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Abstract: Healthcare resources have changed fundamentally compared to decades ago. Modern
bio-food products and sustainable solutions for their production have increased the attention of
researchers, taking into account the current level of pollution of the earth and atmosphere along with
modern technologies applied to processed foods. Therefore, this review aims to highlight: (1) the
impact and relationship between the physiological parameters of the atmosphere, solar radiation
and soil, (in terms of their composition and stages of formation and organization) along with the
evolution to modern life; (2) the environmental impacts on algae, living organisms, food, and human
health and sustainability. In addition, we address the significant impact of algae as a sustainable
resource in reducing environmental pollution contributing to a healthier life.
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1. Introduction

Human health depends on quality of life, which is directly influenced by the quality
of the environment and food. Unfortunately, the quality of the environment and food is
strongly affected by (i) the increasing emissions of potentially toxic gases and substances
into the atmosphere and soil [1], which come with technological progress in recent years,
and (ii) industrial sources of hazardous chemicals (i.e., heavy metals, plastics, and pesti-
cides) [2,3].

The alarming evidence is generally related to foods, and in addition nutrients. In algae,
the nutrient composition changes; they can accumulate different pollutants together with
nutrients [4]—micro-plastic is one of the most dangerous because it shows interactions
during algal blooms [5]. The result is water with low oxygen levels, which is very dangerous
for living marine organisms (fish, crustaceans, etc.) [6–8]. All these negative changes in
organisms are further reflected in the degradation of the environment, food, and human
health—aspects reflected by the increased number of diseases among populations [9,10].

Worrying reports of high pollution levels have increased scientists’ interest in explor-
ing and developing green technologies such as gas hydrate combustion technology used
to burn methane gas hydrate reduces harmful emissions [11]; green technologies [12,13]
that promote the minimization of environmental damage by reducing carbon dioxide
emissions (CO2E) [13]; the integration of microalgae in wastewater treatment [14]; or
other sustainability strategies to reduce environmental pollution [15] such as algal cloth-
ing [16], algal biofuels as sources of microalgae (phytoplankton) and oils containing
macroalgae [17–19], biodegradable bottles with algae [20,21] etc.
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Despite the recent trend of mitigating environmental damage that has occurred over
the years, it is possible that irreversible damage has already occurred, and humanity has
concluded it is currently operating outside the planetary boundary [22]. Therefore, this
leads to sustainable solutions.

Environmental pollution that affects organisms and ultimately human health, induces
oxidative stress at the cellular level; this stress can be reduced or eliminated by the antioxi-
dants found in algae. Also, the need to cover the lack of minerals that the body used to
consume naturally led researchers to promote higher bio-accessible fractions of mineral
elements in functional foods by fortifying common food products (such as bread) [23,24].
In addition, researchers have expanded the field of using algae for better life and health
and have shown that certain algae extracts have therapeutic effects and a high potential
for use in the treatment of various diseases (such as cancer). For example, fucoxanthin,
a xanthophyll from brown algae was shown to inhibit the PI3K pathway alone and in
combinations enhancing the activity of other known PI3K inhibitors in glioblastoma [25].

Another clear evidence of the impact of technology on the environment and influenc-
ing its pollution levels was recently demonstrated during the pandemic restrictions; during
that time, the environment tended to reach healthier parameters. This was demonstrated
in biologically activated sludge from wastewater treatment plants [26], and in surface and
groundwater [27] where heavy metals concentrations were reduced or removed by using
different species of algae [28–30].

Considering all the presented aspects, this review aims to highlight: (1) the impact and
relationship between the physiological parameters of the atmosphere, solar radiation, and
soil, (in terms of their composition and stages of formation and organization) together with
evolution to modern life; (2) environmental impacts on algae, living organisms, food, and
human health and sustainability. Its significance lies in addressing the potential of algae
for environmental detoxification, providing insights into how algae can be both a nutrient
resource and an environmental solution. Basically, this review examines the intersection of
bio-food quality, environmental pollution and the role of algae in promoting human health
and sustainability.

