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Abstract: Background: This study aimed to develop a clinical model to predict late-onset fetal growth
restriction (FGR). Methods: This retrospective study included seven hospitals and was conducted
between January 2009 and December 2020. Two sets of variables from the first trimester until 13 weeks
(E1) and the early third trimester until 28 weeks (T1) were used to develop the FGR prediction models
using a machine learning algorithm. The dataset was randomly divided into training and test
sets (7:3 ratio). A simplified prediction model using variables with XGBoost’s embedded feature
selection was developed and validated. Results: Precisely 32,301 patients met the eligibility criteria.
In the prediction model for the whole cohort, the area under the curve (AUC) was 0.73 at E1 and
0.78 at T1 and the area under the precision-recall curve (AUPR) was 0.23 at E1 and 0.31 at T1 in
the training set, while an AUC of 0.62 at E1 and 0.73 at T1 and an AUPR if 0.13 at E1, and 0.24 at
T1 were obtained in the test set. The simplified prediction model performed similarly to the original
model. Conclusions: A simplified machine learning model for predicting late FGR may be useful for
evaluating individual risks in the early third trimester.

Keywords: fetal growth restriction; gestation; machine learning

1. Introduction

Fetal growth restriction (FGR) is defined as not satisfactory fetal growth potential and
accounts for 10% of all pregnancies [1,2]. Currently, the American College of Obstetrics
and Gynecologists (2021a) and Society for Maternal-Fetal Medicine, Martins, Biggio, and
Abuhamad (2020) recommend defining FGR as either an estimated fetal weight (EFW)
below the 10th percentile or an abdominal circumference below the 10th percentile adjusted
for gestational age [3,4].

In clinical practice, about one-third of late preterm births are related to FGR [5].
Cases with FGR have a greater risk of antenatal stillbirth, pre-eclampsia, preterm deliv-
ery, and neonatal complications such as hypoglycemia, hyperbilirubinemia, hypother-
mia, intraventricular hemorrhage, necrotizing enterocolitis, sepsis, respiratory distress
syndrome, and neonatal death [6]. Additionally, an EFW below the 3rd percentile is
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specified as severe, represents a more severe form of FGR, and reportedly increases
neonatal morbidity and mortality [4]. In terms of long-term outcomes, fetuses with FGR
have a greater risk of neurological and cognitive disorders and metabolic diseases in
adulthood [7].

FGR is subdivided into early- and late-onset based on 34 weeks of gestation [8–10].
Although early-onset FGR has a stronger correlation with maternal pre-eclampsia and
tends to be more severe [11–13], late FGR is also related to fetal distress, neonatal acidosis,
and cesarean section, resulting in neonatal intensive care unit admission [14]. Spectroscopy
revealed that infants with late FGR had differences in levels of brain metabolites com-
pared to normally growing infants, which were later associated with neurodevelopmental
challenges [15,16].

A previous study showed that the stillbirth rate in pre-detected FGR was much
lower than in undetected cases (FGR detected before birth, 9.7% vs. not detected before
birth, 18.9%) [17]. However, because FGR is caused by multiple factors, inaccuracies in
early detection still occur [18]. Particularly, late FGR often presents with a low degree
of placental disease and a normal umbilical Doppler index [19]. Late FGR are 70–80%
of all FGR cases, and early detection helps determine the follow-up interval or optimal
delivery timing [20]. However, most cases of late-onset FGR remain undetected, often
leading to emergency cesarean section, neonatal acidosis, and neonatal intensive care
unit admission [14,17]. There have been various attempts to predict FGR using factors
such as maternal characteristics, mean arterial pressure, and ultrasound and biochemical
markers [11,21–24]. Although these models have improved the prediction of early-onset
FGR, they remain unsatisfactory in identifying late-onset FGR. Moreover, the appropriate
settings for clinical use remain insufficient [25].

Therefore, this study aimed to develop a prediction model for late FGR using routinely
gathered variables during antenatal care.

2. Materials and Methods
2.1. Data Source

This retrospective study was conducted based on medical records obtained from seven
secondary and tertiary hospitals under the College of Medicine, Catholic University of Ko-
rea, from January 2009 to December 2020. Baseline characteristics (maternal demographics,
underlying disease, and social and family histories) and clinical characteristics (laboratory
data, ultrasonographic finding, blood pressure, height, and weight) were obtained from
medical records. The institutional review boards of the Catholic University of Korea ap-
proved this study (XC20WIDI0103). Because of the retrospective nature of this study, the
requirement for informed consent was waived.

