The Effects of Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping on Arm Swing, Balance, and Gait Parameters among Chronic Stroke Patients: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping during Gait Training
2.4. Measurements
2.4.1. Arm Swing Angle
2.4.2. Static Balance
2.4.3. Dynamic Balance
2.4.4. Gait Speed
2.4.5. Dynamic Gait Index
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donkor, E.S. Stroke in the century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018, 2018, 3238165. [Google Scholar] [PubMed]
- Feigin, V.L.; Barker-Collo, S.; Parag, V.; Senior, H.; Lawes, C.M.; Ratnasabapathy, Y. Auckland Stroke Outcomes Study: Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology 2010, 75, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.-M.; Studenski, S.; Duncan, P.W.; Perera, S.J. Persisting consequences of stroke measured by the stroke impact scale. Stroke 2002, 33, 1840–1844. [Google Scholar] [CrossRef] [PubMed]
- Kwakkel, G.; Kollen, B.J.; van der Grond, J.; Prevo, A.J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34, 2181–2186. [Google Scholar] [CrossRef]
- Bleyenheuft, Y.; Gordon, A.M. Precision grip in congenital and acquired hemiparesis: Similarities in impairments and implications for neurorehabilitation. Front. Hum. Neurosci. 2014, 8, 459. [Google Scholar] [CrossRef]
- Tyson, S.F.; Hanley, M.; Chillala, J.; Selley, A.; Tallis, R.C. Balance disability after stroke. Phys. Ther. 2006, 86, 30–38. [Google Scholar] [CrossRef]
- Eng, J.J.; Chu, K.S. Reliability and comparison of weight-bearing ability during standing tasks for individuals with chronic stroke. Arch. Phys. Med. Rehabil. 2002, 83, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Lamb, S.E.; Ferrucci, L.; Volapto, S.; Fried, L.; Guralnik, J.M. Risk factors for falling in home-dwelling older women with stroke: The women’s health and aging study. Stroke 2003, 34, 494–501. [Google Scholar] [CrossRef]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef]
- Drużbicki, M.; Przysada, G.; Guzik, A.; Brzozowska-Magoń, A.; Kołodziej, K.; Wolan-Nieroda, A.; Majewska, J.; Kwolek, A.J. The efficacy of gait training using a body weight support treadmill and visual biofeedback in patients with subacute stroke: A randomized controlled trial. BioMed Res. Int. 2018, 2018, 3812602. [Google Scholar] [CrossRef]
- Rafsten, L.; Meirelles, C.; Danielsson, A.; Sunnerhagen, K.S. Impaired motor function in the affected arm predicts impaired postural balance after stroke: A cross sectional study. Front. Neurol. 2019, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Johansson, G.M.; Frykberg, G.E.; Grip, H.; Broström, E.W.; Häger, C.K. Assessment of arm movements during gait in stroke–the arm posture score. Gait Posture 2014, 40, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Major, M.J. Fall prevalence and contributors to the likelihood of falling in persons with upper limb loss. Phys. Ther. 2019, 99, 377–387. [Google Scholar] [CrossRef]
- Peterson, C.L.; Hall, A.L.; Kautz, S.A.; Neptune, R.R. Pre-swing deficits in forward propulsion, swing initiation and power generation by individual muscles during hemiparetic walking. J. Biomech. 2010, 43, 2348–2355. [Google Scholar] [CrossRef]
- Ferris, D.P.; Huang, H.J.; Kao, P.-C. Moving the arms to activate the legs. Exerc. Sport Sci. Rev. 2006, 34, 113–120. [Google Scholar] [CrossRef]
- Jaraczewska, E.; Long, C.J. Kinesio® taping in stroke: Improving functional use of the upper extremity in hemiplegia. Top. Stroke Rehabil. 2006, 13, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.A.; Stone, W.J.; Phillips, W.T.; Gangi, J.; Hartman, S.J. PNF training and physical function in assisted-living older adults. J. Aging Phys. Act. 2002, 10, 476–488. [Google Scholar] [CrossRef]
- Yavuzer, G.; Ergin, S.J. Effect of an arm sling on gait pattern in patients with hemiplegia. Arch. Phys. Med. Rehabil. 2002, 83, 960–963. [Google Scholar] [CrossRef]
- Krukowska, J.; Bugajski, M.; Sienkiewicz, M.; Czernicki, J.J. The influence of ndt-bobath and pnf methods on the field support and total path length measure foot pressure (cop) in patients after stroke. Neurol. Neurochir. Pol. 2016, 50, 449–454. [Google Scholar] [CrossRef]
