Walnut Consumption May Contribute to Healthy Cardiovascular/Endothelial Function by Maintaining Membrane Integrity
Abstract
:1. Introduction
1.1. Nuts in Human Diets
1.2. Walnuts
2. Why Walnuts Among Other Nuts?
3. Demography of Production and Consumption of Walnuts
4. Composition Changes in Nuts Due to Processing
5. Composition of Walnuts Compared to Other Nuts
6. Membranes Are Life!
6.1. Structure and Function of Membranes
6.2. Phospholipid Bilayer of Membranes and Walnuts/PUFAs
6.3. Importance of Omega-3 and Omega-6 Fatty Acid Composition of Membranes
6.4. The Role of Mitochondrial Membranes
6.5. Walnut Promotes Membrane Fluidity
7. The Role of Walnut Consumption: Membrane Lipids in Health and Disease
7.1. Cellular Mechanisms of Polyunsaturated Fatty Acid Content of Walnuts on Endothelial Function
7.2. Role of Consumption of Walnuts in the Prevention of Cardiovascular Disease
8. Potential Role of Walnuts/PUFAs in Athletes and Elderly
8.1. Post-Exercise Recovery of Athletes
8.2. Effects of Walnut/PUFAs Supplementation in Elderly People
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakrishna, R.; Bjørnerud, T.; Bemanian, M.; Aune, D.; Fadnes, L.T. Consumption of Nuts and Seeds and Health Outcomes Including Cardiovascular Disease, Diabetes and Metabolic Disease, Cancer, and Mortality: An Umbrella Review. Adv. Nutr. 2022, 13, 2136–2148. [Google Scholar] [CrossRef] [PubMed]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef]
- De Souza, R.G.M.; Schincaglia, R.M.; Pimente, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef]
- Alasalvar, C.; Salvadó, J.-S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef]
- Lyons, S.A.; Clausen, M.; Knulst, A.C.; Ballmer-Weber, B.K.; Fernandez-Rivas, M.; Barreales, L.; Bieli, C.; Dubakiene, R.; Fernandez-Perez, C.; Jedrzejczak-Czechowicz, M.; et al. Prevalence of Food Sensitization and Food Allergy in Children Across Europe. J. Allergy Clin. Immunol. Pract. 2020, 8, 2736–2746.e9. [Google Scholar] [CrossRef]
- Nuts Dried Fruits Statistical Yearbook 2022/2023. Available online: https://inc.nutfruit.org/wp-content/uploads/2023/05/Statistical-Yearbook-2022-2023.pdf (accessed on 20 October 2024).
- Ros, E.; Núñez, I.; Pérez-Heras, A.; Serra, M.; Gilabert, R.; Casals, E.; Deulofeu, R. A Walnut Diet Improves Endothelial Function in Hypercholesterolemic Subjects. Circulation 2004, 109, 1609–1614. [Google Scholar] [CrossRef]
- Mateș, L.; Popa, D.S.; Rusu, M.E.; Fizeșan, I.; Leucuța, D. Walnut Intake Interventions Targeting Biomarkers of Metabolic Syndrome and Inflammation in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants 2022, 11, 1412. [Google Scholar] [CrossRef]
- Watson, H. Biological membranes. Essays Biochem. 2015, 59, 43–69. [Google Scholar] [CrossRef]
- Zhukov, A.; Popov, V. Eukaryotic Cell Membranes: Structure, Composition, Research Methods and Computational Modelling. Int. J. Mol. Sci. 2023, 24, 11226. [Google Scholar] [CrossRef] [PubMed]
- Harayama, T.; Riezman, H. Understanding the diversity of membrane lipid composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Adkins, Y.; Kelley, D.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem. 2010, 21, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Lanza, I.R.; Nair, K.S. Chapter 20: Functional Assessment of Isolated Mitochondria In Vitro. In Methods in Enzymology; Allison, W.S., Murphy, A.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 457, pp. 349–372. [Google Scholar] [CrossRef]