2.2. Definitions of FGR

FGR was defined as less than 10% birth weight, taking into account gestational age;
the rest were assigned to the control group. The reference values of birth weight percentile
according to gestational age were based on the Korean birth weight chart [26]. Late FGR
was defined as FGR with deliveries at ≥34 weeks of gestation [27]. Multiple pregnan-
cies, maternal age less than 18 years at delivery, delivery before 24 weeks of gestation,
pregnancy with fetal chromosomal abnormalities and major congenital anomalies, and
early FGR cases resulting in delivery before 34 weeks of gestation were excluded. Two
obstetricians reviewed the charts to verify the data and eliminate the missing data (J.H.W.
and H.S.K.).

2.3. Machine Learning Analysis
2.3.1. Data Preparation

We followed the guidelines of the Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis statement to establish the prediction mod-
els [28]. Following these guidelines, all de-identified data from 32,301 participants were
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included in the dataset used in this study. We divided the participants into two groups
based on their obstetric history: nulliparous (n = 16,660) and multiparous (n = 15,641).
To ensure an equitable distribution of the target variable, we performed a 7:3 stratifica-
tion to divide the data for each of the three groups (whole, nulliparity, and multipar-
ity) into training and test sets. Each training and test data was divided into FGR and
non-FGR groups.

2.3.2. Variables Used to Develop the Late FGR Prediction Models

Two sets of variables were obtained from two gestational periods and used to develop
the FGR prediction models: (1) first trimester (E1) variables collected until 13 weeks of
gestation and (2) early third trimester (T1) variables collected until 28 weeks of gestation.
These variables contained age, parity, underlying diseases, family history, reproductive
history, physical examination results, laboratory results, and obstetric history of previous
pregnancies. All sets contained baseline characteristics and physical examinations, includ-
ing 140 variables for nulliparous women and 170 variables for multiparous women. The
E1 set contained human chorionic gonadotropin, pregnancy-associated plasma protein-A,
and nuchal translucency through ultrasound examination such as Down screening tests,
resulting in 178 variables in nulliparous women and 208 variables in multiparous women.
The T1 set contained 362 and 398 variables for nulliparous and multiparous women, re-
spectively. The whole cohort used the same sets of variables at E1 and T1 time points as
those used in the multiparous cohort.

2.3.3. Machine Learning Algorithm and Interpretation

An extreme gradient boosting machine (XGBM) algorithm was used as the machine
learning method. The split dataset was input into the algorithm, and its performance was
assessed using the area under the receiver operating characteristic curve (AUC) and the area
under the precision-recall curve (AUPR). To represent the impact of each variable on the
model output, we utilized XGBoost’s embedded feature selection method, specifically using
the Gain approach to identify importance variables [29]. Gain measures the improvement
in model performance brought by each variable and allows for a more targeted selection
of impactful features. Related visualizations are included to highlight the contribution of
these selected features to the model’s performance.

2.3.4. Evaluation and Validation of the Simplified Model

For clinical applications, a simplified model was developed using up to 15 variables
selected through XGBoost’s embedded feature selection with the Gain approach. The Gain
method allowed us to identify the variables that most significantly contributed to model
accuracy, making it a suitable choice for creating a streamlined version of the model. The
performance of the simplified model was assessed using AUC and AUPR and validated
using the test sets. Based on the performance and convenience of the model, a clinically
applicable questionnaire was developed.

3. Results
3.1. Data Set

After applying the exclusion criteria to 37,078 pregnancies, the final cohort that met
the eligibility criteria included 32,301 women (Figure 1). Late FGR was diagnosed in
2807 pregnancies (8.69%) in the entire cohort, with 1965 (8.69%) and 842 (8.69%) pregnancies
in the training and test sets, respectively. The baseline characteristics of the patients are
described in Table 1.
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Figure 1. Study flow chart. FGR, fetal growth restriction.  

Table 1. Baseline characteristics of patients with late FGR. 

