Intense Short-Video-Based Social Media Use reduces the P300 Event-Related Potential Component in a Visual Oddball Experiment: A Sign for Reduced Attention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Stimuli
2.3. Procedure
2.4. Electroencephalography (EEG)
2.5. Analysis
3. Results
3.1. Event-Related Potentials (ERPs) and Topographical Maps
3.2. Analytical Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walla, P.; Külzer, D.; Leeb, A.; Moidl, L.; Kalt, S. Brain Activities Show There Is Nothing Like a Real Friend in Contrast to Influencers and Other Celebrities. Brain Sci. 2023, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, G.S.; Clarke-Pearson, K. Council on Communications and Media. Clinical report—The impact of social media on children, adolescents, and families. Pediatrics 2011, 127, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, Y. A review of theories and models applied in studies of social media addiction and implications for future research. Addict. Behav. 2021, 114, 106699. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Gong, M.; Yu, L.; Dai, B. Exploring the mechanism of social media addiction: An empirical study from WeChat users. Internet Res. 2020, 30, 1305–1328. [Google Scholar] [CrossRef]
- Montag, C.; Walla, P. Carpe diem instead of losing your social mind: Beyond digital addiction and why we all suffer from digital overuse. Cogent Psychol. 2016, 3, 1157281. [Google Scholar] [CrossRef]
- Posner, M.I.; Rothbart, M.K.; Sheese, B.E.; Voelker, P. Developing Attention: Behavioral and Brain Mechanisms. Adv. Neurosci. (Hindawi) 2014, 2014, 405094. [Google Scholar] [CrossRef]
- Vedechkina, M.; Borgonovi, F. A Review of Evidence on the Role od Digital Technology in Shaping Attention and Cognitive Control in Children. Front. Psychol. 2021, 12, 611155. [Google Scholar] [CrossRef]
- Nikkelen, S.W.; Valkenburg, P.M.; Huizinga, M.; Bushman, B.J. Media use and ADHD-related behaviors in children and adolescents: A meta-analysis. Dev. Psychol. 2014, 50, 2228–2241. [Google Scholar] [CrossRef]
- Firth, J.; Torous, J.; Stubbs, B.; Firth, J.A.; Steiner, G.Z.; Smith, L.; Alvarez-Jimenez, M.; Gleeson, J.; Vancampfort, D.; Armitage, C.J.; et al. The “online brain”: How the Internet may be changing our cognition. World Psychiatry 2019, 18, 119–129. [Google Scholar]
- O’Day, E.B.; Heimberg, R.G. Social media use, social anxiety, and lonliness: A systematic review. Comput. Hum. Behav. Rep. 2021, 3, 100070. [Google Scholar] [CrossRef]
- Paulhus, D.L. Socially desirable responding: The evolution of a construct. In The Role of Constructs in Psychological and Educational Measurement; Braun, H.I., Jackson, D.N., Wiley, D.E., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2002; pp. 49–69. [Google Scholar]
- Walla, P. Affective Processing Guides Behavior and Emotions Communicate Feelings: Towards a Guideline for the NeuroIS Community. In Information Systems and Neuroscience; Davis, F., Riedl, R., vom Brocke, J., Léger, P.M., Randolph, A., Eds.; Lecture Notes in Information Systems and Organisation; Springer: Cham, Switzerland, 2018; Volume 25. [Google Scholar]
- Walla, P.; Brenner, G.; Koller, M. Objective measures of emotion related to brand attitude: A new way to quantify emotion-related aspects relevant to marketing. PLoS ONE 2011, 6, e26782. [Google Scholar] [CrossRef]
- Bosshard, S.S.; Bourke, J.D.; Kunaharan, S.; Koller, M.; Walla, P. Established liked versus disliked brands: Brain activity, implicit associations and explicit responses. Cogent Psychol. 2016, 3, 1176691. [Google Scholar] [CrossRef]