- Park, S.J.; Oh, S. Changes in gait performance in stroke patients after taping with scapular setting exercise. Healthcare 2020, 8, 128. [Google Scholar] [CrossRef]
- Lee, D.; Bae, Y. Short-term effect of kinesio taping of lower-leg proprioceptive neuromuscular facilitation pattern on gait parameter and dynamic balance in chronic stroke with foot drop. Healthcare 2021, 9, 271. [Google Scholar] [CrossRef]
- Kim, B.-R.; Kang, T.-W. The effects of proprioceptive neuromuscular facilitation lower-leg taping and treadmill training on mobility in patients with stroke. Int. J. Rehabil. Res. 2018, 41, 343–348. [Google Scholar] [CrossRef]
- Hegazy, R.M.; Alkhateeb, A.M.; Abdelmonem, A.F.; Mohammed, A.J. Immediate effect of kinesiotape versus ankle foot orthosis on gait parameters in stroke patients. J. Physiother. Rehabil. 2021, 32, 9329–9336. [Google Scholar]
- Park, D.; Bae, Y. Proprioceptive neuromuscular facilitation kinesio taping improves range of motion of ankle dorsiflexion and balance ability in chronic stroke patients. Healthcare 2021, 9, 1426. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.S.; Beckers, D.; Buck, M. PNF in Practice: An Illustrated Guide; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kase, K.J. Clinical Therapeutic Applications of the Kinesio Taping Method; Kinesio Taping Association: Albuquerque, New Mexico, 2003. [Google Scholar]
- Kim, C.-H.; Kim, B.-R.; Kang, M.-G. Effect of rhythmic stabilization technique, before proprioceptive neuromuscular facilitation wrist taping, on grip strength and pain in wrist pain patients. PNF Mov. 2016, 14, 105–112. [Google Scholar]
- Kisner, C.; Colby, L.A.; Borstad, J. Therapeutic Exercise: Foundations and Techniques; F.A. Davis: Philadelphia, PA, USA, 2017. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imagej. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Kodesh, E.; Cale’Benzoor, M.; Dar, G.J. Effect of dynamic tape on postural sway in individuals with chronic ankle instability. J. Bodyw. Mov. Ther. 2021, 28, 62–67. [Google Scholar] [CrossRef]
- Hertel, J.; Olmsted-Kramer, L.C. Deficits in time-to-boundary measures of postural control with chronic ankle instability. Gait Posture 2007, 25, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M.J. Predicting the probability for falls in community-dwelling older adults using the timed up & go test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [PubMed]
- Webster, K.E.; Wittwer, J.E.; Feller, J.A. Validity of the gaitrite® walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 2005, 22, 317–321. [Google Scholar] [CrossRef]
- Bilney, B.; Morris, M.; Webster, K.J. Concurrent related validity of the gaitrite® walkway system for quantification of the spatial and temporal parameters of gait. Gait Posture 2003, 17, 68–74. [Google Scholar] [CrossRef]
- Whitney, S.; Wrisley, D.; Furman, J.J. Concurrent validity of the berg balance scale and the dynamic gait index in people with vestibular dysfunction. Physiother. Res. Int. 2003, 8, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Taylor, C.S.; Matsuda, P.N.; Studer, M.T.; Whetten, B.K. Expanding the scoring system for the dynamic gait index. Phys. Ther. 2013, 93, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.J. Statistical power analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Meijer, O.G.; Beek, P.J.; Van Dieen, J.H. The effects of arm swing on human gait stability. J. Exp. Biol. 2010, 213, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Kuhtz-Buschbeck, J.P.; Jing, B.J. Activity of upper limb muscles during human walking. J. Electromyogr. Kinesiol. 2012, 22, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Okayama, Y.; Hamamura, S.J.; Journal, S.S. The the effect of kinesiology taping on range of motion, muscle strength and arm swing. Asian J. Sports Med. 2023, 7, 53–59. [Google Scholar]
- Halseth, T.; McChesney, J.W.; DeBeliso, M.; Vaughn, R.; Lien, J.J. The effects of kinesio™ taping on proprioception at the ankle. J. Sports Sci. Med. 2004, 3, 1–7. [Google Scholar] [PubMed]