Variables 
Training Set (N = 22,610) Test Set (N = 9691) 

No Late FGR a 
(N = 20,645) 

Late FGR 
(N = 1965) 

p-Value 
No Late FGR 

(N = 8849) 
Late FGR 
(N = 842) 

p-Value 

Age       
Mean (SD)  32.77 (4.46) 32.27 (4.69) <0.001 32.88 (4.43) 32.19 (4.61) <0.001 

<35 years, n (%) 13,459 (65.19)  0.001 5712 (64.55) 580 (68.88) 0.013 
≥35 years, <40 years, n (%) 5938 (28.76) 490 (24.94)  2558 (28.91) 224 (26.6)  

≥40 years, n (%) 1248 (6.05) 115 (5.85)  579 (6.54) 38 (4.51)  
Nulliparity, n (%) 10,422 (50.48) 1268 (64.53) <0.001 4426 (50.02) 544 (64.61) <0.001 
Maternal height (cm), mean (SD) 161.44 (5.34) 160.09 (5.36) <0.001 161.46 (5.24) 159.88 (5.28) <0.001 

BMI a before pregnancy, kg/m2       
Mean (SD) 21.83 (3.72) 20.98 (3.29) <0.001 21.84 (3.78) 21.10 (3.52) <0.001 

<25 kg/m2, n (%) 17,303 (84.18) 1756 (89.73)  7437 (84.36) 735 (87.60) 0.029 
≥25 kg/m2, <30 kg/m2, n (%) 2445 (11.90) 156 (7.97)  1009 (11.45) 81 (9.65)  

≥30 kg/m2, n (%) 806 (3.92) 45 (2.30)  370 (4.20) 23 (2.74)  

BMI at delivery, kg/m2       
Mean (SD) 26.59 (3.93) 25.52 (3.65) <0.001 26.60 (4.02) 25.56 (3.74) <0.001 

<25 kg/m2, n (%) 7857 (38.15) 971 (49.59) <0.001 3386 (38.37) 412 (49.11) <0.001 
≥25 kg/m2, <30 kg/m2, n (%) 9357 (45.44) 794 (40.55)  4000 (45.33) 336 (40.05)  

≥30 kg/m2, n (%) 3380 (16.41) 193 (9.86)  1439 (16.31) 91 (10.85)  
Weight gain during pregnancy, mean (SD) 12.39 (5.11) 11.62 (4.80) <0.001 12.40 (5.13) 11.38 (4.67) <0.001 

Preexisting disease       
Hypertension, n (%) 760 (3.68) 88 (4.48) 0.076 352 (3.98) 46 (5.46) 0.038 

Diabetes, n (%) 254 (1.23) 17 (0.87) 0.155 90 (1.02) 4 (0.48) 0.125 

Figure 1. Study flow chart. FGR, fetal growth restriction.

Table 1. Baseline characteristics of patients with late FGR.

Variables
Training Set (N = 22,610) Test Set (N = 9691)

No Late FGR a

(N = 20,645)
Late FGR
(N = 1965) p-Value No Late FGR

(N = 8849)
Late FGR
(N = 842) p-Value

Age
Mean (SD) 32.77 (4.46) 32.27 (4.69) <0.001 32.88 (4.43) 32.19 (4.61) <0.001

<35 years, n (%) 13,459 (65.19) 0.001 5712 (64.55) 580 (68.88) 0.013
≥35 years, <40 years, n (%) 5938 (28.76) 490 (24.94) 2558 (28.91) 224 (26.6)

≥40 years, n (%) 1248 (6.05) 115 (5.85) 579 (6.54) 38 (4.51)
Nulliparity, n (%) 10,422 (50.48) 1268 (64.53) <0.001 4426 (50.02) 544 (64.61) <0.001
Maternal height (cm), mean (SD) 161.44 (5.34) 160.09 (5.36) <0.001 161.46 (5.24) 159.88 (5.28) <0.001

BMI a before pregnancy, kg/m2

Mean (SD) 21.83 (3.72) 20.98 (3.29) <0.001 21.84 (3.78) 21.10 (3.52) <0.001
<25 kg/m2, n (%) 17,303 (84.18) 1756 (89.73) 7437 (84.36) 735 (87.60) 0.029

≥25 kg/m2, <30 kg/m2, n (%) 2445 (11.90) 156 (7.97) 1009 (11.45) 81 (9.65)
≥30 kg/m2, n (%) 806 (3.92) 45 (2.30) 370 (4.20) 23 (2.74)

