Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Genomic DNA Extraction
2.2. Mitochondrial Genome Sequencing
2.3. Mitochondrial Genome Assembly and Annotation
2.4. Physical Mapping and Codon Usage Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. Mitochondrial Genome Characterization
3.2. Protein-Coding Genes
3.3. Codon Usage Analysis
3.4. RNAs
3.5. Overlapping and Intergenic Spacer Regions
3.6. Phylogenetic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. Available online: https://www.algaebase.org/about/ (accessed on 6 December 2023).
- Adl, S.M.; Simpson, A.G.; Farmer, M.A.; Andersen, R.A.; Anderson, O.R.; Barta, J.R.; Bowser, S.S.; Brugerolle, G.U.Y.; Fensome, R.A.; Fredericq, S.; et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 2005, 52, 399–451. [Google Scholar] [CrossRef]
- Gurgel, C.F.D.; Lopez-Bautista, J. Red algae. In Encyclopedia of Life Science; John Willey and Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 1–5. [Google Scholar] [CrossRef]
- Filloramo, G.V.; Saunders, G.W. Application of multigene phylogenetics and site-stripping to resolve intraordinal relationships in the Rhodymeniales (Rhodophyta). J. Phycol. 2016, 52, 339–355. [Google Scholar] [CrossRef]
- D’Archino, R.; Zuccarello, G.C. Two red macroalgae newly introduced into New Zealand: Pachymeniopsis lanceolata (K. Okamura) Y. Yamada ex S. Kawabata and Fushitsunagia catenata Filloramo et GW Saunders. Bot. Mar. 2021, 64, 129–138. [Google Scholar] [CrossRef]
- Salomaki, E.D.; Lane, C.E. Red algal mitochondrial genomes are more complete than previously reported. Genome Biol. Evol. 2017, 9, 48–63. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Masuda, M.; Kudo, T.; Kawaguchi, S.; Guiry, M.D. Lectotypification of some marine red algae described by WH Harvey from Japan. Phycol. Res. 1995, 43, 191–202. [Google Scholar] [CrossRef]
- Norris, J.N.; Rosas, L.E.A.; Pedroche, F.F. Conspectus of the benthic marine algae of the Gulf of California: Rhodophyta, Phaeophyceae, and Chlorophyta. Smithson. Contrib. Bot. 2017, 106, 1–125. [Google Scholar] [CrossRef]
- Millar, A.J.K.; Kraft, G.T. Catalogue of marine and freshwater red algae (Rhodophyta) of New South Wales, including Lord Howe Island, south-western Pacific. Aust. Syst. Bot. 1993, 6, 1–90. [Google Scholar] [CrossRef]
- Gallardo, T.; Bárbara, I.; Alfonso-Carrillo, J.; Bermejo, R.; Altamirano, M.; Gómez-Garreta, A.; Barceló, C.; Rull, J.; Ballesteros, E.; De la Rosa, J. Nueva lista crítica de las algas bentónicas marinas de España. A new checklist of benthic marine algae of Spain. Algas. Boletín Inf. De La Soc. Española De Ficología 2016, 51, 7–52. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Chikhi, R.; Medvedev, P. Informed and automated k-mer size selection for genome assembly. Bioinformatics 2014, 30, 31–37. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Lang, B.F.; Beck, N.; Prince, S.; Sarrasin, M.; Rioux, P.; Burger, G. Mitochondrial genome annotation with MFannot: A critical analysis of gene identification and gene model prediction. Front. Plant Sci. 2023, 14, 1222186. [Google Scholar] [CrossRef]
- Gish, W.; States, D.J. Identification of protein coding regions by database similarity search. Nat. Genet. 1993, 3, 266–272. [Google Scholar] [CrossRef]
- Lang, B.F.; Laforest, M.J.; Burger, G. Mitochondrial introns: A critical view. Trends Genet. 2007, 23, 119–125. [Google Scholar] [CrossRef]
- Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3. 1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinf. 2003, 1, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Boo, G.H.; Hughey, J.R.; Miller, K.A.; Boo, S.M. Mitogenomes from type specimens, a genotyping tool for morphologically simple species: Ten genomes of agar-producing red algae. Sci. Rep. 2016, 6, 35337. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Kim, J.O.; Kim, K.; Kim, Y.R. The complete sequence of the mitochondrial DNA and phylogenetic analysis of the marine red alga Grateloupia elliptica (Rhodophyta: Halymeniales). Mitochondrial DNA Part B 2023, 8, 222–223. [Google Scholar] [CrossRef] [PubMed]
- Patil, M.P.; Kim, J.O.; Kim, Y.R.; Yoon, S.; Kim, K. Complete Mitogenome Sequencing, Annotation, and Phylogeny of Grateloupia turuturu, a Red Alga with Intronic cox1 Gene. Life 2023, 13, 1642. [Google Scholar] [CrossRef]
- Kim, K.M.; Yang, E.C.; Yi, G.; Yoon, H.S. Complete mitochondrial genome of sublittoral macroalga Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta). Mitochondrial DNA 2014, 25, 273–274. [Google Scholar] [CrossRef]
- Hughey, J.R.; Leister, G.L.; Gabrielson, P.W.; Hommersand, M.H. Sarcopeltis gen. nov. (Gigartinaceae, Rhodophyta), with S. skottsbergii comb. nov. from southern South America and S. antarctica sp. nov. from the Antarctic Peninsula. Phytotaxa 2020, 468, 75–88. [Google Scholar] [CrossRef]
- Walford, S.R.M. Characterisation of Red Algal Parasite Mitochondria from Aotearoa. Ph.D. Thesis, Open Access Te Herenga Waka-Victoria University of Wellington, Wellington, New Zealand, 2023. [Google Scholar]
Algae Name | Accession Number | Length (bp) | Nucleotide Composition (%) | AT-Skew | GC-Skew | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | T | G | C | AT | GC | ||||||
Agarophyton chilense | MZ336082 | 25,942 | 37.9 | 34.6 | 14.0 | 13.4 | 72.5 | 27.4 | 0.0455 | 0.0219 | - |
Fushitsunagia catenata | OR045827 | 25,889 | 37.1 | 33.3 | 15.1 | 14.5 | 70.4 | 29.6 | 0.0540 | 0.0203 | This study |
Gelidium coulteri | MG922857 | 24,963 | 36.8 | 33.0 | 15.3 | 14.9 | 69.8 | 30.2 | 0.0544 | 0.0132 | - |
Gelidium sinicola | KX427233 | 24,969 | 36.8 | 33.0 | 15.3 | 14.9 | 69.8 | 30.2 | 0.0544 | 0.0132 | [26] |
Gloiopeltis furcate | OP612669 | 26,600 | 32.8 | 29.2 | 19.3 | 18.7 | 62.0 | 38.0 | 0.0581 | 0.0158 | - |
Gracilariopsis andersonii | KX687878 | 27,011 | 37.5 | 34.5 | 14.4 | 13.6 | 72.0 | 28.0 | 0.0417 | 0.0286 | [6] |
Grateloupia elliptica | OP479979 | 28,503 | 36.2 | 32.6 | 15.9 | 15.3 | 68.8 | 31.2 | 0.0523 | 0.0192 | [27] |
Grateloupia turuturu | OQ972988 | 28,265 | 36.1 | 32.7 | 16.1 | 15.1 | 68.8 | 31.2 | 0.0494 | 0.0321 | [28] |
Hydropuntia rangiferina | MZ336092 | 25,908 | 39.1 | 35.5 | 12.9 | 12.5 | 74.6 | 25.4 | 0.0483 | 0.0157 | - |
Rhodomelopsis africana | OP748274 | 26,394 | 39.7 | 35.8 | 12.5 | 12.0 | 75.5 | 24.5 | 0.0517 | 0.0204 | - |
Rhodymenia pseudopalmata | KC875852 | 26,166 | 36.9 | 33.6 | 15.0 | 14.5 | 70.5 | 29.5 | 0.0468 | 0.0169 | [29] |
Sarcopeltis skottsbergii | MT032181 | 25,908 | 37.5 | 34.0 | 14.6 | 13.9 | 71.5 | 28.5 | 0.0490 | 0.0246 | [30] |
Glaucocystis nostochinearum | HQ908425 | 34,087 | 38.4 | 35.9 | 13.0 | 12.7 | 74.3 | 25.7 | 0.0336 | 0.0117 | - |
Gene Group | Gene | Three Letter Code | Strand | Location | Size (bp) | No. of Amino Acids | Start Codon | Stop Codon | Anticodon | Intergenic Nucleotides * | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Start | End | |||||||||||
rRNA | Large subunit of a ribosome | rnl | - | H | 20 | 2623 | 2604 | - | - | - | - | 36 |
Small subunit of a ribosome | rns | - | H | 24,176 | 25,536 | 1361 | - | - | - | - | 47 | |
tRNA | Transfer RNA genes | trnD | Asp | H | 3765 | 3836 | 72 | - | - | - | GTC | 55 |
trnG | Gly | H | 7789 | 7860 | 72 | - | - | - | TCC | 7 | ||
trnQ | Gln | H | 7868 | 7939 | 72 | - | - | - | TTG | 19 | ||
