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Abstract: Mitochondria is an important organelle for the oocyte-to-embryo transition in the early
embryonic development period. The oocyte uses mitochondria functionally and its mitochondrial
DNA (mtDNA) content as the main energy source in the embryo development at the preimplantation
stage. The aim of this study is to compare mitophagic, apoptotic and humanin gene expressions from
the culture medium fluid in which embryos are developed and monitored among normoresponder
(NOR), polycystic ovary syndrome (PCOS), young and older patients with poor ovarian reserve
(POR). The study groups consisted of infertile patients who applied to the Bahçeci Umut IVF Center
as NOR (Control), PCOS, POR-Advanced (POR-A) and POR-Young (POR-Y). After the isolation
of total RNA from the collected samples, MFN1, MFN2, PINK1, PARKIN, SMN1, SMN2, p53 and
Humanin gene expressions were determined by Real Time-PCR. The average age of only the POR-A
was determined to be higher than the NOR (p < 0.001). The MFN1, SMN2 (p < 0.05), Humanin and
p53 gene expressions (p < 0.001) increased, while PINK1 gene expression decreased (p < 0.05), in the
POR-Y compared to the NOR. A decrease in MFN2, PARKIN (p < 0.05) and PINK1 gene expressions
was determined in the PCOS compared to the NOR (p < 0.001). Furthermore, a decrease was observed
in MFN2, PINK1 (p < 0.001) and Humanin gene expressions compared to the NOR (p < 0.05). The
current data are the first in the literature determining the apoptotic and mitophagic status of the
oocyte. The current results prove that waste embryo culture fluid may provide a non-invasive
profile for important cellular parameters such as mitochondrial dysfunction in female infertility. The
evaluation of significant cellular parameters can be performed much earlier without any intervention
into the embryo.
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1. Introduction

The World Health Organization (WHO) defines infertility as a clinical inability to
achieve pregnancy after regular unprotected sexual intercourse for 12 months or longer [1].
Pre-implantation embryos may generally stall at various developmental stages due to
reasons such as the patient’s age, ovarian stimulation protocols, inadequate in vitro culture
conditions, the oocyte not reaching sufficient maturity, and paternal factors [2–4]. The
embryo culture medium used in IVF during the first 3 days after fertilization can affect
the size of the fetus, the birth weight, and even the postnatal weight at 2 years of age [4].
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However, less is known about the effect of culture medium on embryonic growth and
morphological development during the first trimester of pregnancy. This period is an
important period in which rapid cell division, proliferation and differentiation occur for
organogenesis [5]. In vitro embryo culture can induce epigenetic changes in different
species, highlighting the need for caution in human IVF [6].

Energy metabolism is important in the development and maturation of oocytes. Mito-
chondria play a critical role in energy metabolism as well as cellular adaptation, organismal
health, and longevity [7,8]. Although cumulus cells provide energy to oocytes via ATP,
decreased mitochondrial function and reduced energy production capacity may cause
oocyte aging. This may affect cell cycle regulation, spindle formation during mitosis,
chromosome segregation, fertilization, embryo development, and implantation [2,9–12].
The quality of gametes, embryos, and the maternal environment for embryo implantation
are critical parameters in the ability to achieve pregnancy or live birth. One of the pro-
posed mechanisms responsible for ovarian aging is the accumulation of damage caused by
reactive oxygen species (ROS), which is associated with mitochondrial dysfunction [13].
Mitochondrial dysfunction can lead to the failure of multiple cell organelles, apoptosis, and
cellular senescence [14].

Apoptosis is one of the vital processes required to verify cell homeostasis, maintain-
ing the balance between cell death and survival [15]. Mitochondria, Bcl-2 and caspase
family members, cytochrome C, and p53 are key activators of the intrinsic pathway of
apoptosis, which involves pro- and anti-apoptotic proteins [16]. p53 is at the center of
multiple signaling pathways triggered by a range of cellular stresses, including DNA dam-
age by exogenous mutagens, oncogene activation, telomere erosion, and hypoxia. All of
these factors affect the abundance, subcellular localization, post-translational modification,
and/or interaction of p53. p53 acts as a transcription factor in the nucleus or an inducer of
apoptosis in the cytoplasm through different post-translational modifications [17]. Inappro-
priately activated p53-dependent apoptosis causes developmental abnormalities during
the embryonic and postnatal period [18]. p53 activities increase fidelity and homeostasis
in somatic tissue-specific stem and progenitor cells with transition from the germline to
somatic tissues [19].