- Crone, E.A.; Konjin, E.A. Media use and brain development during adolescence. Nat. Commun. 2018, 9, 588. [Google Scholar] [CrossRef]
- Squires, N.K.; Squires, K.C.; Hillyard, S.A. Two varieties of long-latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr. Clin. Neurophysiol. 1975, 38, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Fulham, W.R. EEGDisplay, version 6.1.5; University of Newcastle: Newcastle, NSW, Australia, 2009. [Google Scholar]
- Valakos, D.; d‘Avossa, G.; Mylonas, D.; Butler, J.; Klein, C.; Smyrnis, N. P300 response modulation reflects breaches of non-probabilistic expectations. Sci. Rep. 2020, 10, 10254. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Leite, P.; Buchard, A.; Tissieres, I.; Mussack, D.; Bavelier, D. Media use, attention, mental health and academic performance among 8 to 12 year old children. PLoS ONE 2021, 16, e0259163. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Orben, A.; Przybylski, A.K. The association between adolescent well-being and digital technology use. Nat. Hum. Behav. 2019, 3, 173–182. [Google Scholar] [CrossRef]
- Stiglic, N.; Viner, R.M. Effects of screentime on the health and well-being of children and adolescents: A systematic review of reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef]
- Small, G.W.; Lee, J.; Kaufman, A.; Jalil, J.; Siddarth, P.; Gaddipati, H.; Moody, T.D.; Bookheimer, S.Y. Brain health consequences of digital technology use. Dialogues Clin. Neurosci. 2020, 22, 179–187. [Google Scholar] [CrossRef]
- Ra, C.K.; Cho, J.; Stone, M.D.; De La Cerda, J.; Goldenson, N.I.; Moroney, E.; Tung, I.; Lee, S.S.; Leventhal, A.M. Association of digital media use with subsequent symptoms of attention-deficit/hyperactivity disorder among adolescents. JAMA 2018, 320, 255–263. [Google Scholar] [CrossRef]
- Orben, A. Teenagers, screens and social media: A narrative review of reviews and key studies. Soc. Psychiatry Psychiatr. Epidemiol. 2020, 55, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Walla, P.; Panksepp, J. Neuroimaging helps to clarify brain affective processing without necessarily clarifying emotions. In Novel Frontiers of Advanced Neuroimaging; Fountas, K.N., Ed.; InTech: Nappanee, IN, USA, 2013; ISBN 978-953-51-0923-5. [Google Scholar] [CrossRef]
- Donchin, E.; Coles, M.G.H. Is the P300 component a manifestation of cognitive updating? Behav. Brain Sci. 1988, 11, 357–427. [Google Scholar] [CrossRef]
- Johnson, R., Jr. The amplitude of the P300 component of the event-related potential: Review and synthesis. Adv. Psychophysiol. 1988, 3, 69–137. [Google Scholar]
- Gray, H.N.; Ambady, N.; Lowenthal, W.T.; Deldin, P. P300 as an index of attention to self-relevant stimuli. J. Exp. Soc. Psychol. 2004, 40, 216–224. [Google Scholar] [CrossRef]
- Donchin, E. Surprise! .... Surprise? Psychophysiology 1981, 18, 493–515. [Google Scholar] [CrossRef] [PubMed]
- Klawohn, J.; Santopetro, N.J.; Meyer, A.; Hajcak, G. Reduced P300 in depression: Evidence from a flanker task and impact on ERN, CRN, and Pe. Psychophysiology 2019, 57, e13520. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Maeda, Y.; Higashima, M.; Nagasawa, T.; Koshino, Y.; Suzuki, M.; Ide, Y. Reduced auditory P300 amplitude. Medial temporal volume reduction and psychopathology in schizophrenia. Schizophr. Res. 1997, 26, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Vianin, P.; Posada, A.; Hugues, E.; Franck, N.; Bovet, P.; Parnas, J.; Jeannerod, M. Reduced P300 amplitude in a visual recognition task in patients with schizophrenia. Neuroimage 2002, 17, 911–921. [Google Scholar] [CrossRef]