- Arslan, S.A.; Uğurlu, K.; DEMİRCİ, C.; KESKİN, D.J. Investigating the relation between upper extremity function and trunk control, balance and functional mobility in individuals with stroke. J. Med. Health Sci. 2021, 4, 127–131. [Google Scholar] [CrossRef]
- Wee, S.K.; Hughes, A.-M.; Warner, M.; Burridge, J.H. Trunk restraint to promote upper extremity recovery in stroke patients: A systematic review and meta-analysis. Neurorehabilit. Neural Repair 2014, 28, 660–677. [Google Scholar] [CrossRef]
- Chan, I.H.; Fong, K.N.; Chan, D.Y.; Wang, A.Q.; Cheng, E.K.; Chau, P.H.; Chow, K.K.; Cheung, H.K. Effects of arm weight support training to promote recovery of upper limb function for subacute patients after stroke with different levels of arm impairments. BioMed Res. Int. 2016, 2016, 9346374. [Google Scholar] [CrossRef]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.; Nascimento, L.R.; Michaelsen, S.M.; Polese, J.C.; Pereira, N.D.; Teixeira-Salmela, L.F. Influences of hand dominance on the maintenance of benefits after home-based modified constraint-induced movement therapy in individuals with stroke. Braz. J. Phys. Ther. 2014, 18, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Lacroix, A.; Muehlbauer, T.; Roettger, K.; Gollhofer, A.J. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults. Gerontology 2013, 59, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Hazar Kanik, Z.; Pala, O.O.; Gunaydin, G.; Sozlu, U.; Alkan, Z.B.; Basar, S.; Citaker, S.J. Relationship between scapular muscle and core endurance in healthy subjects. J. Back Musculoskelet. Rehabil. 2017, 30, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Moezy, A.; Sepehrifar, S.; Dodaran, M.S. The effects of scapular stabilization based exercise therapy on pain, posture, flexibility and shoulder mobility in patients with shoulder impingement syndrome: A controlled randomized clinical trial. Med. J. Islam. Repub. Iran 2014, 28, 87. [Google Scholar] [PubMed]
- Shiravi, S.; Letafatkar, A.; Bertozzi, L.; Pillastrini, P.; Khaleghi Tazji, M.J. Efficacy of abdominal control feedback and scapula stabilization exercises in participants with forward head, round shoulder postures and neck movement impairment. Sports Health 2019, 11, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Oz, R.; Duray, M.; Cetıslı Korkmaz, N.J. Effects of scapular exercises on trunk control ın patients with acute stroke: A double-blind randomized controlled study. Somatosens. Mot. Res. 2023, 1–9. [Google Scholar] [CrossRef]
- Ortega, J.D.; Fehlman, L.A.; Farley, C.T. Effects of aging and arm swing on the metabolic cost of stability in human walking. J. Biomech. 2008, 41, 3303–3308. [Google Scholar] [CrossRef]
- Dietz, V.; Fouad, K.; Bastiaanse, C.J. Neuronal coordination of arm and leg movements during human locomotion. Eur. J. Neurosci. 2001, 14, 1906–1914. [Google Scholar] [CrossRef]
- Pijnappels, M.; Bobbert, M.F.; van Dieën, J.H. How early reactions in the support limb contribute to balance recovery after tripping. J. Appl. Biomech. 2005, 38, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Misiaszek, J.E. Early activation of arm and leg muscles following pulls to the waist during walking. Exp. Brain Res. 2003, 151, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.E.; McGuigan, M.P.; Kerwin, D.G.; Trewartha, G.J. The role of arm movement in early trip recovery in younger and older adults. Gait Posture 2008, 27, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.B.; Huang, Y.-C.; Kuo, S.-Y. Effect of arm swing on single-step balance recovery. Hum. Mov. Sci. 2014, 38, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Buckwell, D.; Hawken, M.; Bronstein, A.M. Does outstretching the arms improve postural stability? Neurosci. Lett. 2014, 579, 97–100. [Google Scholar] [CrossRef]
- Meyns, P.; Bruijn, S.M.; Duysens, J.J. The how and why of arm swing during human walking. Gait Posture 2013, 38, 555–562. [Google Scholar] [CrossRef]
- Stephenson, J.L.; De Serres, S.J.; Lamontagne, A.J. The effect of arm movements on the lower limb during gait after a stroke. Gait Posture 2010, 31, 109–115. [Google Scholar] [CrossRef]