2. Understanding the Role of the Earth and the Structure of the Atmosphere and Their
Impact on Quality of Life

Understanding the chemical composition of the atmosphere allows us to understand
variations that may pose potential risks to the quality of life on Earth. Atmospheric
pollution is the result of human activities [31] that determine the deterioration of the quality
of the atmosphere. Damage reduction can be achieved by limiting the presence of risk
factor contaminants in the atmosphere.

The logarithmic scale in Figure 1 emphasizes the complex structure of the Earth
and atmosphere, showing first the levels that are in direct contact with biological matter
(planetary boundary layer, soil, and natural waters), and ending with the outermost levels
(exosphere and center of the Earth) and/or with algae.

Most algae species are aquatic, which is why the distinct types of cells and tissues
(i.e., stomata, xylem, and phloem) found in terrestrial plants are lacking. However, modern
applications of algal culture: (i) go beyond food traditions and include cattle feed [32,33];
(ii) use algae for bioremediation or pollution control [34,35]; (iii) convert sunlight into algae
fuels [36,37] or other chemicals used in industrial processes; and (iv) medical and scientific
applications [37–39].
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Figure 1. Logarithmic scale representation of the structure of the Earth and atmosphere: p. 34 in [40]. 
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isms, causing it to have a special composition. Alternatively, the same area of depth may 
be covered by water (such as running waters, seas, and oceans). In the case of oceans, the 
depth can vary up to 10 km. The next area with a characteristic composition is the Crust; 
its thickness can vary from 5 km (in the case of the oceans) to 30 km (in the case of land 
covered with vegetation) to 10 km (in the case of the oceans) and 50 km, respectively (in 
the case of land covered by vegetation) with an average thickness of 35 km in the latter 
case. 

The crust continues through the upper mantle and reaches a depth of about 60 km. 
The mantle is the largest surface (approx. 81%) and extends to approx. 2890 km, followed 
by the inner core (approx. 16%) up to 5100 km, and the core (by less than 1%, up to approx. 
6378 km). The underground interacts intensely with biological organisms (the planetary 
boundary layer-up to 2 km high), causing a significantly different composition. Compared 
to level 0 (ground level), the atmosphere is located above. Next, the troposphere (7–20 km, 
with an average value of 17 km), continues with the stratosphere (up to 51 km), the mes-
osphere (up to 82 km), the thermosphere (from 350 km to 800 km with an average value 
of 690 km) and the exosphere. 

Regardless of the type of the ecosystem (be it aerial, terrestrial, or aquatic), they are 
all affected by pollution (i.e., exhaust emissions from cars are purged into the atmosphere, 
while exhaust gas emissions from the planes are purged into the atmosphere and tropo-
sphere). 
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Figure 1. Logarithmic scale representation of the structure of the Earth and atmosphere: p. 34 in [40].

Fertile soil is on average up to 2 m in the subsoil (Figure 1) with a thickness varying
from 0 (in desert areas) up to 20 m (in very rich vegetation areas) with Af zones in the
Köppen–Geiger climate classification [41] and intensively interacts with biological organ-
isms, causing it to have a special composition. Alternatively, the same area of depth may
be covered by water (such as running waters, seas, and oceans). In the case of oceans, the
depth can vary up to 10 km. The next area with a characteristic composition is the Crust;
its thickness can vary from 5 km (in the case of the oceans) to 30 km (in the case of land
covered with vegetation) to 10 km (in the case of the oceans) and 50 km, respectively (in the
case of land covered by vegetation) with an average thickness of 35 km in the latter case.

The crust continues through the upper mantle and reaches a depth of about 60 km.
The mantle is the largest surface (approx. 81%) and extends to approx. 2890 km, followed
by the inner core (approx. 16%) up to 5100 km, and the core (by less than 1%, up to
approx. 6378 km). The underground interacts intensely with biological organisms (the
planetary boundary layer-up to 2 km high), causing a significantly different composition.
Compared to level 0 (ground level), the atmosphere is located above. Next, the troposphere
(7–20 km, with an average value of 17 km), continues with the stratosphere (up to 51 km),
the mesosphere (up to 82 km), the thermosphere (from 350 km to 800 km with an average
value of 690 km) and the exosphere.