BMI at delivery, kg/m2

Mean (SD) 26.59 (3.93) 25.52 (3.65) <0.001 26.60 (4.02) 25.56 (3.74) <0.001
<25 kg/m2, n (%) 7857 (38.15) 971 (49.59) <0.001 3386 (38.37) 412 (49.11) <0.001

≥25 kg/m2, <30 kg/m2, n (%) 9357 (45.44) 794 (40.55) 4000 (45.33) 336 (40.05)
≥30 kg/m2, n (%) 3380 (16.41) 193 (9.86) 1439 (16.31) 91 (10.85)

Weight gain during pregnancy, mean (SD) 12.39 (5.11) 11.62 (4.80) <0.001 12.40 (5.13) 11.38 (4.67) <0.001

Preexisting disease
Hypertension, n (%) 760 (3.68) 88 (4.48) 0.076 352 (3.98) 46 (5.46) 0.038

Diabetes, n (%) 254 (1.23) 17 (0.87) 0.155 90 (1.02) 4 (0.48) 0.125
CKD a, n (%) 46 (0.22) 10 (0.51) 0.027 21 (0.24) 4 (0.48) 0.270

Arrhythmia, n (%) 291 (1.41) 10 (0.51) 0.001 128 (1.45) 13 (1.54) 0.822
Renal disease, n (%) 194 (0.94) 34 (1.73) 0.001 82 (0.93) 18 (2.14) 0.001

Lupus, n (%) 128 (0.62) 32 (1.63) <0.001 47 (0.53) 16 (1.90) <0.001
Hypothyroidism, n (%) 1063 (5.15) 78 (3.97) 0.023 441 (4.98) 32 (3.80) 0.128
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Table 1. Cont.

Variables
Training Set (N = 22,610) Test Set (N = 9691)

No Late FGR a

(N = 20,645)
Late FGR
(N = 1965) p-Value No Late FGR

(N = 8849)
Late FGR
(N = 842) p-Value

Pregnancy complication
GDM a, n (%) 1612 (7.81) 124 (6.31) 0.017 743 (8.40) 50 (5.94) 0.013

Gestational hypertension, n (%) 399 (1.93) 86 (4.38) <0.001 149 (1.68) 36 (4.28) <0.001
Preeclampsia, n (%) 665 (3.22) 233 (11.86) <0.001 294 (3.32) 104 (12.35) <0.001

Eclampsia, n (%) 16 (0.08) 4 (0.20) 0.09 3 (0.03) 2 (0.24) 0.063
Superimposed pre-eclampsia, n (%) 130 (0.63) 27 (1.37) <0.001 55 (0.62) 9 (1.07) 0.126

Previous pregnancy history
Previous preterm delivery history, n (%) 1349 (6.53) 88 (4.48) <0.001 585 (6.61) 51 (6.06) <0.001

Previous pre-eclampsia history, n (%) 376 (1.82) 57 (2.90) <0.001 160 (1.81) 19 (2.26) <0.001
Previous FDIU a history, n (%) 161 (0.78) 10 (0.51) <0.001 73 (0.82) 9 (1.07) <0.001

Previous GDM history, n (%) 356 (1.72) 28 (1.42) <0.001 162 (1.83) 6 (0.71) <0.001
Previous FGR history, n (%) 390 (1.89) 78 (3.97) <0.001 178 (2.01) 33 (3.92) <0.001

Previous placenta previa history, n (%) 180 (0.87) 12 (0.61) <0.001 70 (0.79) 4 (0.48) <0.001
Previous PAS a history, n (%) 54 (0.26) 4 (0.20) <0.001 18 (0.20) 3 (0.36) <0.001

Previous postpartum hemorrhage history, n (%) 3491 (16.91) 183 (9.31) <0.001 1487 (16.80) 83 (9.86) <0.001
Myoma, n (%) 3028 (14.67) 286 (14.55) 0.893 1350 (15.26) 121 (14.37) 0.494
IVF a, n (%) 542 (2.63) 45 (2.29) 0.372 222 (2.51) 19 (2.26) 0.653

Paternal age, years
Mean (SD) 35.41 (4.87) 35.13 (4.93) 0.008 35.44 (4.80) 34.88 (4.93) 0.002

<35 years, n (%) 8728 (44.66) 886 (48.63) 0.001 3719 (44.42) 393 (50.13) 0.002
≥35 years, n (%) 10,814 (55.34) 936 (51.37) 4653 (55.58) 391 (49.87)

Abbreviations (a): FGR, fetal growth restriction; BMI, body mass index; CKD, chronic kidney disease; GDM, gesta-
tional diabetes mellitus; FDIU, fetal death in the uterus; PAS, placenta accreta spectrum; IVF, in vitro fertilization.