- Kim, K.-H.; Park, J.-W.; Bae, S.-S. Effect of proprioceptive neuromuscular facilitation applied to the unilateral upper extremity on the muscle activation of contralateral lower extremity. PNF Mov. 2006, 4, 9–18. [Google Scholar]
- Rosati, S.; Agostini, V.; Knaflitz, M.; Balestra, G.J. Muscle activation patterns during gait: A hierarchical clustering analysis. Biomed. Signal Process. Control 2017, 31, 463–469. [Google Scholar] [CrossRef]
- Ford, M.P.; Wagenaar, R.C.; Newell, K.M. The effects of auditory rhythms and instruction on walking patterns in individuals post stroke. Gait Posture 2007, 26, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Matuszewska, A.; Syczewska, M.J. Analysis of the movements of the upper extremities during gait: Their role for the dynamic balance. Gait Posture 2023, 100, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-I.; An, D.-H. Immediate effects of an elastic arm sling on walking patterns of chronic stroke patients. J. Phys. Ther. Sci. 2015, 27, 35–37. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sato, T.; Ogata, T.; Yamamoto, S.I.; Nakazawa, K.; Kawashima, N.J. Rhythmic arm swing enhances patterned locomotor-like muscle activity in passively moved lower extremities. Physiol. Rep. 2015, 3, e12317. [Google Scholar] [CrossRef] [PubMed]
Category | PNF-KT (n = 14) | GT (n = 14) | p |
---|---|---|---|
Sex (male/female) | 7/7 | 8/6 | 0.45 a |
Age (years) | 60.3 ± 7.5 | 59.2 ± 8.2 a | 0.988 b |
Height (cm) | 164.1 ± 7.3 | 162.3 ± 8.9 | 0.987 b |
Weight (kg) | 61.8 ± 11.1 | 61.6 ± 15.1 | 1.000 b |
Affected side (Right/Left) | 8/6 | 8/6 | 0.45 a |
Stroke type (Infarction/Hemorrhage) | 5/9 | 8/6 | 0.705 a |
Onset (month) | 35.3 ± 16.1 | 28.5 ± 13.5 | 1.000 b |
K-MMSE (score) | 26.7 ± 2.2 | 26.4 ± 1.9 | 0.712 b |
Arm Swing (°) | 12.3 ± 7.5 | 14.8 ± 10.3 | 0.466 b |
Sway path of COP (cm) | 61.1 ± 25.6 | 71.7 ± 42.8 | 0.436 b |
TUG (sec) | 38.3 ± 15.3 | 35.2 ± 19.6 | 0.649 b |
Gait speed (cm/s) | 30.6 ± 15.0 | 38.2 ± 23.0 | 0.316 b |
DGI (score) | 8.7 ± 5.3 | 10.6 ± 4.8 | 0.323 b |
Parameters | PNF-KT (n = 14) | GT (n = 14) | ||||
---|---|---|---|---|---|---|
Pre | Post | p | Pre | Post | p | |
Arm Swing (°) | 12.3 ± 7.5 | 13.2 ± 7.6 | 0.001 * | 14.8 ± 10.3 | 15.1 ± 10.3 | 0.075 |
Sway path of COP (cm) | 61.1 ± 25.6 | 58.2 ± 24.7 | 0.001 * | 71.7 ± 42.8 | 71.1 ± 43.0 | 0.075 |
TUG (sec) | 38.3 ± 15.3 | 35.3 ± 14.5 | 0.009 * | 35.2 ± 19.6 | 34.6 ± 19.7 | 0.142 |
Gait speed (cm/s) | 30.6 ± 15.0 | 34.9 ± 14.4 | 0.001 * | 38.2 ± 23.0 | 38.9 ± 22.5 | 0.087 |
DGI (score) | 8.7 ± 5.3 | 10.8 ± 5.1 | 0.003 * | 10.6 ± 4.8 | 11.1 ± 4.8 | 0.793 |
Parameters | PNF-KT (n = 14) | GT (n = 14) | p | ES |
---|---|---|---|---|
Difference (Post–Pre) | Difference (Post–Pre) | |||
Arm Swing (°) | 0.9 ± 0.6 | 0.3 ± 0.6 | 0.004 * | 1.17 |
Sway path of COP (cm) | −2.9 ± 1.6 | −0.6 ± 1.2 | 0.008 * | 1.65 |
TUG (sec) | −3.0 ± 3.6 | −0.6 ± 1.3 | 0.026 * | 0.97 |
Gait speed (cm/s) | 4.2 ± 3.6 | 0.8 ± 1.6 | 0.005 * | 1.3 |
DGI (score) | 2.1 ± 2.1 | 0.4 ± 1.1 | 0.019 * | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.-J.; Han, S.-Y.; Park, D.-H. The Effects of Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping on Arm Swing, Balance, and Gait Parameters among Chronic Stroke Patients: A Randomized Controlled Trial. Life 2024, 14, 242. https://doi.org/10.3390/life14020242
Moon S-J, Han S-Y, Park D-H. The Effects of Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping on Arm Swing, Balance, and Gait Parameters among Chronic Stroke Patients: A Randomized Controlled Trial. Life. 2024; 14(2):242. https://doi.org/10.3390/life14020242
Chicago/Turabian StyleMoon, Seo-Jeong, Sang-Yong Han, and Dong-Hwan Park. 2024. "The Effects of Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping on Arm Swing, Balance, and Gait Parameters among Chronic Stroke Patients: A Randomized Controlled Trial" Life 14, no. 2: 242. https://doi.org/10.3390/life14020242
APA StyleMoon, S. -J., Han, S. -Y., & Park, D. -H. (2024). The Effects of Proprioceptive Neuromuscular Facilitation Pattern Kinesio Taping on Arm Swing, Balance, and Gait Parameters among Chronic Stroke Patients: A Randomized Controlled Trial. Life, 14(2), 242. https://doi.org/10.3390/life14020242