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Abstract: In predictive microbiology, both primary and secondary models are widely used to estimate
microbial growth, often applied through two-step or one-step modelling approaches. This study
focused on developing a tool to predict the growth of Pseudomonas spp., a prominent bacterial
genus in food spoilage, by applying machine learning regression models, including Support Vector
Regression (SVR), Random Forest Regression (RFR) and Gaussian Process Regression (GPR). The
key environmental factors—temperature, water activity, and pH—served as predictor variables to
model the growth of Pseudomonas spp. in culture media. To assess model performance, these machine
learning approaches were compared with traditional models, namely the Gompertz, Logistic, Baranyi,
and Huang models, using statistical indicators such as the adjusted coefficient of determination (R? adj)
and root mean square error (RMSE). Machine learning models provided superior accuracy over
traditional approaches, with Rzadj values from 0.834 to 0.959 and RMSE values between 0.005 and
0.010, showcasing their ability to handle complex growth patterns more effectively. GPR emerged
as the most accurate model for both training and testing datasets. In external validation, additional
statistical indices (bias factor, B;: 0.998 to 1.047; accuracy factor, A¢: 1.100 to 1.167) further supported
GPR as a reliable alternative for microbial growth prediction. This machine learning-driven approach
bypasses the need for the secondary modelling step required in traditional methods, highlighting its
potential as a robust tool in predictive microbiology.

Keywords: software development; Pseudomonas spp.; machine learning; traditional modelling

1. Introduction

Predictive food microbiology is a theoretical field within food microbiology that
focuses on developing statistical models to forecast microbial behaviour in food environ-
ments by merging traditional microbiological knowledge with mathematical and statistical
principles [1]. While the use of predictive models dates back to the early 20th century,
advancements in computer technology have significantly accelerated the progress of pre-
dictive microbiology in the 21st century. These models are utilized to determine conditions
within food environments that mitigate or delay the adverse effects of microbial contamina-
tion. In traditional predictive microbiology, mathematical models are generally categorized
into two types: primary and secondary models [2]. Primary models describe the behaviour
of microorganisms over time under static environmental conditions, essentially capturing
how microbial populations grow, survive, or die when external factors remain constant.
Secondary models, in contrast, account for the influence of environmental variables—such
as temperature, pH, and water activity—and food matrices on the parameters of the pri-
mary models. While this conventional modelling framework is often effective in predicting
microbial behaviour, it does have certain limitations. A significant concern is the potential
accumulation and amplification of errors, which can occur because the nonlinear regres-
sion process is performed twice—once in developing the primary model and again when
integrating environmental factors in the secondary model [3-5].

In recent years, the application of machine learning algorithms has gained significant
momentum across various research fields. This surge is largely driven by three key tech-
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nological advancements: first, the ability to quickly capture vast amounts of digital data;
second, the exponential growth in affordable computing power and data storage; and third,
the development of a global network enabling rapid data transfer. Numerous studies have
explored the use of machine learning (ML) techniques in food safety and modelling [6-9].
Machine learning methods are particularly effective in identifying underlying relationships
between explanatory and response variables in datasets, making ML-based regression
approaches capable of predicting population behaviours and enhancing the predictive accu-
racy of bacterial growth patterns. Despite these promising advancements, the application
of machine learning algorithms to predict microbial behaviour in food systems remains
relatively uncommon. Furthermore, to the best of our knowledge, no studies have yet
compared traditional modelling approaches with machine learning models within the field
of predictive microbiology.

Both traditional modelling techniques and machine learning approaches can be uti-
lized to predict microbial behaviour and estimate the shelf life of food products [10].
Traditional models rely on predefined mathematical equations and structured computa-
tional methods, while machine learning techniques leverage algorithms to uncover patterns
and generate predictions directly from data [11]. Machine learning offers a significant
advantage in its ability to capture complex, nonlinear relationships, making it particularly
useful for analyzing large, diverse datasets. However, it often requires substantial amounts
of training data and can pose interpretability challenges. Traditional models, on the other
hand, are generally grounded in established biological and chemical principles, which
makes them easier to interpret. These models may be preferable when data availability is
limited or when there is a need for a straightforward, transparent explanation of results [12].