- Avram, V.F.; Merce, A.P.; Hâncu, I.M.; Bătrân, A.D.; Kennedy, G.; Rosca, M.G.; Muntean, D.M. Impairment of Mitochondrial Respiration in Metabolic Diseases: An Overview. Int. J. Mol. Sci. 2022, 23, 8852. [Google Scholar] [CrossRef]
- Aoun, M.; Feillet-Coudray, C.; Fouret, G.; Chabi, B.; Crouzier, D.; Ferreri, C.; Chatgilialoglu, C.; Wrutniak-Cabello, C.; Cristol, J.P.; Carbonneau, M.-A.; et al. Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: Effect of different nutritional lipid patterns. Br. J. Nutr. 2012, 107, 647–659. [Google Scholar] [CrossRef]
- Chen, P.B.; Yang, J.S.; Park, Y. Adaptations of Skeletal Muscle Mitochondria to Obesity, Exercise, and Polyunsaturated Fatty Acids. Lipids 2018, 53, 271–278. [Google Scholar] [CrossRef]
- Drenjančević, I.; Pitha, J. Omega-3 Polyunsaturated Fatty Acids—Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review). Int. J. Mol. Sci. 2022, 23, 2104. [Google Scholar] [CrossRef]
- Mejía-Zepeda, R.; Pérez-Hernández, I.H. Effect of alpha linolenic acid on membrane fluidity and respiration of liver mitochondria in normoglycemic and diabetic Wistar rats. J. Bioenerg. Biomembr. 2020, 52, 421–430. [Google Scholar] [CrossRef]
- Harper, C.R.; Jacobson, T.A. The Fats of Life. Arch. Intern. Med. 2001, 161, 2185. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P.P. Determination of Sterol and Fatty Acid Compositions, Oxidative Stability, and Nutritional Value of Six Walnut (Juglans regia L.) Cultivars Grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef]
- USDA, U.S. Department of Agriculture. Available online: https://www.usda.gov (accessed on 21 October 2024).
- Katz, D.L.; Davidhi, A.; Ma, Y.; Kavak, Y.; Bifulco, L.; Njike, V.Y. Effects of Walnuts on Endothelial Function in Overweight Adults with Visceral Obesity: A Randomized, Controlled, Crossover Trial. J. Am. Coll. Nutr. 2012, 31, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Seo, J.; Switzer, K.; Fan, Y.; McMurray, D.; Lupton, J.; Chapkin, R. n-3 PUFA and membrane microdomains: A new frontier in bioactive lipid research. J. Nutr. Biochem. 2004, 15, 700–706. [Google Scholar] [CrossRef] [PubMed]
- West, S.G.; Krick, A.L.; Klein, L.C.; Zhao, G.; Wojtowicz, T.F.; McGuiness, M.; Bagshaw, D.M.; Wagner, P.; Ceballos, R.M.; Holub, B.J.; et al. Effects of Diets High in Walnuts and Flax Oil on Hemodynamic Responses to Stress and Vascular Endothelial Function. J. Am. Coll. Nutr. 2010, 29, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Fraser, G.E.; Burke, K.; Knutsen, S.F.; Bennett, H.; Lindsted, K.D. Effects of Walnuts on Serum Lipid Levels and Blood Pressure in Normal Men. N. Engl. J. Med. 1993, 328, 603–607. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R.; Li, J.; Wang, W.; Tie, R.; Tian, F.; Liang, X.; Xing, W.; He, Y.; Yu, L.; et al. Alpha-Linolenic Acid Exerts an Endothelial Protective Effect against High Glucose Injury via PI3K/Akt Pathway. PLoS ONE 2013, 8, e68489. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Dod, H.; Sandhu, M.S.; Bedi, R.; Dod, S.; Konat, G.; Chopra, H.K.; Sharma, R.; Jain, A.C.; Nanda, N. Acute effects of diets rich in almonds and walnuts on endothelial function. Indian Heart J. 2018, 70, 497–501. [Google Scholar] [CrossRef]