Regardless of the type of the ecosystem (be it aerial, terrestrial, or aquatic), they
are all affected by pollution (i.e., exhaust emissions from cars are purged into the atmo-
sphere, while exhaust gas emissions from the planes are purged into the atmosphere
and troposphere).
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Using data from ASTM G173-03 [42], the atmosphere’s physicochemical parameters
can also be represented on the logarithmic scale (Figure 2).
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Figure 2. Representation of the physico-chemical parameters of the atmosphere on a logarithmic
scale: p. 36 in [40].

The most informative property regarding the atmosphere’s composition is the molar
mass. It practically does not vary up to 100 km; its average value is 28.964 g/mol, an
intermediate value between 28.8 (corresponding to an O2:N2 ratio of 1:4) and 29.0 (corre-
sponding to an O2:N2 ratio of 1:3). These values precisely reflect the composition of the
atmosphere (for 22% oxygen and 77% nitrogen, the average value of the molar mass is
28.89 g/mol). Above 100 km, the molar mass has an approximately linear progression
towards 3.94 g/mol in a double logarithmic scale (on both axes); this is an informative
value, providing, again, with great precision, the composition of the extra-atmospheric
space (mixture of Helium and Hydrogen).

The logarithmic scale representation of the atmosphere’s physicochemical parameters
shows the correlated relationship between pressure p and density ρ on one hand, and
between temperature T and thermal velocity vT, on the other. It is expected to have these
associations if it approximates an ideal gas for which R is the gas constant, M represents
the molar mass, and J is the number of velocity components. These parameters are linearly
(pM = ρRT) and monotonically (vT

2M = JRT) associated. Moreover, pressure and density
significantly influence the absorption of solar radiation which can considerably influence
the existence of living organisms (including the algae), food quality, and human health.

The life and survival of living organisms are dependent on the atmosphere’s compo-
sition (as shown in Figure 3). In total, 99% of the atmosphere consists of N2, O2, O, He,
and H. Up to 100 km, the atmosphere consists of molecular oxygen and nitrogen, essential
for the existence of living organisms. From this point up to 1000 km, molecular oxygen
dissociates into atomic oxygen. First, molecular oxygen is replaced by atomic oxygen.
Further, atomic oxygen replaces molecular nitrogen, too, due to its stability (triple bond in
N2) and weight (M(N2) = 28 g/mol, M(O) = 16 g/mol). Atomic oxygen is necessary for the
equilibrium between ozone and oxygen to occur (O3 ↔ O + O2). Ozone absorbs most of the
long-wavelength solar radiation (UltraViolet UV-B and UV-C, 100–315 nm), protecting the
biological matter from its germicidal effects. Starting at 400 km, the abundance of atomic
oxygen begins to decrease in favor of helium; atomic hydrogen also begins to appear in a
small fraction.
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3. The Impact of the Atmosphere on the Effects of Solar Radiation

About 70% of the radiation received from the Sun is absorbed by the atmosphere (27%)
and the Earth’s surface (43%); the remaining part is reflected into space and does not heat
the surface [43]. The intensity of solar radiation depends on the wavelength at the entrance
to the atmosphere (at 1000 km height) and the ground surface (according to data from
ASTM G173-03) (Figure 4).
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1000 km height): p. 34 in [40].
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As shown in Figure 4, the atmosphere absorbs more radiation with shorter wave-
lengths than radiation with longer wavelengths. The ultraviolet (UV) radiation together
with the visible range are the most absorbed in the atmosphere by O3, O2, H2O, and CO2
(in order of increasing wavelength absorption). Most UV radiation is absorbed by the
ozone layer; however, UV waves reach the Earth’s surface and water, also affecting living
organisms and algal systems to a lesser or greater extent (e.g., they can affect growth,
photosynthesis, nitrogen incorporation, and enzyme activity) [44].

Moreover, the average value of the solar intensity in the visible range changes from
561 nm at the entry into the atmosphere (corresponding to a yellow-green color, but what
is seen is the complementary color, from yellow to red) to 573 nm (corresponding to an
intense yellow color.