3.2. Machine Learning Predictive Models for Late FGR at E1 and T1 Periods

In the prediction model using the original variables for the whole cohort, the AUC
was 0.73 at E1 and 0.78 at T1 and the AUPR was 0.23 at E1 and 0.31 at T1 in the training set
(Figure 2), while the AUC was 0.62 at E1 and 0.73 at T1 and the AUPR was 0.13 at E1 and
0.24 at T1 in the test set (Figure 3). In the prediction model using the original variables
for nulliparous cohort, the AUC was 0.67 at E1 and 0.83 at T1 and the AUPR was 0.24 at
E1 and 0.44 at T1 in the training set, while the AUC was 0.59 at E1 and 0.70 at T1 and the
AUPR was 0.15 at E1, and 0.26 at T1 in the test set. In the prediction model using original
variables for multiparous cohort, the AUC was 0.59 at E1 and 0.61 at T1 and the AUPR
was 0.10 at E1 and 0.12 at T1 in the training set, while the AUC was 0.59 at E1 and 0.59 at
T1 and the AUPR was 0.10 at E1 and 0.10 at T1 in the test set. We added the performance of
the machine learning predictive model in Supplementary Table S1.

3.3. Feature Importance for Late FGR in the Prediction Models

The feature importance for late FGR with XGBoost’s embedded feature selection
method up to 15 variables in the entire cohort is presented in Figure 4. In the whole cohort,
previous gestational diabetes mellitus (GDM), parity, previous large for gestational age
(LGA), pre-pregnancy body mass index (BMI), previous pregnancy associated hypertension
(PAH), number of preterm birth, number of cesarean section, pre-existing disease (renal
and glomerular disease, lupus or antiphospholipid syndrome, impaired glucose tolerance,
thyroid disease, immune disease), myoma, and use of any steroid treatment were selected
as the most predictive features at E1. At T1, the variables selected as the most predictive
features were PAH at current pregnancy, oligohydramnios, previous fetal malformation,
parity, pre-pregnancy weight, previous LGA, duration of tocolytics (ritodrine and atosiban),
maternal height, number of cesarean section, blood urea nitrogen (BUN) at T1 period, 50 g
glucose challenge test (GCT) value at mid trimester, pre-pregnancy BMI, number of preterm
birth, and hypothyroidism.
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Figure 2. Machine learning predictive models at E1 and T1 time points with original variables for 
late FGR (training set). (a) AUC curves in the whole cohort; (b) AUC curves in the nulliparous co-
hort; (c) AUC curves in the multiparous cohort; (d) AUPR curves in the whole cohort; (e) AUPR 
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(c) AUC curves in the multiparous cohort; (d) AUPR curves in the whole cohort; (e) AUPR curves 
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AUC, area under the curve; AUPR, area under the precision-recall curve.
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Figure 4. Feature importance for late FGR with XGBoost’s embedded feature selection method.
(a) E1 and (b) T1. PREV_GEST_DMC, previous gestational diabetes mellitus; SURVCH, parity;
PREV_LGAC; previous LGA; PHX_DETAIL_LUAPSC, history of lupus or antiphospholipid syn-
drome; BMIN, pre-pregnancy body mass index; PREV_GEST_HTNC, previous pregnancy associated
hypertension; PHX_DETAIL_ENDO_1_1/history of hyperthyroidism; MYOMANO_VALID_E, num-
ber of uterine myoma; PBMHN, number of preterm birth; PHX_DETAIL_RENAL_12, history of
renal disease; PHX_DETAIL_HYPOC, history of hypothyroidism; DELI_HISTORY_CSECCNTN,
number of previous cesarean section; IN_TXSTE_STEROIDC; use of any steroid treatment; IM-
MUNE_DURATION, duration of immune disease; PAHGROUPC, pregnancy associated hyperten-
sion at current pregnancy; OLIGOC, oligohydramnios; PREVOBCX_DETAIL_FETALMALFORMC,
previous fetal malformation; WT_PREPREGN, pre-pregnancy weight; RTD_DURN, dura-
tion of ritodrine; HT_DELN, height; BUN_VALID_T, blood urea nitrogen at T1 period;
ATB_DURATION, atosiban duration; _50G_VALID_M, 50 g glucose challenge test value
at midtrimester.