- Tindall, A.M.; Petersen, K.S.; Skulas-Ray, A.C.; Richter, C.K.; Proctor, D.N.; Kris-Etherton, P.M. Replacing Saturated Fat with Walnuts or Vegetable Oils Improves Central Blood Pressure and Serum Lipids in Adults at Risk for Cardiovascular Disease: A Randomized Controlled-Feeding Trial. J. Am. Heart Assoc. 2019, 8, e011512. [Google Scholar] [CrossRef]
- Torabian, S.; Haddad, E.; Rajaram, S.; Banta, J.; Sabaté, J. Acute effect of nut consumption on plasma total polyphenols, antioxidant capacity and lipid peroxidation. J. Hum. Nutr. Diet. 2009, 22, 64–71. [Google Scholar] [CrossRef]
- Glenn, A.J.; Aune, D.; Freisling, H.; Mohammadifard, N.; Kendall, C.W.C.; Salas-Salvadó, J.; Jenkins, D.J.A.; Hu, F.B.; Sievenpiper, J.L. Nuts and Cardiovascular Disease Outcomes: A Review of the Evidence and Future Directions. Nutrients 2023, 15, 911. [Google Scholar] [CrossRef]
- Liu, X.; Guasch-Ferré, M.; Drouin-Chartier, J.; Tobias, D.K.; Bhupathiraju, S.N.; Rexrode, K.M.; Willett, W.C.; Sun, Q.; Li, Y. Changes in Nut Consumption and Subsequent Cardiovascular Disease Risk Among US Men and Women: 3 Large Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e013877. [Google Scholar] [CrossRef]
- Żebrowska, A.; Mizia-Stec, K.; Mizia, M.; Gąsior, Z.; Poprzęcki, S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur. J. Sport Sci. 2015, 15, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Gammone, M.A.; Riccioni, G.; Parrinello, G.; D’Orazio, N. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients 2018, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Turnagöl, H.H.; Koşar, Ş.N.; Güzel, Y.; Aktitiz, S.; Atakan, M.M. Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Thielecke, F.; Blannin, A. Omega-3 Fatty Acids for Sport Performance—Are They Equally Beneficial for Athletes and Amateurs? A Narrative Review. Nutrients 2020, 12, 3712. [Google Scholar] [CrossRef]
- Bitok, E.; Jaceldo-Siegl, K.; Rajaram, S.; Serra-Mir, M.; Roth, I.; Feitas-Simoes, T.; Ros, E.; Sabaté, J. Favourable nutrient intake and displacement with long-term walnut supplementation among elderly: Results of a randomised trial. Br. J. Nutr. 2017, 118, 201–209. [Google Scholar] [CrossRef]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil–derived n−3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef]
- Kamoun, A.; Hammouda, O.; Turki, M.; Maaloul, R.; Chtourou, M.; Bouaziz, M.; Driss, T.; Souissi, N.; Chamari, K.; Ayadi, F. Moderate walnut consumption improved lipid profile, steroid hormones and inflammation in trained elderly men: A pilot study with a randomized controlled trial. Biol. Sport 2021, 38, 245–252. [Google Scholar] [CrossRef]
- Nijssen, K.M.R.; Mensink, R.P.; Plat, J.; Joris, P.J. Longer-term mixed nut consumption improves brain vascular function and memory: A randomized, controlled crossover trial in older adults. Clin. Nutr. 2023, 42, 1067–1075. [Google Scholar] [CrossRef]
- Willis, L.M.; Shukitt-Hale, B.; Cheng, V.; Joseph, J.A. Dose-dependent effects of walnuts on motor and cognitive function in aged rats. Br. Journal. Nutr. 2008, 101, 1140–1144. [Google Scholar] [CrossRef]