Survival motor neuron (SMN) is a ubiquitous protein that functions inside and outside
the nervous system and has multiple cellular roles in transcription, translation, and proteostatic
mechanisms. Due to a complex and highly repetitive DNA sequence, the human genome
contains an inverted duplication in the SMN region of chromosome 5, producing a nearly
identical duplicate gene, SMN2. Increased SMN2 copy numbers can partially compensate for
the SMN1 mutation [20]. Further involvement of the SMN protein at the molecular level can
be inferred through SMN interactions with known apoptotic proteins. One SMN interactor
involved in apoptosis is p53, the pro-apoptotic protein that sequentially regulates the Bcl-2
family of proteins. p53 is a transcription factor involved in cell stress. It can both induce
apoptosis (nuclear p53) and suppress autophagy (cytosolic p53). This is partially dependent
on the translocation of p53 to external and internal (matrix) mitochondrial locations, the
release of cytochrome c and the subsequent activation of caspases 3/7 [21]. Mitochondrial
dysfunction or DNA mutation in animal and cell models can occur due to endogenous stimuli
such as hypoxia, Ca2+ overload, or oxidative stress [22].

Mitophagy is the main pathway for the degradation of dysfunctional or unnecessary
mitochondria in cells. The PINK1/PARKIN pathway is the most extensively characterized
mechanism affecting mitochondrial quality control in cells [23]. PINK1 (PTEN-induced
kinase 1) and PARKIN (E3 ubiquitin protein ligase), two autosomal recessive PD-associated
genes, have been linked to mitochondrial quality control. In healthy mitochondria, PINK1
is transferred to the matrix, where it is released back into the cytosol after degradation by
proteases [24,25].

The decrease in mitochondrial membrane potential is the most important indicator
of mutated mitochondria. As a result of the mutation, the PINK-1 protein begins to
accumulate on the outer membrane of the mitochondria. This accumulation enables
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the PARKIN to selectively bind to the mutated mitochondria. This binding causes the
ubiquitination of two proteins located on the outer membrane of the mitochondria. The
fusion of mutated mitochondria with intact mitochondria is blocked by the ubiquitination of
MFN1 and MFN2, which are PARKIN substrates, and apoptosis of the cell is prevented [26].
Mitochondrial fusion in mammals is controlled by MFN1 and MFN2, proteins located in
the outer mitochondrial membrane. When MFN1 expression is reduced, mitochondrial
fusion can be rescued by MFN2 overexpression and vice versa [27].

Humanin (HN) is a mitochondrial-derived peptide produced in response to cellular
stress [28]. HN is encoded by a 75-bp region in an open reading frame within the mitochon-
drial 16S ribosomal RNA [29]. HN has antiapoptotic and neuroprotective effects [30,31].
The HN peptide contains 21 amino acids when its mRNA is translated in the mitochondria
and 24 amino acids when its peptide is transported to the cytoplasm [32].

HN regulates many pathways, including apoptosis, in various diseases such as growth
hormone-, cancer-, and brain-related diseases. Several recent studies in rats revealed that
HN translation occurs in mitochondria, which shows definitive antiapoptotic activities.
Since its discovery in 2001, the role of HN has been demonstrated in many biological
processes, including oxidative stress and anti-apoptosis [33]. Over the past few years, HN
has become an impressive therapeutic agent due to its cytoprotective, reactive oxygen
species and antiapoptotic effects in various cell types, including neuronal, male germ cells,
and cardiac cells. HN deficiency contributes to certain aging processes, including cellular
senescence, chronic inflammation, and cognitive decline [34]. HN increases long-lived
protein degradation through the stimulation of both basal and inducible autophagy. HN
plays an important role in regulating the cellular response to oxidative stress and apoptosis
in the ovaries and testes through the modulation of various signaling pathways, especially
when the body is in an abnormal state [15].