The primary objective of this work is to develop software that utilizes machine
learning-based regression methods—specifically Support Vector Regression (SVR), Random
Forest Regression (RFR) and Gaussian Process Regression (GPR)—to predict and quantify
the behaviour of Pseudomonas spp. in culture media. Temperature, water activity, and pH
were the key predictor variables used to estimate microbial growth. The performance of
these machine learning models was assessed by comparing them to traditional models, such
as the modified Gompertz, Logistic, Baranyi, and Huang models, using statistical metrics
like the adjusted coefficient of determination (Rzadj) and root mean square error (RMSE).

2. Material and Methods

This study consists of five primary steps shown in Figure 1: (i) bacterial data for Pseu-
domonas spp. in culture mediums was gathered from the ComBase database in Excel format,
(ii) traditional modelling was conducted, (iii) a range of machine learning-based regression
models—such as Support Vector Regression, Gaussian Process Regression, Random Forest
Regression, and decision tree regression—were applied, (iv) a comparative analysis of the
performance between traditional and machine learning models was performed, and (v) the
validation phase and software development were finalized. Further details on each of these
five steps are provided in the subsequent sections.

2.1. Data Gathering

The ComBase database (www.combase.cc) hosts around 60,000 bacterial datasets
sourced from research organizations and scientific publications. Each dataset includes
specific features and environmental conditions—such as food category, food name, tem-
perature, pH, water activity, conditions, and time—allowing for a detailed classification of
microbial factors and responses. For this study, 2422 bacterial data points describing the
growth behaviour of Pseudomonas spp. in culture medium were extracted from ComBase,
along with detailed individual information on time, temperature, water activity, and pH,
and compiled into Excel files.


www.combase.cc
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Figure 1. A flow chart outlining the main steps followed in the present study.

2.2. Modelling

Multicollinearity among independent variables can inflate the variance of regression
coefficients, potentially leading to unstable models and reduced prediction accuracy [13]. To
address this, a correlation analysis was performed on the predictor variables—temperature,
water activity, and pH—to assess any potential interdependence before modelling. High
correlations between predictors can signal multicollinearity, which can compromise model
reliability and accuracy. As shown in the correlation values (Table 1), there were no
significant relationships between the variables: the correlation between temperature and
water activity was approximately —0.048, indicating a negligible negative relationship;
the temperature and pH correlation was around 0.098, reflecting a very weak positive
relationship, and water activity and pH had a correlation of —0.164, also suggesting a weak
negative relationship. These low correlation values confirm that temperature, water activity,
and pH function independently, with minimal overlap in their predictive effects. These
three factors were chosen as the main predictors for modelling the growth of Pseudomonas
spp. in the culture medium, ensuring a stable and accurate predictive model.

Table 1. Correlation values between main predictor variables (temperature (°C), water activity
and pH).

Predictors Temperature (°C) Water Activity pH
Temperature (°C) 1 —0.048 0.098
Water activity —0.048 1 —0.164
pH 0.098 —0.164 1

2.2.1. Primary Models

The modified Gompertz, Logistic, Baranyi and Huang models are among the most
commonly used sigmoid functions for modelling bacterial growth behaviour. Under
constant environmental conditions, the modified Gompertz and Logistic models are defined
by Equations (1) and (2), respectively [14]:

X(t) = X0 + (Xpax — xo)-exp{—exp [(rmax.exo)-(A —t) + 1} } (1)

Xmax —
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B (X max — X0)
x(t) =xo + {1+exp{%'(7‘*t)+2” ?

max

where t is the time (h), x(t) is the bacterial population concentration (log CFU/g) at time
t, X is the initial bacterial population concentration (log CFU/g), Xmax is the maximum
bacterial population concentration (log CFU/g), rmax is the maximum bacterial growth rate
(log CFU/h), and A is the lag phase duration (h).