4. Ozone Layer

The ozone layer or shield is a region of the Earth’s stratosphere, from 7 to 51 km
(see Figure 1). It contains a high concentration of ozone (O3) compared to other parts
of the atmosphere but is still lower compared to other gases in the stratosphere (which
contains N2, O2 and O3, and reactive nitrogen species) [45]. The ozone layer is essential
for absorbing most of the Sun’s ultraviolet radiation. Although the concentration in the
ozone layer is very low, it is vital to life because it absorbs biologically harmful ultraviolet
(UV) radiation from the Sun. Ultrashort or vacuum UV (10–100 nm) is shielded by N2.
The rest of the UV radiation (100 nm to 400 nm) is divided into three categories: UV-A
(400–315 nm), UV-B (315–280 nm), and UV-C (280–100 nm). UV-C, which is very harmful
to all living organisms, is completely removed by a combination of O2 (<200 nm) and O3

(>about 200 nm) in the stratosphere (O2
hν from UV→ 2O, O + O2 ⇌ O3 ). UV-B radiation can

be harmful to the skin, being the main cause of sunburn; excessive exposure can also cause
cataracts, immune system suppression, and genetic damage, leading to problems such as
skin cancer.

The O3 layer absorbs radiation with wavelengths from about 200 nm to 310 nm [46,47];
it is effective at removing UV-B radiation (for example, radiation with a wavelength of
290 nm has an intensity at the top of the atmosphere 350 million times stronger than at
the Earth’s surface). Some of the longest-wavelength UV-B radiation reaches the Earth’s
surface, which is important for the skin’s synthesis of vitamin D. Ozone absorbs very little
UV-A, accounting for most of the UV reaching the Earth. Even though this UV radiation is
less damaging to DNA, it can still cause physical damage, premature skin aging, indirect
genetic damage, and skin cancer [48–51].

5. The Influence of Soil Components on Quality of Living, Organisms and Food

About half of soil is fluid (liquids or gases) and the other half is originally half organic
and half inorganic. Silicon dioxide is the most abundant chemical compound contained in
various forms of silicates, aluminosilicates, and hydroxy-aluminosilicates. The abundance
of living organisms in fertile soil is considerable (Figure 5). But this abundance is strongly
influenced by the thickness of the fertile soil layer—if the land is covered with vegetation
(forests, meadows) then it has a considerable thickness; if the terrain is modified, (stone or
asphalt), its thickness is 0 or close to 0. Fertile soil condition is essential for plant growth
and oxygen production.

Living organisms in various systems containing organic matter concentrate certain
chemical elements at the expense of others. We discuss the land surface, sediments,
and crust, in comparison with the human organism which is considered as a reference
(Figure 6). Aluminum, present in large proportions in soil, together with manganese, is
filtered and removed by living organisms (see the red line in Figure 6). Instead, organic
elements (C, N, P, etc.) are concentrated. Interestingly, trace elements (i.e., Fe, Mg, and
Ca) are also less represented in living organisms than in the environment located in their
immediate vicinity.
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Figure 6. The chemical composition of various systems containing organic matter: p. 40 in [40].

Moving on to the crust and upper mantle, Figure 7 illustrates a rather little-known
fact: oxygen is the most abundant (about 59% of the atoms are oxygen atoms—which is
the largest proportion) compared to air, which has only about 20% oxygen atoms, and
about 33% water. The crust and upper mantle are rich sources of oxygen. Therefore, the
main minerals in the two layers are hydroxy-aluminosilicates (MAlSi3O10(OH)2) (Figure 5),
the chemical formula that explains the appearance of the first four elements in order of
abundance (Figure 7).
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Among the divalent metal cations, Calcium and Magnesium are the most abundant.
The figure below illustrates their main dietary resources (Figure 8).
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Figure 8. Calcium and magnesium resources: p. 162 in [40].

Plants interact with the soil (from which they extract water and minerals) and the
atmosphere (from which they extract CO2 and H2O in the presence of light and O2 in
its absence) (Figure 9) to produce biomass corresponding to a solar energy conversion
efficiency of about 10%. In the trophic chain, this biomass is used by herbivores and rodents
to further produce a total mass of approx. In total, 10% of the total mass of plants is preyed
upon by carnivores, whose total mass is also approx. 10% of the total mass of herbivores
and rodents. Humans also play an important role, as their total mass is again about 10% of
the total mass of carnivores. Therefore, this proportion of 10% is very important, because it
gives a balance to the ecosystem according to the Hardy–Weinberg principle [52,53].



