distance at time t | dnet(t) = dist(r0, rn) | Distance between the initial point r0 and the point rn at time t |
Total distance up to time t | dtot(t) = | Sum of all distances covered by the colony, starting from the initial point r0 and up to the point rn at time t |
Maximum distance at time t | dmax(t) = | Maximum distance from the initial point at which the colony center appears within the time interval (0, t) |
Meandering index at time t | dnet(t)/dtot(t) | This index represents the tortuosity of trajectories or persistence (also, linearity or straightness) of colony motion |
Outreach ratio at time t | dmax(t)/dtot(t) | This ratio characterizes the compactness of trajectory |
Velocity autocorrelation function | Scalar product of the instantaneous velocity vectors at time moments separated by delay t0, averaged over t0 and trajectories. This measure can be interpreted as the memory about the initial state that the migrating colony possesses at time t | |
Mean squared displacement at time t | Absolute value of the colony displacement from the initial state to the point rn at time t, squared and averaged over trajectories. This measure is used in the study of the type of diffusion exhibited by the colonies |
Cell Line and Phenotype | Parameter | ||||
---|---|---|---|---|---|
AD3, “good” | 0.652 ± 0.019 | 16 ± 13 | 34 ± 14 | 1.5 ± 0.7 | 86 ± 6 |
AD3, “bad” | 1.168 ± 0.022 | 0.41 ± 0.08 | 7.9 ± 0.5 | 3.0 ± 0.1 | 153 ± 13 |
CaSR, “good” | 1 | 0.51 ± 0.03 | 7.9 ± 0.2 | 1.9 ± 0.4 | 124 ± 1 |
CaSR, “bad” | 0.690 ± 0.021 | 16 ± 13 | 29 ± 11 | 1.2 ± 0.8 | 60 ± 5 |
H9, “good” | 0.689 ± 0.013 | 10 ± 2 | 21 ± 3 | 0.1 ± 0.3 | 46 ± 2 |
H9, “bad” | 0.846 ± 0.005 | 5 ± 1 | 23 ± 2 | 1.2 ± 0.6 | 107 ± 2 |
Cell Line and Phenotype | Parameter | ||||
---|---|---|---|---|---|
AD3, “good” | 1 | 0.94 ± 0.00 | 11 ± 0.0 | 2.2 ± 0.0 | 133 ± 0.0 |
AD3, “bad” | 1 | 0.94 ± 0.00 | 11 ± 0.0 | 4.1 ± 0.0 | 133 ± 0.0 |
CaSR, “good” | 1.590 ± 0.004 | 0.12 ± 0.01 | 7.3 ± 0.2 | 1.9 ± 1.3 | 435 ± 9 |
CaSR, “bad” | 1 | 2.94 ± 0.00 | 15 ± 0.0 | 1.1 ± 0.0 | 73 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gursky, V.V.; Chabina, A.S.; Krasnova, O.A.; Kovaleva, A.A.; Kriger, D.V.; Zadorsky, M.S.; Kozlov, K.N.; Neganova, I.E. Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype. Life 2024, 14, 1402. https://doi.org/10.3390/life14111402
Gursky VV, Chabina AS, Krasnova OA, Kovaleva AA, Kriger DV, Zadorsky MS, Kozlov KN, Neganova IE. Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype. Life. 2024; 14(11):1402. https://doi.org/10.3390/life14111402
Chicago/Turabian StyleGursky, Vitaly V., Alina S. Chabina, Olga A. Krasnova, Anastasiia A. Kovaleva, Daria V. Kriger, Michail S. Zadorsky, Konstantin N. Kozlov, and Irina E. Neganova. 2024. "Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype" Life 14, no. 11: 1402. https://doi.org/10.3390/life14111402
APA StyleGursky, V. V., Chabina, A. S., Krasnova, O. A., Kovaleva, A. A., Kriger, D. V., Zadorsky, M. S., Kozlov, K. N., & Neganova, I. E. (2024). Human Pluripotent Stem Cell Colony Migration Is Related to Culture Environment and Morphological Phenotype. Life, 14(11), 1402. https://doi.org/10.3390/life14111402