Other widely used primary functions include the Baranyi and Huang models, which
are represented by Equations (3)-(6) [15,16]:

y(t) = yo + HmaF(t) —In R ©)
— 1 —vt —HmaxA _ o(=Vt=HmaxA)
F(t) =t+ gln(e +e e ) 4)
Y(8) = Yo+ Yimax —In (€0 e — e¥0]-eHma BV ©)
1 [14et N

where t is the time (h), y(t) is the bacterial population concentration (In CFU/g) at time t, yg
is the initial bacterial population concentration (In CFU/g), ymax is the maximum bacterial
population concentration (In CFU/g), imax is the maximum specific bacterial growth rate
(1/h), A is the lag phase duration (h), and v is the rate of increase of the limiting substrate,
assumed to be equal to pmax.

Since the primary models use different scales to count microbe populations, the growth
rate values (rmax) obtained from the Modified Gompertz and Logistic models are converted
to maximum specific growth rate values (limax) after fitting. This conversion is carried out
by multiplying by In(10) [17].

2.2.2. Secondary Models

Secondary models are employed to describe the effects of various environmental
factors—such as water activity, acidity and temperature—on the parameters of primary
models [17]. Typically applied after fitting growth data to primary models, secondary
models help clarify how factors like water activity [18], acidity and temperature influence
growth rates, which is essential for managing food preservation, safety and quality [19-21].
The Ratkowsky model (Equation (7)), specifically, is used to detail the relationship between
extrinsic factors and the maximum specific growth rate [22].

Hmax = bl(T - TO)2 X bZ(aw - awfmirl) X b3(PH - PHmm) (7)

where pimax is the maximum specific growth rate (1/h) obtained from the primary model,
aw is the water activity, and a,, min is the minimal water activity at which growth stops.
PHmin is the minimal pH, and pHmax is the maximal pH at which growth stops. T is the
temperature (°C), Ty is the theoretical minimum temperature (°C) for microbial growth,
and by, by and b3 are the regression coefficients.

Additionally, A (lag phase duration) was defined as a function of pmax with respect to
temperature using Equation (8):

by

A=
Hmax (T/ aw, pH)

(8)

where by is the regression coefficient, and pmax (T, aw, pH) is a function of temperature,
water activity and acidity, which leads A to be defined as a function of storage temperature,
water activity and acidity.
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2.2.3. Machine Learning Models

The predictive ability of each machine learning model differs based on the levels of
bias and variance in the data. Support Vector Machines (SVMs) are capable of mapping
data into higher-dimensional spaces to reveal both linear and nonlinear associations be-
tween predictor variables and the response. Frequently applied in both classification and
regression tasks, the SVM is a nonparametric approach that uses kernel functions to define
its feature space for data regression [23]. In this study, Support Vector Regression (SVR)
was implemented with a radial basis function (RBF) kernel. While SVR performs well in
high-dimensional settings, its effectiveness can be impacted by noise within the dataset.

Random Forest Regression (RFR) is an ensemble learning method that builds multiple
decision trees on different subsets of data to improve prediction accuracy and robustness [6].
By creating numerous trees, each trained on a random sample of data points and features,
RFR reduces the risk of overfitting that individual decision trees often face [23]. During
prediction, each tree provides an output, and the final result is typically the average of these
outputs, which enhances generalizability and reduces variance. This method’s reliance
on multiple “weak learners” allows it to effectively handle complex, high-dimensional
datasets with noise. RFR is known for its resilience to overfitting and ability to handle
both categorical and continuous data, making it highly effective for regression tasks across
various domains.

Gaussian Process Regression (GPR) is a nonlinear, non-parametric Bayesian method
known for its flexibility and fully probabilistic nature [24]. Based on Gaussian distribution,
GPR extends the concept of normal distributions to an infinite-dimensional, multivariate
form, allowing it to model data with a high degree of adaptability. GPR constructs objective
functions by measuring the distance between the estimated output probability density
function (pdf) and the data, maintaining high certainty even in un-sampled regions far
from the training data. However, as a non-parametric approach, GPR requires the entire
training dataset for each prediction, leading to significant computational costs. The squared
exponential kernel was utilized for GPR, allowing it to capture smooth, continuous patterns.
Gaussian processes provide the best linear unbiased predictions at un-sampled points,
offering reliable estimation in spatially sparse areas.