The non-invasive evaluation of oocytes and embryos with high developmental poten-
tial in IVF-ET procedures is important to reduce embryo transfer failure rates and improve
pregnancy outcomes [35]. The existing approaches to gauging the potential for embryo
implantation primarily hinge on morphological assessment. However, this method does
not consistently provide accurate predictions of successful implantation [36]. In order to
make a comprehensive assessment of embryo quality, it is possible to make the selection
more accurate and consistent by analyzing embryo metabolomics as well as standard
morphokinetic results [37,38].

Mitochondria play a central and multifaceted role in the mammalian egg and early
embryo, contributing to many different aspects of early development [39]. Various methods
have been used to measure oocyte mitochondria, all of which have significant limitations.
However, the few studies that have examined mitochondrial number in relation to oocyte
developmental competence suggest that higher-quality oocytes contain more mitochon-
dria [40]. Several studies have already established correlations between embryonic viability
and carbohydrate, pyruvate, and amino acid metabolism during embryonic development.
Indeed, the metabolic performance of embryos post-compaction has emerged as a notewor-
thy biomarker indicative of superior-quality blastocysts [36].

Previous studies have shown that nuclear magnetic resonance spectroscopy was used to
assess glucose levels in follicular fluid of PCOS patients, and that there was a positive correlation
between low glucose uptake by germ cells and the embryonic development rate [35].

In another study, after single blastocyst transfer on day 5, spent culture medium was
subjected to metabolite analysis using nuclear magnetic resonance (NMR) spectroscopy.
Combining ML models with metabolomic and embryological data has been reported to
improve the prediction of embryo implantation potential, and can be used to achieve
clinical benefits for patients in real time [41].

The autophagic removal of mitochondria appears to be one of the cellular mechanisms
that prevent loss of muscle mass and quality by attenuating mitochondria-dependent
apoptosis in a healthy cell [42]. The impact of mitochondrial dysfunction on embryo quality
is investigated to predict the developmental competence and implantation potential of the



Life 2024, 14, 1507 4 of 13

embryo [43,44]. This relationship demonstrates the power of using metabolomics in IVF
culture media for non-invasive embryo selection [45]. In this study, we investigated the
impact of mitophagy-related genes and determined the gene expression profiles by using
waste embryo culture medium between female infertility groups, which are NOR, PCOS,
POR-Y and POR-A.

2. Materials and Methods
2.1. Sample Collection

Human waste embryo culture medium samples donated to research were obtained
with informed consent from patients undergoing IVF at the Bahceci Health Group Umut
IVF Laboratory, Istanbul. This study was approved by the Ethics Committee of the Maltepe
University (2022/20-05 and 2023/19-22), and written informed consent was signed by each
patient. Here, 200 waste embryo culture medium samples belonging to normoresponder
(NOR), polycystic ovary syndrome (PCOS), young and advanced patients with low ovarian
reserve (POR-Y and POR-A) were analyzed at Bahçeci Umut In Vitro Fertilization Center,
with 50 patients in each group. Inclusion criteria for NOR patients (control group) were
that they must have antral follicle count (AFC) 7-12, and anti-Mullerian hormone (AMH)
levels 1,0-3,5 ng/mL. PCOS patients must have AFC > 12, and AMH levels >3.5 ng/mL.
POR-Y patients must have AFC< 7, AMH levels > 1 ng/mL, and age < 35, and POR-A
patients must have AFC < 7, AMH levels >1 ng/mL, and age > 35.

2.2. Ovarian Stimulation, Oocyte Retrieval, Intracytoplasmic Sperm Injection (ICSI) and
Embryo Culture

Ovarian stimulation (OS) was started on day 2 of the menstrual period by employing
the antagonist protocol. The dosage of gonadotropins was individualized based on the
patients’ parameters. Patients received 250 µg of human chorionic gonadotropin (hCG; Ovit-
relle, Serono) or 0.2 mg of triptorelin (Gonapeptyl, Ferring) for the final oocyte maturation
when at least two follicles reached 18 mm in diameter, and transvaginal ultrasound-guided
follicle aspiration was performed for oocyte retrieval after 35 h. The oocyte retrieval,
denudation, and ICSI procedures were performed as previously described [38]. After mi-
croinjection, oocytes were cultured individually in a unique, pre-equilibrated culture dish.
Single-step media—namely, single continuous culture complete (CSCM-C) with human
serum albumin (Irvine Scientific, Santa Ana, CA, USA)—was used for the embryo cultures
throughout the culture period in our study. All embryos were kept in benchtop incubators
(MIRI, ESCO Medical, Singapore) and cultured until day 5 or 6 of embryo development.
Waste embryo culture medium materials were transferred into a PCR tube and kept frozen
at 20 ◦C until analysis.