Life 2024, 14, 1513 9 of 17

Life 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 

of the total mass of carnivores. Therefore, this proportion of 10% is very important, be-
cause it gives a balance to the ecosystem according to the Hardy–Weinberg principle 
[52,53]. 

Figure 9 shows the preference of plants for certain ions by which they secure their 
minerals (Na+, K+, Mg2+, Ca2+) and organoelements (nitrogen, sulfur, and phosphorus). 
Carbon, oxygen, and hydrogen are the only ones that come from the atmosphere. For the 
rest of the organisms, the carbon requirement is also ensured by the interaction with the 
lower levels in the trophic pyramid. On this food chain, the complexity of the synthesized 
molecules (lipids, proteins, carbohydrates) also increases. 

 
Figure 9. Trophic chain: p. 182 in [40]. 

Another important factor for living organisms is pH. With this in mind, the plot in 
Figure 10 illustrates the variation in pH and its influence on various living organisms. 

 
Figure 10. Different representative values for pH and their influence on living organisms: p. 128 in 
[40]. 

 

H2O 

 
Plants 

Herbivores, Rodents 

 

Si(OH)4 H2PO4
−

 SO2
2−

 NO3
− NH4

+ Ca2+ Mg2+ K+ Na+ Others+ Others− 

CO2 

Carnivores 

C-II 

      Soil 

Air 

H2O 

O2 

Carbohydrates; Small to 
medium sized organic molecules 

 

Lipids; Proteins; Medium to 
large sized organic molecules 

103 
104 

103 
102 

102 
101 

101 
100 

 

14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

Battery acid 

Lemon 
Vinegar 

Cow milk 
Sea water 
Baking soda 

Mg(OH)2 

NH4OH 

NaOH 

Tomatoes 

"Cola" 
Lime 

Bananas 
Potatoes 

Ca(OH)2 

H3BO3 

Adult fish die 
Fish reproduction affected 

Acid rain 

Stream water 
Normal range precipitation 

Neutral 

Increasing 
acidity 

Increasing 
alkalinity 

Blood 

Urine 

Adult fish die 
Juvenile fish die 

HCl 

KOH 

−9.3 ← HI  

38 ← KNH2 

H2O2 
(1M) 

Figure 9. Trophic chain: p. 182 in [40].

Figure 9 shows the preference of plants for certain ions by which they secure their
minerals (Na+, K+, Mg2+, Ca2+) and organoelements (nitrogen, sulfur, and phosphorus).
Carbon, oxygen, and hydrogen are the only ones that come from the atmosphere. For the
rest of the organisms, the carbon requirement is also ensured by the interaction with the
lower levels in the trophic pyramid. On this food chain, the complexity of the synthesized
molecules (lipids, proteins, carbohydrates) also increases.

Another important factor for living organisms is pH. With this in mind, the plot in
Figure 10 illustrates the variation in pH and its influence on various living organisms.
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Figure 10. Different representative values for pH and their influence on living organisms: p. 128
in [40].

Marine algae strains prefer a pH typically around 8.1 (with a tolerance of 5.0 to
9.7) [54,55], while freshwater strains are less adapted, preferring a pH around 7.0 (with
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an average of 6.3 to 9.3) [56,57]. Generally, a pH value between 7.0 and 9.0 supports
algae growth.

Figure 10 is an important illustration of the dissociation of the effect of water on living
biological systems, while Figure 11 shows a map representation of the chemical elements
in the human body, with values on a logarithmic scale representing the fraction.
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Figure 11. Map of the chemical elements represented in the human body (adapted from p. 40 in [40]).

Thus, the acceptable range of water dissociation and pH is from 4.0 to 9.5 on pH scale;
pH values outside this range are harmful to most living organisms. The extreme limits of
pH (about 0 for HCl and about 14 for KOH) are exceeded by several substances that have a
strong dissociating effect on water (i.e., each molecule of KNH2 with one molecule of water
forms two bases: KOH and NH3, which consumes the amount of undissociated water and
artificially increases the pH value).