In machine learning, model validation commonly relies on k-fold cross-validation
and hold-out validation methods [25]. In hold-out validation, the data are divided into
a training set and a separate test set; the model is trained on the training set and then
evaluated using the test set to gauge its performance. For k-fold cross-validation, the dataset
is split into k equal parts (folds), where each fold takes a turn as the test set while the
remaining folds are used for training. This process is repeated k times, and the combined
results from each iteration provide a more comprehensive evaluation of model accuracy.
Unlike hold-out validation, which may introduce bias due to reliance on a single split of
data, k-fold cross-validation offers a more reliable performance assessment. Thus, a 10-fold
cross-validation approach was chosen for this study.

2.3. Comparison of the Goodness of Fit

A comparison of the performance of the models was carried out by using the root mean
square error (RMSE) and adjusted coefficient of determination (Rzadj) using Equations (9)
and (10), respectively:

RMSE =

I (xobs - xfit)2 ©)

n—s

1

2 n—1Y\ /SSE
Ry =1- (220 (5er (10)

where x5 is the experimental bacterial growth, x; is the fitted value, n is the number of
experiments, s is the number of parameters of the model, SSE is the sum of squares of
errors and SST is the total sum of squares.

1
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2.4. The Models’ Validation

Model validation is the process of assessing the predictive power of constructed
models using either previously published or newly generated data. The predictive accuracy
of these models can be evaluated by examining the growth kinetics of the microbes. The
bias factor (Bf) and accuracy factor (A¢) for each global model, which provide insights
into the models’ prediction ability, are outlined in Equations (11) and (12), respectively,
following the approach [26].

rr o (24
Bf=10" = (11)
b “(’g("’pred/xubs)‘
Ap=10 (12)

where x4 denotes projected maximum values (1/h) and (h), x,; denotes experimental
tmax (1/h) and A (h), and n is the number of experimental growth data.

The acceptable prediction zone (APZ) approach is a useful method for evaluating
the overall validation performance of various predictive models. In the APZ framework,
a prediction is deemed acceptable when the residual (difference between observed and
predicted values) falls within an APZ range of —1 log CFU/g (fail-safe) to 0.5 log CFU/g
(fail-dangerous).

To visually display validation results, prediction software was created in this study
using both traditional and machine learning-based regression models. All procedures were
conducted using MATLAB version 9.10.0.1710957 (R2021a) (MathWorks Inc., Natick, MA,
USA) (see Supplementary Video S1).

3. Results and Discussion

The growth data points of Pseudomonas spp. in culture mediums collected from the
ComBase database were stored with the following information: record ID, temperature (°C),
water activity, pH, initial microbial population (yes/no) and time (h). The data frequency
of the collected data categorized into each of the features is shown in Figure 2.

Frequency
- 8 B 8 &8 83 8 8

Frequenc
- 8 B 8B 58 8 8 8 8 8

Water activity pH

(@) (b) (c)

Figure 2. Histograms of the variables for (a) temperature (°C), (b) water activity and (c) pH.

The maximum specific growth rate and lag phase duration, key growth kinetic pa-
rameters, can be modelled in relation to environmental factors such as temperature, water
activity and pH. Among these, temperature plays a crucial role in influencing microbial
growth behaviour in food products, as noted by [27]. In this study, the temperature range
considered was 5 to 25 °C, reflecting typical conditions encountered by food products dur-
ing storage, transport and retail. This range includes refrigeration temperatures (around
5-10 °C), which slow microbial growth, as well as warmer conditions up to 25 °C, where
microbial activity accelerates, potentially impacting shelf life and safety. Water activity, an-
other essential factor in microbial growth, represents the ratio between the vapour pressure
of the food and the vapour pressure of distilled water in identical conditions. Most foods
have a water activity level above 0.95, which is sufficient to support microbial growth,
as free water is available for cellular processes. In this study, the water activity range
was from 0.954 to 0.997, indicating conditions that provide ample moisture to promote
microbial growth in fresh and perishable foods. The pH level of food also directly affects
microbial growth by influencing enzyme activity and cellular function. In this study, pH
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values ranged from 4.01 to 7.40 for the culture medium, encompassing both acidic and near-
neutral conditions. Acidic environments (pH around 4) inhibit many spoilage organisms,
while near-neutral pH conditions (closer to 7) support a broader range of bacterial growth,
potentially accelerating spoilage. These environmental factors—temperature, water activity
and pH—collectively influence pumax and A, making them critical for predicting microbial
behaviour and developing effective storage and preservation strategies in the food industry.