2.3. Morphological Classification of Embryos

On day 3 of embryo development, a division stage morphological score was assigned
based on a three-point grading system using characteristics such as cell number, fragmenta-
tion, symmetry, and shape. The morphological score was based on the expansion stage,
the quality of the inner cell mass (ICM), and the quality of the trophectoderm (TE) at the
blastocyst stage.

2.4. The Waste Embryo Culture Medium Collection

The culture medium of embryos was collected after finishing the culture. Single culture
droplets had been overlaid with oil; thus, pipetting of the medium had to be performed to
avoid taking the oil. Spent embryo media was collected with gel pipette tips. The waste
embryo culture mediums were collected and were stored at −20 ◦C.

2.5. Total RNA Isolation and Real Time Polymerase Chain Reaction (RT-PCR)

Total RNA was obtained using an innuPREP Micro RNA Kit (AnalytikJena, Germany)
according to the manufacturer’s instructions. Total RNAs were reverse-transcribed into
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cDNA (Nucleogene, Turkey). SYBR Green primer sets for the amplification of MFN1,
MFN2, SMN1, SMN2, PINK1, PARKIN, Humanin, p53 and Glyseraldehide-3-phosphate
dehydrogenase (GAPDH) were designed and supplied by Bmlabosis (Ankara, Turkey).
The primer sequences are shown in Table 1. RT-PCR was performed in Roche Lightcycler96
(Vedbaek, Denmark). The ∆CT formula was used to determine gene expressions.

Table 1. Forward and reverse primer sequences used in RT-PCR.

Gene Forward Sequence Reverse Sequence

MFN1 5′-GTTACCGAGGAGGTGGCAAA-′3 5′-GGTCTGAAGCACTAAGGCGT-′3

MFN2 5′-TCTCCCGGCCAAACATCTTC-′3 5′-TCCATGTACTCGGGCTCTGA-′3

SMN1 5′-CACAGGCCAGAGCGATGATT-′3 5′-TGGAGCAGATTTGGGCTTGA-‘3

SMN2 5′-CACAGGCCAGAGCGATGATT-′3 5′-TGGAGCAGATTTGGGCTTGA-′3

PINK1 5′-TGGCTGGTGATCGCAGATTT-′3 5′-AGAGCGTTTCACACTCCAGG-′3

PARKIN 5′-CTGCCGGGAATGTAAAGAAGC-3′ 5′-CCACAGTTCCAGCACCACTC-3′

HUMANIN 5′-CACTCCACCTTACTACCAG-′3 5′-ATAATTTTTCATCTTTCCC-′3

p53 5′-TGAAGCTCCCAGAATGCCAG-′3 5′-TGGTGTTGTTGGACAGTGCT-′3

GAPDH 5′-CGAGGGGGGAGCCAAAAGGG-′3 3′-GAAACTGCGACCCCGACCGT-′5

2.6. Statistical Analysis

The Kolmogorov–Smirnov test was used to determine if the continuous variables had
a normal distribution. Using one-way variance analysis, comparisons between groups of
normally distributed variables were assessed. The software program IBM SPSS Statistics
26.0 was used for all analyses. The acquired data were presented as the mean ± standard
deviation.

3. Results
3.1. The Evaluation of Ages Between NOR, PKOS, POR-Y and POR-A Samples

A statistically significant increase was observed in POR-A (40.36 ± 3.082) compared to
NOR (32.74 ± 5.609; p < 0.001, Figure 1). No statistically significant decrease was observed
in the PCOS (30.68 ± 4.349) or POR-Y (30.70 ± 3.078) compared to NOR (p > 0.05, Figure 1A).
The mean age in the POR-A (40.36 ± 3.082) group showed a significant increase compared
to the PCOS (30.68 ± 4.349) and POR-Y (30.70 ± 3.078; p < 0.001, Figure 1B).
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3.2. Determination and Comparisons of Gene Expression Profiles Between NOR, PKOS, POR-Y
and POR-A Samples