3.4. Feature Selections for a Simplified Prediction Model of Late FGR and Performances

Consequently, we developed a simplified questionnaire using E1 and T1 variables
with high importance for clinical use (Table 2). In the simplified prediction model for late
FGR based on the whole cohort, the AUC was 0.66 at E1 and 0.74 at T1 and the AUPR was
0.16 at E1 and 0.24 at T1 in the training set (Figure 5); the AUC was 0.62 at E1 and 0.72 at
T1 and the AUPR was 0.13 at E1 and 0.23 at T1 in the test set (Figure 6). We added the
performance of prediction model with high importance in Supplementary Table S2.
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Table 2. Simplified 20-point questionnaire for predicting late FGR a.

Baseline check
Please answer:
Age: __________ years old
Height: __________ cm
Pre-pregnancy weight: ____________ kg
How many times have you given birth before? _____________
Do you have uterine myoma? Yes/No
Have you ever been diagnosed with an renal or glomerular disease? Yes/No
Have you ever been diagnosed with lupus or antiphospholipid syndrome? Yes/No
Have you ever been diagnosed with impaired glucose disease? Yes/No
Have you ever been diagnosed with hypo/hyperthyroidism? Hypo (Yes/No) Hyper (Yes/No)
Have you ever been diagnosed with immune disease? Yes (duration:___ years)/No
Have you ever been treated with steroid medication? Yes/No
Please fill out / check only if you have given birth before:

Have you ever undergone a cesarean section in a previous pregnancy? Yes/No
If yes, number of cesarean sections ______

In your last pregnancy, was your baby small or large for gestational age? SGA a/LGA a/No
Have you ever had a preterm birth in a previous pregnancy? Yes/No

If yes, number of preterm births ______
Have you ever had a pregnancy with a congenital anomaly? Yes/No
Have you ever been diagnosed with gestational diabetes mellitus? Yes/No
Have you ever been diagnosed with gestational hypertension or pre-eclampsia in a previous pregnancy?

Yes/No
T: Late pregnancy variables (final results until 28 weeks of gestation)
To be written by the clinician
Ultrasonographic abnormalities: Oligohydramnios: Yes/No
Obstetric complications:

Gestational hypertension: Yes/No, (Superimposed)Pre-eclampsia/eclampsia: Yes/No
Tocolytics during pregnancy (If no, 0):

Ritodrine ______days, Atosiban ______days, Nifedipine ____days
The last lab results

50 g GCT a: _____________ mg/dL
BUN a _____ mg/dL, Cr a _______ mg/dL

Abbreviations (a): FGR, fetal growth restriction; SGA, small for gestational age; LGA, large for gestational age;
BUN, blood urea nitrogen; Cr, creatinine; GCT, glucose challenge test.
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4. Discussion

We developed a machine learning model to predict late FGR using variables at two ges-
tational periods. Predictive performance becomes more accurate as pregnancy progresses
and more clinical data become available. The performance of the simplified prediction
model using important variables with XGBoost’s embedded feature selection was similar
to that of the original model.

The most important predictive variables for late FGR were previous GDM, parity,
previous LGA, maternal glomerular disease at E1, and PAH at current pregnancy, oligohy-
dramnios, previous fetal malformation, and parity at T1.

Early FGR is often classified as a high-risk pregnancy and is often accompanied by
Doppler abnormalities or maternal pre-eclampsia and managed intensively; however, late
FGR often goes undetected [12,13].

A previous prospective cohort study found that the continuous evaluation of fetal
growth from the second to the third trimester had poor ability to predict late FGR in low-
risk singleton pregnancies [30]. Another recent prospective study recently developed a
predive model for FGR in the first trimester and found comparable prediction performance
between early and late FGR (AUC of early FGR 0.77 vs. AUC of late FGR 0.79) [31].
However, the variables used in their prediction model included the uterine artery and
ductus venosus pulsatility index, several biomarkers which are not routinely checked in
low-risk maternal care.