For model comparison, 80% of the data were allocated for training and 20% for
testing. Table 2 presents the performance differences between traditional and machine
learning models in microbial growth modelling during the training process. Traditional
models, such as Gompertz, Logistic, Baranyi and Huang, are frequently used due to their
interpretability and effectiveness in capturing standard S-shaped microbial growth patterns.
These traditional models, however, rely on fixed growth structures, which restricts their
flexibility in capturing complex, nonlinear growth dynamics. Although both two-step
and one-step modelling approaches were initially applied, the two-step approach did
not successfully fit the data across any of the traditional models. Consequently, only
the results from the one-step modelling approach are presented here as the traditional
modelling outcome.

Table 2. Evaluation indices of traditional and machine learning modelling approaches for train-
ing process.

Avproach Traditional Modelling Machine Learning Modelling
pproac Approach Approach
Model Gompertz Logistic Baranyi Huang SVR RFR GPR
Rzadj 0.813 0.844 0.790 0.850 0.854 0.893 0.959
RMSE 0.022 0.020 0.023 0.020 0.019 0.017 0.010

The Gompertz model achieved an Rzadj of 0.813 and an RMSE of 0.022, indicating
moderate predictive accuracy but limited flexibility. The Logistic model performed slightly
better, with an Rzadj of 0.844 and an RMSE of 0.020, capturing microbial growth dynamics
more effectively. Despite incorporating a lag phase, the Baranyi model had the lowest Rzadj
among the traditional models (0.790) and an RMSE of 0.023, reflecting its challenges in
handling complex growth behaviours. The Huang model was the most accurate among
traditional models, achieving an R? adj Of 0.850 and an RMSE of 0.020, though it was still
surpassed by machine learning models (Figure 3).

Machine learning models, which do not rely on predefined relationships, demon-
strated greater adaptability. SVR yielded an R2ad]- of 0.854 and an RMSE of 0.019, indicating
solid predictive performance, though it was slightly less effective than GPR and RFR, likely
due to sensitivity in parameter tuning. Random Forest Regression achieved an R? adj 0f 0.893
and an RMSE of 0.017, benefiting from its ensemble approach, which captures complex
interactions between variables. Gaussian Process Regression provided the highest Rzadj
(0.959) and the lowest RMSE (0.010), showcasing exceptional accuracy and robustness in
modelling nonlinear growth patterns. These results illustrate that while traditional models
like Huang offer reasonable accuracy, machine learning models, particularly GPR, deliver
superior predictive performance and are better suited for modelling complex microbial
growth dynamics during the training process (Figure 4).
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Figure 3. The observed and predicted Pseudomonas spp. in culture medium using traditional models:
(a) modified Gompertz, (b) Logistic, (¢) Baranyi and (d) Huang for training process.
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Figure 4. The observed and predicted Pseudomonas spp. in culture medium using machine learning
models (a) Support Vector Regression, (b) Random Forest Regression and (c¢) Gaussian Process
Regression for training process.