PINK 1 gene expression significantly decreased in the PCOS (3.11 ± 2.715), POR-
A (1.98 ± 3.421; p < 0.001) and POR-Y (3.98 ± 1.811; p < 0.05) compared to the NOR
(5.68 ± 2.253, Figure 2A) group. The PINK 1 gene expression in the POR-Y (3.98 ± 1.811)
group significantly increased compared to the POR-A (1.98 ± 3.421; p < 0.05, Figure 2A).
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ovary syndrome, POR-Y—poor responder young age patients, POR-A—poor responder advanced
age patients).
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PARKIN gene expression significantly decreased in the PCOS (3.51 ± 1.855) group
compared to the NOR (5.14 ± 2.410); p < 0.05, Figure 2B). The PARKIN gene expression
in the POR-Y (6.28 ± 1.982) group showed a significant increase compared to the POR-A
(4.13 ± 3.420) and PCOS (3.51 ± 1.855; p < 0.001, Figure 2B) groups.

MFN 1 gene expression significantly increased in POR-Y (10.9853 ± 2.937) compared
to NOR (8.73 ± 3.433; p < 0.05, Figure 2C). MFN 1 gene expression significantly increased
in POR-Y (10.9853 ± 2.937) compared to POR-A (8.82 ± 3.034; p < 0.05, Figure 2C).

MFN 2 gene expression significantly decreased in POR-A (0.38 ± 3.037) compared
to NOR (2.38 ± 3.177; p < 0.001) and PCOS (1.26 ± 2.064; p < 0.05). The mean MFN
2 gene expression in POR-Y (4.1049 ± 2.411) significantly increased compared to NOR
(2.38 ± 3.177), POR-A (0.38 ± 3.037) and PCOS (1.26 ± 2.064; p < 0.05, Figure 2D).

p53 gene expression significantly increased in POR-Y (2.68 ± 1.453) compared to
NOR (−0.78 ± 1.773; p < 0.001). The increase in the PCOS (0.17 ± 1.873) and POR-A
(−1.55 ± 2.983) was not statistically significant (p > 0.05). p53 gene expression signifi-
cantly decreased in PCOS (0.17 ± 1.873) compared to POR-Y (2.68 ± 1.453; p < 0.001) and
significantly increased compared to POR-A (−1.55 ± 2.983; p < 0.05, Figure 2E).

SMN 1 gene expression in POR-Y (9.59 ± 2.055) significantly increased compared to
POR-A (7.577 ± 3.670; p < 0.05, Figure 2F).

SMN 2 gene expression significantly increased in POR-Y (10.11 ± 2.345) compared
to NOR (8.27 ± 3.149; p < 0.05), PCOS (8.49 ± 2.151) and POR-A (7.62 ± 3.366; p < 0.05,
Figure 2G).

HN gene expression significantly increased in POR-Y (5.19 ± 2.239; p < 0.001) com-
pared to NOR (0.55 ± 2.437). A significant decrease was observed in POR-A (−2.32 ± 3.408;
p < 0.05) compared to NOR (0.55± 2.437), PCOS group (2.02± 2.004) and POR-Y (5.19 ± 2.239).
HN gene expression significantly decreased (p < 0.001) in the PCOS group (2.02 ± 2.004)
compared to POR-Y (5.19 ± 2.239), and showed a significant increase compared to POR-A
(−2.32 ± 3.408; p < 0.001, Figure 2H).

To determine the strength and significance of the relationship between Spearman’s
Rho distribution and gene expressions, both the coefficient value and the significance level
were determined (Table 2). According to the correlation analysis of gene expression levels of
NOR, PCOS, POR-Y and POR-A in Table 2, MFN1, MFN2, SMN1, SMN2, PINK1, PARKIN,
Humanin and p53 genes showed positive correlations with each other (** r < 0.01). As
the correlation level continued in the positive direction (+1), the expressions of the related
genes increased in reverse or directly proportional ways (** r < 0.01).

Table 2. Correlations for all gene groups (** r < 0.01).