- Kallen, A.M.; Perkins, E.R.; Klawohn, J.; Hajcak, G. Cross-sectional and prospective associations of P300, RewP, and ADHD symptoms in female adolescents. Int. J. Psychophysiol. 2020, 158, 215–224. [Google Scholar] [CrossRef]
- Hünerli, D.; Emek-Savaş, D.D.; Çavuşoğlu, B.; Dönmez Çolakoğlu, B.; Ada, E.; Yener, G.G. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin. Neurophysiol. 2019, 130, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Van Tricht, M.J.; Nieman, D.H.; KOelman, J.H.T.M.; van der Meer, J.N.; Bour, L.J.; de Han, L.; Linszen, D.H. Reduced parietal P300 amplitude is associated with an increased risk for a first psychotic episode. Biol. Psychiatry 2010, 68, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Kiehl, K.A.; Hare, R.D.; Liddle, P.F.; McDonald, J.J. Reduced P300 responses in criminal psychopaths during a visual oddball task. Biol. Psychiatry 1999, 45, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Anokhin, A.P.; Vedeniapin, A.B.; Sirevaag, E.J.; Bauer, L.O.; O’Connor, S.J.; Kuperman, S.; Porjesz, B.; Reich, T.; Begleiter, H.; Polich, J. The P300 brain potential is reduced in smokers. Psychopharmacology 2000, 149, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Han, X.; Yu, H.; Wu, Y.; Potenza, M.N. Do men become addicted to internet gaming and women to social media? A meta-analysis examining gender-related differences in specific internet addiction. Comput. Hum. Behav. 2020, 113, 106480. [Google Scholar] [CrossRef]
- Barton, B.A.; Adams, K.S.; Browne, B.L.; Arrastia-Chisholm, M.C. The effects of social media usage on attention, motivation, and academic performance. Act. Learn. High. Educ. 2021, 22, 11–22. [Google Scholar] [CrossRef]
- Baumgartner, S.E.; van der Schuur, W.A.; Lemmens, J.S.; te Poel, F. The relationship between media multitasking and attention problems in adolescents: Results of two longitudinal studies. Hum. Commun. Res. 2018, 44, 3–30. [Google Scholar] [CrossRef]
Time Window | Condition * Group | ||
---|---|---|---|
p-Value | F | Partial Eta Squared | |
200–220 | 0.144 | 2.259 | 0.077 |
220–240 | 0.183 | 1.865 | 0.065 |
240–260 | 0.686 | 0.167 | 0.006 |
260–280 | 0.945 | 0.005 | 0.000 |
280–300 | 0.550 | 0.367 | 0.013 |
300–320 | 0.602 | 0.278 | 0.010 |
320–340 | 0.165 | 2.041 | 0.070 |
340–360 | 0.013 | 7.149 | 0.209 |
360–380 | 0.057 | 3.955 | 0.128 |
380–400 | 0.044 | 4.454 | 0.142 |
400–420 | 0.081 | 3.292 | 0.109 |
420–440 | 0.122 | 2.554 | 0.086 |
440–460 | 0.317 | 1.037 | 0.037 |
460–480 | 0.065 | 3.710 | 0.121 |
480–500 | 0.189 | 1.814 | 0.063 |
500–520 | 0.172 | 1.968 | 0.068 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walla, P.; Zheng, Y. Intense Short-Video-Based Social Media Use reduces the P300 Event-Related Potential Component in a Visual Oddball Experiment: A Sign for Reduced Attention. Life 2024, 14, 290. https://doi.org/10.3390/life14030290
Walla P, Zheng Y. Intense Short-Video-Based Social Media Use reduces the P300 Event-Related Potential Component in a Visual Oddball Experiment: A Sign for Reduced Attention. Life. 2024; 14(3):290. https://doi.org/10.3390/life14030290
Chicago/Turabian StyleWalla, Peter, and Yu Zheng. 2024. "Intense Short-Video-Based Social Media Use reduces the P300 Event-Related Potential Component in a Visual Oddball Experiment: A Sign for Reduced Attention" Life 14, no. 3: 290. https://doi.org/10.3390/life14030290
APA StyleWalla, P., & Zheng, Y. (2024). Intense Short-Video-Based Social Media Use reduces the P300 Event-Related Potential Component in a Visual Oddball Experiment: A Sign for Reduced Attention. Life, 14(3), 290. https://doi.org/10.3390/life14030290