Previous studies have often screened for FGR using factors associated with pre-
eclampsia [32,33]. In this study, previous PAH at E1 and PAT at current pregnancy at
T1 were also included in the prediction model. We found that maternal height, pre-
pregnancy BMI, number of previous cesarean sections, parity, and myoma were predictive
factors for late FGR, which is consistent with previous literature [34–37]. However, it is
unclear whether a previous cesarean section is simply associated with FGR or whether it is
itself a cause.

In this study, previous GDM and previous LGA were important features for subse-
quent FGR. Recent study found that previous GDM is an independent risk factor for GDM,
PAH, and LGA in subsequent pregnancy [38]. Previous studies also have shown that previ-
ous FGR is the strongest predictor of FGR and previous LGA is the strongest predictor of
LGA [39,40]. Previous LGA may be features with negative correlation with FGR, although
feature importance in the model does not provide information about negative or positive
direction, as other machine learning studies had not shown [39].
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The association between previous preterm birth and subsequent FGR has been re-
vealed not only in this study but also in a previous study [41].

Our findings also indicated that the duration of ritodrine and atosiban administration
were important features. Previous study reported that β2 adrenoceptors (β2AR) play a key
role via rapamycin complexes 1 and 2 (mTORC1/2) in the regulation of skeletal muscle
glucose oxidation in models of intrauterine growth restriction [42]. Adrenergic adaptation
is associated with unsatisfactory glucose oxidation, which is known to be a characteristic
of skeletal muscles in the FGR group. They suggested that β2 adrenergic enhancement
could be a therapeutic target for FGR-mediated metabolic dysfunction. This shows that
the use of ritodrine is inversely related to FGR. But the relationship between atosiban and
FGR has not yet been clearly studied. Although those variables selected through XGBoost’s
embedded feature selection method showed some correlation to FGR, it does not mean that
those have causal relationship with FGR.

Maternal serum BUN levels were included in the simplified model. Gestational renal
dysfunction may lead to maladaptation to normal physical conditions during pregnancy.
Several studies have also found that elevated levels of BUN, uric acid, Cr, and cystatin
C are associated with the development of FGR [43,44]. Maternal pre-existing diseases
were also shown to be important features affecting FGR, which is consistent with previous
studies [45–47].

This study had several limitations. First, this study has retrospective nature, which led
us to define FGR based on neonatal birth weight (below the 10th percentile) and include
several missing data and biases. However, because the seven hospitals in this study used
the same electronic medical record (EMR) form, the bias in information from the EMR was
relatively low. Second, the number of patients with FGR was lower than that in the control
group. Nevertheless, considering that the prevalence of FGR is 7–10% of all pregnancies,
the number of FGR cases included in this study is appropriate [22]. Despite hyperparameter
tuning beyond scale_pos_weight to maximize the stability and performance of the model,
we acknowledge that class imbalance continues to impact classification performance for
the patient group. In future research, we plan to validate this model in a prospective cohort
and try to enhance model performance by exploring additional approaches to increase
data diversity and address the imbalance problem. However, it seems that low values of
AUPR, compared to the AUC levels, might be attributed to data imbalance. Third, birth
weight < 10% rather than EFW < 10% or AC < 10% was used as the diagnostic criterion for
FGR [26].

The first strength of this study is that we utilized data from seven centers located in
different regions which reflected various characteristics. Second, we obtained an AUC of
0.62 at E1 and 0.73 at T1 and an AUPR of 0.13 at E1 and 0.24 at T1. The specificity was
0.82 at E1 and 0.89 at T1, and the sensitivity was 0.35 at E1 and 0.38 at T1. In a recent
study on predicting late FGR using machine learning, the Random Forest algorithm was
used, and the AUC was 0.81 and the positive predictive value was 73% [48]. In another
prospective study, the AUC was 0.79 with a specificity of 0.78 and a sensitivity of 0.69 for
late FGR [31].

The model used in this study showed similar performance and, unlike previous
studies, has the advantage of being highly usable by using markers routinely measured in
clinical care.

Therefore, the simplified prediction model based on data collected during routine
antenatal care may be able to estimate the individual risk of late FGR and closely monitor
women at high risk.

5. Conclusions

The simplified machine learning model for predicting late FGR may be useful for
evaluating individual risks in the early third trimester. Future large prospective studies to
verify this prediction model may be needed.
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