6. Reducing Environmental Pollution and the Role of Algae on Quality of Life and
Human Health

Algae are plant-like organisms that photosynthesize and are found in the sea, land,
and fresh water. Microalgae can be prokaryotes (cyanobacteria) or eukaryotes (green algae),
which can fix 10–15 times more CO2 than other terrestrial plants. They multiply rapidly
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and have a high potential to fix carbon from the atmosphere (Figure 12) and convert it into
bioenergy, making it a sustainable biomaterial to produce many high-value products [58,59].
This biological method of capturing and transforming carbon from the environment is
more effective than physical methods of ameliorating environmental pollution [60,61].
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Figure 12. Schematic representation of CO2 captured from the environment and its transformation
into sustainable biomaterial (adapted from p. 409 in [40] and [58]).

Phytoremediation, or the use of microalgae to mitigate organic and inorganic con-
tamination, offers advantages such as the remediation of industrial and domestic waters
and those contaminated with heavy metals [62]. Microalgae cells can accumulate heavy
metals up to 10% of biomass due to their high surface-to-volume ratio, with efficient metal
binding, uptake, metabolism and storage mechanisms [63]. Changes occur at the cellular
level once environmental changes occur. There is a direct link between cellular stress and
external stress factors such as pollution (Figure 13), which affect defense gene mechanisms.
Once the stress factor is recognized, the signals affect the activity of the transcription factors
and implicitly the pathways in which the genes are involved.
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In agriculture, the use of chemical fertilizers has generated environmental pollution
and loss of soil fertility; this has resulted in poor food quality and human health. Because
of this and because of the food composition of the world based mainly on vegetables
(especially traditional grains: wheat, rice, corn, barley, etc.) and meat (beef, poultry, and
pork) [66], concerns about the environmental impact of existing food production systems
together with health problems have created the need to develop new, more sustainable,
and healthier food sources [67].

This is where the microalgae and bacteria identified as alternatives for improving soil
fertility come into play. It is due to biofertilizing properties through the production of
phytohormones, amino acids, carotenoids and their ability to inhibit plant pathogens [68].
Lichner et al. performed an experimental inoculation of microalgae/cyanobacteria in
sandy soil; the aim was to improve the concentration of soil nutrients such as nitrogen,
phosphorus, organic carbon and other minerals. Soil stability, soil water infiltration and
moisture content were considered. They considered the hydrophysical properties of sandy
soil that was or was not treated with algae and found substantial differences between the
two soil surfaces [69].

Microalgae, especially cyanobacteria, can also fix atmospheric nitrogen, helping to
improve soil nitrogen content. They have special mechanisms for fixing nitrogen from the
atmosphere, as they use a complex of nitrogenase enzymes to convert atmospheric nitrogen
into ammonia [70]. As a nitrogen source, microalgae are applied to the soil as a live culture
in the case of cyanobacteria or as dry biomass or suspension in the case of green algae [71].

The food industry is trying to replace synthetic dyes with natural pigments for their
coloring ability and healthy properties. Microalgae have proven to be one of the main
suppliers of valuable natural pigments in the global food pigments market. Chlorophylls,
carotenoids, and phycobiliproteins are pigments derived from microalgae, which have
unique colors and molecular structures, and exhibit various physiological activities with
effects on human health [72].

Several bioactive compounds have been discovered and purified from marine microal-
gae, such as sulfated polysaccharides, and various carotenoids (fucoxanthin, β-carotene,
astaxanthin, omega fatty acids, polyphenols). Some of these metabolites have demonstrated
strong antioxidant, anti-inflammatory, anti-cancer, and antiviral properties [73]. They have
great potential as supplements in the human diet for the prevention and treatment of
physiological conditions instead of synthetic food supplements [74].

7. Aquatic Pollution Reduction and the Role of Algae on Human Quality of Life
and Health

Pollution has significant negative effects on the aquatic environment regarding:

• Water Quality: Pollution from sources such as industrial waste, agricultural runoff,
and sewage can degrade water quality, making it unsafe for aquatic organisms and
even humans.