- Muthaiyah, B.; Essa, M.M.; Lee, M.; Chauhan, V.; Kaur, K.; Chauhan, A. Dietary Supplementation of Walnuts Improves Memory Deficits and Learning Skills in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 42, 1397–1405. [Google Scholar] [CrossRef]
- Kamoun, A.; Yahia, A.; Farjallah, M.A.; Maaloul, R.; Marzougui, H.; Bouaziz, M.; Souissi, N.; Elleuch, M.H.; Hammouda, O. Concurrent training associated with moderate walnut consumption improved isokinetic strength, subjective sleep quality, cognitive performance and postural balance in elderly active men: A randomized controlled trial. Aging Clin. Exp. Res. 2024, 36, 50. [Google Scholar] [CrossRef] [PubMed]
- Pandareesh, M.D.; Chauhan, V.; Chauhan, A. Walnut Supplementation in the Diet Reduces Oxidative Damage and Improves Antioxidant Status in Transgenic Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, 1295–1305. [Google Scholar] [CrossRef] [PubMed]
- Sala-Vila, A.; Valls-Pedret, C.; Rajaram, S.; Coll-Padrós, N.; Cofán, M.; Serra-Mir, M.; Pérez-Heras, A.M.; Roth, I.; Freitas-Simoes, T.M.; Doménech, M.; et al. Effect of a 2-year diet intervention with walnuts on cognitive decline. The Walnuts and Healthy Aging (WAHA) study: A randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 590–600. [Google Scholar] [CrossRef] [PubMed]
Nut | Lipid (%) | Lipid (PUFA g/100 g) | Protein | Vitamin E | Minerals—Mg (mg/100 g) | Fiber (%) |
---|---|---|---|---|---|---|
Walnut | 64.5–65.2 | 47.174 | 14.4–16.0 | 0.1–13.0 | 158–201 | 6.7 |
Almond | 43.3–50.6 | 12.329 | 16.8–25.4 | 2.4–25.9 | 275 | 11.8–13.0 |
Cashew | 42.8–43.9 | 7.845 | 17.5–19.0 | 0.0–0.9 | 292 | 1.4–3.3 |
Hazelnut | 59.8–61.5 | 7.920 | 14.5–15.2 | 3.5–15.0 | 140–163 | 3.4–9.7 |
Peanut | 49 | 33.0 | 25.8 | 0.4 | 168–173 | 9.0 |
Pistachio | 44.4–45.4 | 14.380 | 19.4–22.1 | 0.3–2.3 | 117–121 | 10.3 |
Nut | Phenolic Acid | Tannins | Flavonols | Anthocyanins | Stilbenes |
---|---|---|---|---|---|
Walnut | 20 | 19 | 6 | 1 | 0 |
Almond | 15 | 2 | 11 | 4 | 2 |
Cashew | 3 | 0 | 0 | 0 | 0 |
Hazelnut | 14 | 3 | 3 | 0 | 1 |
Peanut | 10 | 0 | 2 | 0 | 1 |
Pistachio | 13 | 0 | 7 | 5 | 1 |
Nut | SFA | MUFA | PUFA |
---|---|---|---|
Walnut | 6.1 | 9.6 | 49.3 |
Almond | 3.8 | 31.3 | 11.2 |
Cashew | 7.8 | 23.8 | 7.8 |
Hazelnut | 4.5 | 45.7 | 7.9 |
Peanut | 6.3 | 24.4 | 15.6 |
Pistachio | 5.9 | 23.3 | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarai, D.; Koller, A. Walnut Consumption May Contribute to Healthy Cardiovascular/Endothelial Function by Maintaining Membrane Integrity. Life 2024, 14, 1426. https://doi.org/10.3390/life14111426
Jarai D, Koller A. Walnut Consumption May Contribute to Healthy Cardiovascular/Endothelial Function by Maintaining Membrane Integrity. Life. 2024; 14(11):1426. https://doi.org/10.3390/life14111426
Chicago/Turabian StyleJarai, Dora, and Akos Koller. 2024. "Walnut Consumption May Contribute to Healthy Cardiovascular/Endothelial Function by Maintaining Membrane Integrity" Life 14, no. 11: 1426. https://doi.org/10.3390/life14111426
APA StyleJarai, D., & Koller, A. (2024). Walnut Consumption May Contribute to Healthy Cardiovascular/Endothelial Function by Maintaining Membrane Integrity. Life, 14(11), 1426. https://doi.org/10.3390/life14111426