The bar chart highlights the relative importance of four predictors—time, temperature,
water activity and pH—in modelling the growth of Pseudomonas spp. (Figure 5). The
results show that time is by far the most influential factor in predicting Pseudomonas
growth, indicating that microbial growth patterns are significantly dependent on the
duration of exposure under given conditions. This aligns with biological expectations,
as microbial populations typically increase exponentially over time when other growth
conditions remain constant. Temperature is the second most significant factor. This reflects
the sensitivity of Pseudomonas growth rates to temperature changes, as temperature is
known to play a critical role in enzymatic activity and cellular processes. Higher or optimal
temperatures generally accelerate microbial growth until a threshold, beyond which growth
rates decline. Therefore, temperature control is essential in limiting Pseudomonas growth,
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especially in food storage and handling. Water activity shows a smaller yet noticeable
impact on growth. Water activity measures the availability of free water for microbial
activities, and since Pseudomonas spp. require moisture to thrive, maintaining low water
activity can help inhibit their growth. Most foods have water activities high enough to
support microbial growth; however, controlling this variable can be an effective measure in
reducing growth rates. Finally, pH has the least impact among the factors. While pH affects
microbial growth by influencing enzyme stability and nutrient availability, Pseudomonas
spp. can tolerate a range of pH levels, especially near neutrality, which may explain its
lower importance relative to the other factors. However, maintaining pH levels outside of
this range can still contribute to controlling growth, although it is less effective compared
to controlling time, temperature or water activity.

Relative importance

o
r

o o o I o o o
= ) w IS 3 o ~

Time (h)

Temperature

0

Water activity

pH

Figure 5. The relative importance of predictor variables to microorganism populations in culture
medium using Gaussian Process Regression.

The test data’s performance for the traditional modelling approaches—Gompertz,
Logistic, Baranyi and Huang models—shows varying levels of predictive accuracy. The
Gompertz model captures the general trend but exhibits noticeable deviations from the
ideal line, indicating limited precision. The Logistic model shows slightly better alignment
with the ideal line, suggesting improved accuracy in capturing growth dynamics, though
still with some inconsistencies. The Baranyi model has the widest spread from the ideal
line, reflecting lower predictive accuracy despite accounting for a lag phase, suggesting it
struggles with the complexity of the growth data. Among the traditional models, the Huang
model shows the closest fit to the ideal line, indicating the highest predictive accuracy and
flexibility in modelling nonlinear growth trends (Figure 6).

The test data’s performance of the machine learning models—Support Vector Regres-
sion, Random Forest Regression and Gaussian Process Regression—demonstrates their
superior predictive accuracy and adaptability in capturing microbial growth dynamics. The
SVR plot shows a relatively close alignment with the ideal line, though some minor devia-
tions indicate that it may be sensitive to tuning parameters, especially in nonlinear regions.
The RFR plot aligns more closely with the ideal line than SVR, illustrating its ensemble
approach’s effectiveness in capturing complex interactions within the data, though it still
shows slight scattering. GPR, however, displays the closest fit to the ideal line among the
machine learning models, showcasing excellent alignment with minimal deviations. This
indicates that GPR provides the highest predictive accuracy, capturing intricate patterns
with greater robustness compared to SVR and RFR. These results underscore that machine
learning models, particularly GPR, are more effective than traditional models in accurately
modelling complex microbial growth patterns (Figure 7).
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Figure 6. The observed and predicted Pseudomonas spp. in culture medium using traditional models:
(a) modified Gompertz, (b) Logistic, (¢) Baranyi and (d) Huang for testing process.
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Figure 7. The observed and predicted Pseudomonas spp. in culture medium using machine learning
models: (a) Support Vector Regression, (b) Random Forest Regression and (c) Gaussian Process
Regression for testing process.

In comparing traditional modelling approaches with machine learning approaches for
microbial growth prediction, it is evident that machine learning models generally provide
enhanced accuracy and flexibility in handling complex growth dynamics. Traditional
models, including Gompertz, Logistic, Baranyi, and Huang, are well-established and
provide relatively straightforward interpretations due to their defined parametric structures,
which are ideal for standard microbial growth patterns. Among these, the Gompertz model
performs best, achieving an Rzadj of 0.861 and an RMSE of 0.007, closely followed by
the Logistic model (Table 3). These models maintain decent accuracy (highest for the
Huang model at 69.8%) and offer good predictive bias (Bf) and accuracy factor (Ay) scores.
However, their limited adaptability to nonlinear and non-standard growth patterns restricts
their performance in more complex scenarios, as indicated by their lower accuracy values
compared to machine learning models.



Life 2024, 14, 1490

11 0f 13

Table 3. Evaluation indices of traditional and machine learning modelling approaches for testing

process.