• Habitat Destruction: Pollution can destroy or disrupt aquatic habitats through fac-
tors such as chemical contamination, sedimentation, and eutrophication (excessive
nutrient enrichment).

• Loss of Biodiversity: Pollutants can harm or kill aquatic plants and animals directly or
indirectly by disrupting food chains and ecosystems.

• Oxygen Depletion: Certain pollutants contribute to the depletion of oxygen in water
bodies, leading to hypoxic (low oxygen) conditions that threaten aquatic life.

• Bioaccumulation: Pollutants such as heavy metals or persistent organic pollutants can
accumulate in the tissues of organisms over time, posing health risks to both wildlife
and humans who consume contaminated fish or shellfish.

• Altered Behavior and Reproduction: Exposure to pollutants can affect the behavior,
reproduction, growth, and development of aquatic species.

Efforts to address pollution in the aquatic environment involve the implementation
of regulations regarding discharges into water bodies; promoting sustainable practices in
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industries, agriculture, and urban areas; improving wastewater treatment technologies;
water quality monitoring; carrying out environmental impact assessments; and increasing
public awareness of the harmful effects of pollution on ecosystems.

Unfortunately, in order to protect the public during the COVID-19 pandemic, medical
masks were used, and through the improper management of the waste from them, an
increase in marine pollution in terms of water quality, but also a decrease in aquatic
microorganisms. Waste plastics, such as polymer-based disposable surgical masks, contain
various types of chemical additives, stabilizers, plasticizers, bisphenol A, and phthalate [75],
which affect the ability of the material to degrade [76]. The chemical compounds released
from their decomposition have a negative impact on the microorganisms in the aquatic
environment [77]. Researchers such as Hazeem et al. analyzed their harmful effects on the
microalgae Chlorella vulgaris (Chlorophyta), and the results showed cell damage, a decrease
in the content of proteins, lipids, nucleic acids, and polysaccharides, resulting in a negative
impact on their development, which led to a decrease in the quality of their biomass [78].

Other studies show the effect of micro- and nano-plastics on the photosynthetic activity
of aquatic photoautotrophs, especially on microalgae and cyanobacteria [38,75]. To study
this impact, pigment content and photosynthesis rate were used as indicators. Wang et al.
found that polyvinyl chloride inhibited the chlorophyll content of algae, and the effect
was directly proportional to the concentration [79]. Chen et al. showed that polystyrene
reduced the content of chlorophyll a, chlorophyll c, and carotenoids in cells of Phaeodactylum
tricornutum (Bacillariophyceae) [80]. Some studies have shown that exposure to other types
of micro- and nano-plastics does not have a significant impact, it may even stimulate the
photosynthesis of aquatic photoautotrophs [81]. For example, amino-modified polystyrene
(-NH2) does not affect photosynthesis in Chaetoceros neogracilis (Mediophyceae) [82], nor does
carboxylated polystyrene in Dunaliella tertiolecta (Chlorophyta).

In certain aquatic ecosystems, algae act as primary producers, synthesizing organic
material and oxygen for the metabolism of consumer organisms. As species that live
in extreme environments, with variations in some factors, they need readaptation to the
changes that occur, producing primary metabolites (proteins, amino acids, polysaccharides,
and fatty acids) that act in response to changes in the environment [83].

8. Conclusions

This review provides a wide range of information on some basic features of the Earth’s
environment at very large scales, including the atmosphere, Earth’s surface structure, and
life systems in terms of physical and chemical attributes.

This context is used to more directly address the possible role of algae in ameliorating
some of the increasing pollutant effects and/or increasing the productivity and salience of
our natural environment, including improving agricultural productivity and the quality of
human life.

Therefore, this paper incorporates the intersection of bio-food quality, environmental
pollution, and the role of algae in promoting human health and sustainability with its signif-
icance, which lies in addressing the potential of algae for environmental detoxification, pro-
viding insights into how algae can be both a nutrient resource and an
environmental solution.

We can only conclude and emphasize that environmental factors (such as atmospheric
conditions, solar radiation, and soil composition) affect the quality and bioactive potential
of bio-food products, especially algae. Algae and a balance in their ecosystem are very
beneficial to the environment, preventing other hazards, unhealthy life and improving
quality of life.
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