Correlations For All Gene Groups

MFN1 MFN2 SMN1 SMN2 PINK1 PARKIN HUMANIN p53

Sp
ea

rm
an

’s
R

ho

MFN1

R 1.000 0.385 ** 0.550 ** 0.529 ** 0.258 ** 0.372 ** 0.344 ** 0.429 **

Sig. (2-) - 0.000 0.000 0.000 0.000 0.000 0.000 0.000

N 200 200 200 200 200 200 200 200

MFN2

R 0.385 ** 1.000 0.536 ** 0.489 ** 0.549 ** 0.599 ** 0.606 ** 0.668 **

Sig. (2-) 0.000 - 0.000 0.000 0.000 0.000 0.000 0.000

N 200 200 200 200 200 200 200 200

SMN1

R 0.550 ** 0.536 ** 1.000 0.641 ** 0.468 ** 0.594 ** 0.441 ** 0.505 **

Sig. (2-) 0.000 0.000 - 0.000 0.000 0.000 0.000 0.000

N 200 200 200 200 200 200 200 200
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Table 2. Cont.

Correlations For All Gene Groups

MFN1 MFN2 SMN1 SMN2 PINK1 PARKIN HUMANIN p53

Sp
ea

rm
an

’s
R

ho

SMN2

R 0.529 ** 0.489 ** 0.641 ** 1.000 0.405 ** 0.498 ** 0.411 ** 0.511 **

Sig. (2-) 0.000 0.000 0.000 - 0.000 0.000 0.000 0.000

N 200 200 200 200 200 200 200 200

PINK1

R 0.258 ** 0.549 ** 0.468 ** 0.405 ** 1.000 0.637 ** 0.362 ** 0.402 **

Sig. (2-) 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000

N 200 200 200 200 200 200 200 200

PARKIN

R 0.372 ** 0.599 ** 0.594 ** 0.498 ** 0.637 ** 1.000 0.447 ** 0.549 **

Sig. (2-) 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000

N 200 200 200 200 200 200 200 200

HUMANIN

R 0.344 ** 0.606 ** 0.441 ** 0.411 ** 0.362 ** 0.447 ** 1.000 0.724 **

Sig. (2-) 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000

N 200 200 200 200 200 200 200 200

p53

R 0.429 ** 0.668 ** 0.505 ** 0.511 ** 0.402 ** 0.549 ** 0.724 ** 1.000

Sig. (2-) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -

N 200 200 200 200 200 200 200 200

4. Discussion

To our knowledge this is the first study in the literature determining the apoptotic
and mitophagic status of the oocyte from waste embryo culture fluid and providing a
non-invasive profile for important cellular parameters such as mitochondrial dysfunction
in female infertility.

The decline in fertility over time results from ovarian ageing, which is characterized
by the quantitative and qualitative alteration of the ovarian oocyte reserve [46]. When
the average age of the patient groups was evaluated in the current study, only those in
POR-A were found to be significantly older compared to the NOR group. The samples
were collected ideally in terms of the age parameter.

In addition to age and low ovarian reserve parameters, embryo waste culture fluid
can be used non-invasively to estimate the adequacy of oocyte development in the etiology
of biological maturation and to evaluate the potential of the embryo in the developmen-
tal process.

PINK1/Parkin are linked to mitochondrial quality control. The increased expression
of PINK1, a marker of damaged mitochondria, is one of the indicators of the decrease in mi-
tochondrial membrane potential. PINK1-PARKIN prevents apoptosis through mitophagy,
improves mitochondrial biogenesis and contributes to embryo development [47].

Cumulus–oocyte complexes (COCs) can activate mitophagy in response to mitochon-
drial membrane depolarization [48]. Oocytes may respond to mitochondrial damage by
increasing the number of mitochondria instead of eliminating them [49]. Determining a
significant decrease in PINK1 gene expression level in PCOS, POR-Y and POR-A groups is
an expected result. PINK1, which shows low gene expression levels in healthy cells, was
predicted to be high in the POR-Y and POR-A groups where the apoptosis mechanism
is active. Although mitophagy is a reversible mechanism, it leads to apoptosis during
unexpected situations. POR-Y and POR-A groups escape mitophagy by tolerating this
mechanism. The mitochondrial activity of embryos will protect the cell from apoptosis
and necrosis as the number of mitochondrial DNA copies in the environment increases.
Mitophagy is better tolerated in the POR-Y group due to the effect of the age factor. The
number of oocytes increases in the PCOS group due to the increase in adipose tissue, but
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their quality is low. Although the mitophagic pathway is not assumed to be active here,
low PINK1 expression supports these data. We determined a correlation between PARKIN
and PINK1 (r < 0.01). Accordingly, a decrease in the expression of the PARKIN gene in
the PCOS group is expected due to the low rate of mitophagy. The main reason for the
difference between the PCOS and POR-Y groups is that the number of oocytes is low in the
POR-Y group, that is, the mitophagic/apoptotic mechanism is active. Although PARKIN
gene expression was higher in the POR-A group compared to PCOS, the reason for the lack
of statistical difference may be the advanced age factor.