Avproach Traditional Modelling Machine Learning Modelling

pproac Approach Approach

Model Gompertz Logistic Baranyi Huang SVR RFR GPR
Rzadj 0.861 0.858 0.818 0.836 0.834 0.884 0.923
RMSE 0.007 0.007 0.008 0.007 0.007 0.006 0.005
B¢ 1.032 1.030 1.035 1.036 1.047 0.998 1.031
Ag 1.157 1.159 1.173 1.162 1.167 1.138 1.100
Accuracy 0.682 0.690 0.649 0.698 0.740 0.686 0.843

Machine learning models, including Support Vector Regression, Random Forest Re-
gression and Gaussian Process Regression, demonstrate superior capability by not assum-
ing a predefined functional form, allowing them to capture intricate, nonlinear growth
behaviours effectively. GPR, in particular, stands out with the highest R? adj 0f 0.923 and
the lowest RMSE of 0.005, showcasing its robustness and reliability in handling complex
data patterns. Its accuracy (84.3%) surpasses all other models, traditional and machine
learning alike. RFR also performs notably well, with an Rzadj of 0.884 and an RMSE of
0.006, benefiting from its ensemble approach to account for variable interactions. SVR,
while effective with an Rzad]- of 0.834, shows limitations when compared to GPR and RFR,
potentially due to sensitivity in high-dimensional spaces and the need for careful parameter
tuning. Furthermore, it is important to note that the Rzadj of the SVR is slightly lower than
that of traditional models, except for the Branyi model. In terms of the bias factor (By)
and accuracy factor (Af), machine learning models generally display a closer alignment to
ideal values, with RFR having a nearly perfect B; of 0.998 and GPR achieving the lowest
Ag (1.100), indicating greater consistency and reliability. All these results affirm that while
traditional models offer interpretable and moderately accurate predictions suitable for
simpler growth dynamics, RFR and GPR provide a higher degree of predictive power,
accuracy and flexibility, making them better suited for complex and nonlinear microbial
growth modelling scenarios.

The machine learning models developed for predicting microorganism growth were
integrated into a user-friendly software interface, allowing users to easily input parameters
and visualize predicted microbial counts. This interface, illustrated in Figure 8, showcases
a streamlined design aimed at simplifying the prediction process, making it accessible
even to users without extensive technical knowledge. Key components of the interface
include input fields for essential parameters such as temperature, pH, water activity, and
other relevant environmental factors. Upon entering these values, the software instantly
generates predictions using trained machine learning models like GPR, RFR and SVR,
providing outputs on microbial growth rates and expected counts. In addition, this software
has been made accessible to a broader audience via the GitHub platform. The repository,
located under the name “ftarlak/Pseu_Calculator”, includes not only the code but also a
brief video tutorial that guides users through the installation and usage steps. This video
demonstration helps users understand the functionality of each component within the
interface, from data entry to interpreting prediction outputs.
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Figure 8. Illustration of developed software and its parts.

4. Conclusions

The comparative analysis of traditional and machine learning models for microbial
growth prediction underscores the distinct advantages and limitations of each approach.
Traditional models like Gompertz, Logistic, Baranyi and Huang are valued for their inter-
pretability and ability to capture standard S-shaped growth patterns, but they struggle with
complex, nonlinear dynamics due to their fixed parametric structures. Among these, the
Huang and Gompertz models showed relatively stronger performance, yet their predictive
power was outperformed by machine learning models. Machine learning approaches
demonstrated superior adaptability to complex data patterns. GPR emerged as the most
robust, achieving an Rzadj of 0.923 and RMSE of 0.005, making it highly effective for captur-
ing nonlinear growth behaviours. RFR also demonstrated strong performance, achieving
an RZadj of 0.884 and an RMSE of 0.006, while SVR was somewhat constrained by its sen-
sitivity to high-dimensional data and noise. Overall, while traditional models are useful
for simpler, interpretable predictions, machine learning models, particularly GPR, offer
enhanced accuracy and adaptability, making them better suited for complex, dynamic data
environments. This analysis highlights the potential of machine learning as a robust tool
for microbial growth prediction and suggests that future research could benefit from hybrid
approaches that balance the interpretability of traditional models with the analytical power
of machine learning.
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