Mitofusins are recognized as decision-makers in the interaction between mitophagy
and apoptosis. Mitofusins are reduced in disease states and their pathophysiology is
improved by normalizing mitofusin levels, thus highlighting a broad therapeutic potential
of these proteins [50]. MFN1 and MFN2 are associated with female fertility [51]. Oocyte-
specific MFN1 deletion causes female infertility due to defective oocyte maturation and
follicular development [52]. The deletion of MFN1 in oocytes leads to apoptosis following
the disruption of gap junction connections between oocytes and granulosa cells, and results
in accelerated follicular atresia [53].

The deletion of MFN2 in the oocyte leads to mitochondrial dysfunction and subfer-
tility associated with follicle development and oocyte maturation. The absence of MFN2
in the oocyte increases apoptosis and the shortening of telomere length, leading to im-
paired oocyte quality and follicular depletion, a phenotype consistent with accelerated
reproductive senescence [54].

MFN2 gene expression provides more information about mitophagy and apoptosis in
all groups in our study. The increase in MFN1 gene expression only in the POR-Y group
shows that the effects of mitophagy and apoptosis are less in this group than expected.
The expressions of MFN2, PINK1 and PARKIN genes are also correlated with MFN1
gene expression. The decrease in MFN2 gene expression in PCOS and POR-A patients
indicates that mitophagic pathways are suppressed. The suppression of POR-A indicates a
different pathway from age-related apoptosis. The pathogenesis of POR-A occurs due to
the disruption of this balance.

p53 plays a regulatory role in cell cycle arrest, immune regulation, diabetes, insulin
resistance, aging and apoptosis [54]. The POR-Y group in the current study has higher
p53 gene expression than NOR and other groups, which shows clearly that there is no
effect of apoptosis or mitophagy on oocyte degeneration. The data show that the molecular
infrastructure of the p53 gene and other genes do not have an effect in the young patient
group with low ovarian reserve; on the contrary, this group is far from apoptosis. The
distributions for p53 between PCOS and POR-Y and POR-Y and POR-A are higher than
the POR-Y group, in which the apoptosis in the PCOS and POR-A distribution is collected.
According to the information obtained, the increase in p53 gene expression of the POR-Y
series indicates that the apoptotic process in the oocyte started at the follicular stage, and
indicates both the size of the reserve and embryo development. Although the low numbers
of oocytes obtained and the resulting embryos in the POR-Y group were explained by
apoptotic/mitophagic pathways, the molecular parameters we examined demonstrated
that neither of these two mechanisms are determinant in the development of the embryo
in POR-Y.

The importance of SMN in humans was first recognized when deletions or mutations
in the SMN1 gene caused Spinal Muscular Atrophy (SMA), a leading genetic disease. The
SMN2 duplication of the SMN1 gene is almost universally present in patients. Therefore,
SMN2 is the most promising therapeutic target. SMN reduction affects the testes and
their development and function. The low expression of the SMN genes has recently been
associated with testicular defects and male infertility. Both abnormally low and high SMN
expression can result in pathological conditions [55].

SMN1 gene expressions do not show any statistical difference between all groups
(p > 0.05). Although higher SMN1 gene expression was observed in the groups with low
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levels of apoptosis compared to the NOR group, it was observed that this situation was not
at a level that would exceed the statistical threshold.

SMN may have a protective effect due to age, exposure to oxidative stress and de-
creases in oocyte quality, but higher SMN levels are needed. Higher SMN1 gene expression
in groups with low levels of apoptosis was not significant compared to the NOR group in
the current study. SMN1 gene expression profiles may be clarified after studying a larger
number of samples to ensure the accuracy of the expression profile in the PCOS, POR-Y
and POR-A groups. SMN2 gene expression increases in cases with high degeneration,
due to excessive duplication of the relevant allele. High SMN2 gene expression in the
POR-Y group supports this interpretation. Considering that SMN exhibits anti-apoptotic
properties, the ability to obtain gene expression levels even in waste culture fluid suggests
that it may have a protective effect on mitochondrial function by preventing apoptosis in
POR-Y embryo development.

Apoptosis increases during folliculogenesis in individuals with PCOS, and the abnor-
mal proliferation of granulosa cells (GCs) causes anovulation and infertility [56]. Oocyte
morphology changes with decreased pregnancy and live birth rates in overweight or obese
women [57]. Aging may affect cytoplasmic quality, nuclear chromosomal abnormalities,
oocyte competence and mitochondria in particular [14]. The mtDNA contents in embryos
at the early cleavage stage are lower among older women, compared to those in young
women [46,49].

Paradoxically, the mtDNA content of blastocysts increases in older patients. Similarly,
aneuploid blastocysts contain greater numbers of mtDNA copies than euploid blasto-
cysts [58]. Mitochondrial proliferation may therefore be a compensatory mechanism for
mitochondrial insufficiency [59].

HN is optimally expressed in the cytoplasm of oocytes in the early stage of postnatal
development, and humanin expression decreases with increasing age [60]. HN concentra-
tion in follicular fluid is positively associated with ovarian reserve and clinical pregnancy
rate [61]. Local ovarian HN expression in insulin-resistant PCOS patients is reduced
compared to that in non-insulin-resistant PCOS patients [62].

According to our data, mtDNA gene HN showed different expression profiles depend-
ing on age. The high HN expression in POR-Y, which escapes apoptosis and has very low
mitophagy, is normal because no destruction mechanism is active. The high mitochondria
number in POR-Y, which may be age-related, indicates high humanin gene expression. We
observed that HN gene expression decreased in POR-A due to the decrease in the number
of mitochondria with aging.

Age-related accumulated mtDNA mutations, especially obtained from the POR-A,
may be involved in ovarian failure. Advanced age can cause infertility and oocyte abnor-
malities in women. There is no negative effect of mitophagy and apoptosis mechanisms in
PCOS samples. When mitophagy parameters are considered in this group, no significant
decrease or increase is observed in the estimated mitochondria numbers, and humanin
gene expression does not give a statistically significant result.

The difference in HN expression between the groups in PCOS, POR-Y and POR-A
indicates that oocyte maturation in the POR-Y samples is higher than in those with PCOS.
HN gene expression, which indicates oocyte maturation, was determined to be higher in
young PCOS samples compared to older samples with POR-A.

The basic molecular mechanisms underlying the conditions of patients with different
indications presenting to IVF centers have not been fully elucidated. Understanding the
molecular mechanisms is necessary for the diagnosis and treatment of diseases. Although
a low number of oocytes and consequently the low number of developing embryos in the
POR-Y may be explained by apoptotic/mitophagic pathways, the molecular parameters
we examined showed that neither of these two mechanisms were determinant in embryo
development for POR-Y. The molecular parameters examined demonstrated that the effects
of age-related changes in the POR-A group caused a decrease in ovarian reserve. Examining
the possible effect of the waste culture fluid of the non-developing embryos of POR-A



Life 2024, 14, 1507 11 of 13

patients on the mitophagy and apoptosis pathways may provide definitive information
about the effect of the molecular substructure in this patient group.

The current study provides preliminary data showing that the relevant genes for SMA
can be evaluated non-invasively before PGT in individuals who have a high potential for
SMA in their children in the future. The present study reveals that waste embryo culture
medium is a good candidate for the molecular diagnosis of female infertility subgroups. The
use of waste embryo culture medium in the IVF treatment process can be considered as a
possible additional option in terms of both short-term results and lower cost. We examined
the effects of mitophagy and subsequent apoptosis, SMN gene-dependent degeneration and
subsequent apoptosis, and humanin and mtDNA on embryo development at the molecular
level. Genetic analysis can be performed to examine the various molecular pathways in
embryo waste culture fluid non-invasively without any invasive biopsy material and any
intervention into the embryo, providing advantages in terms of embryo development and
follow-up.
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