trnL | Leu | H | 7959 | 8043 | 85 | - | - | - | TAA | 42 | ||
trnL | Leu | L | 9266 | 9348 | 83 | - | - | - | TAG | −1 | ||
trnG | Gly | L | 9981 | 10,052 | 72 | - | - | - | GCC | 15 | ||
trnH | His | L | 10,068 | 10,142 | 75 | - | - | - | GTG | 3 | ||
trnF | Phe | L | 11,302 | 11,375 | 74 | - | - | - | GAA | 8 | ||
trnS | Ser | L | 11,384 | 11,468 | 85 | - | - | - | TAG | 20 | ||
trnP | Pro | L | 11,482 | 11,554 | 73 | - | - | - | TGG | 26 | ||
trnC | Cys | L | 11,854 | 11,924 | 71 | - | - | - | GCA | 12 | ||
trnM | Met | L | 11,937 | 12,010 | 74 | - | - | - | CAT | 15 | ||
trnW | Trp | L | 20,928 | 20,999 | 72 | - | - | - | TCA | 13 | ||
trnA | Ala | L | 21,517 | 21,590 | 74 | - | - | - | TGC | 21 | ||
trnS | Ser | L | 21,612 | 21,704 | 93 | - | - | - | GCT | 19 | ||
trnY | Tyr | L | 21,724 | 21,804 | 81 | - | - | - | GTA | 351 | ||
trnR | Arg | H | 22,156 | 22,230 | 75 | - | - | - | TCT | 17 | ||
trnN | Asn | H | 22,248 | 22,321 | 74 | - | - | - | GTT | 5 | ||
trnV | Val | H | 22,327 | 22,398 | 72 | - | - | - | TAC | 14 | ||
trnR | Arg | H | 22,413 | 22,486 | 74 | - | - | - | ACG | 33 | ||
trnK | Lys | H | 22,520 | 22,593 | 74 | - | - | - | TTT | 35 | ||
trnE | Glu | H | 23,744 | 23,815 | 72 | - | - | - | TTC | 8 | ||
trnM | Met | H | 23,824 | 23,896 | 73 | - | - | - | CAT | 279 | ||
PCGs | NADH dehydrogenase subunits (complex 1) | nad6 | - | L | 9348 | 9956 | 609 | 202 | ATG | TAA | - | 24 |
nad3 | - | L | 12,519 | 12,884 | 366 | 121 | ATG | TAA | - | 1 | ||
nad1 | - | L | 12,886 | 13,866 | 981 | 326 | ATG | TAA | - | 8 | ||
nad2 | - | L | 13,875 | 15,359 | 1485 | 494 | ATG | TAA | - | 12 | ||
nad4 | - | L | 15,615 | 17,096 | 1482 | 493 | ATG | TAA | - | 607 | ||
nad5 | - | L | 17,704 | 19,689 | 1986 | 661 | ATG | TAA | - | 14 | ||
nad4L | - | H | 25,584 | 25,889 | 306 | 101 | ATG | TAA | - | 19 | ||
Succinate dehydrogenase (complex 2) | sdh2 | - | L | 10,146 | 10,895 | 750 | 249 | ATG | TAA | - | 9 | |
sdh3 | - | L | 10,905 | 11,285 | 381 | 126 | ATG | TAG | - | 16 | ||
sdh4 | - | L | 15,372 | 15,611 | 240 | 79 | ATG | TAA | - | 3 | ||
Apocytochrome b (complex 3) | cob | - | H | 8086 | 9246 | 1161 | 386 | ATG | TAA | - | 19 | |
Cytochrome c oxidase (complex 4) | cox1 | - | H | 3892 | 5487 | 1596 | 531 | ATG | TAA | - | 4 | |
cox2 | - | H | 5492 | 6289 | 798 | 265 | ATG | TAA | - | 131 | ||
cox3 | - | H | 6421 | 7239 | 819 | 272 | ATG | TAA | - | 3 | ||
ATP synthase (complex 5) | ymf39 | - | H | 7243 | 7785 | 543 | 180 | ATG | TAA | - | 3 | |
atp9 | - | L | 11,581 | 11,811 | 231 | 76 | ATG | TAA | - | 42 | ||
atp8 | - | L | 19,704 | 20,114 | 411 | 136 | ATG | TAA | - | 18 | ||
atp6 | - | L | 20,133 | 20,891 | 759 | 252 | ATG | TAA | - | 36 | ||
SSU ribosomal protein | rps3 | - | H | 2660 | 3340 | 681 | 226 | ATG | TAG | - | 12 | |
rps11 | - | L | 12,026 | 12,379 | 354 | 117 | ATG | TAG | - | 139 | ||
rps12 | - | H | 23,363 | 23,737 | 375 | 124 | ATG | TAA | - | 6 | ||
LSU ribosomal protein | rpl16 | - | H | 3353 | 3757 | 405 | 134 | ATG | TAA | - | 7 | |
Independent protein translocase | TatC | - | H | 22,629 | 23,384 | 756 | 251 | ATG | TAA | - | −20 | |
Hypothetical proteins | orf159 | - | L | 21,013 | 21,492 | 480 | 159 | ATG | TAA | - | 24 |
Algae Name | RNA | Protein-Coding Genes (PCGs) | Intronic PCG/tRNA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total tRNA | rRNA | Total PCG | atp4, atp6, atp8, atp9 | cob, cox1, cox2, cox3 | nad1, nad2, nad3, nad4, nad4L, nad5, nad6 | Ribosomal proteins | sdh2, sdh3, sdh4 | tatC | No. of ORF* | ||||||
rnl, rns | rrn5 | rpl5 | rpl16 | rpl20 | rps3, rps11, rps12 | ||||||||||
A. chilense | 23 | + | - | 25 | + | + | + | - | + | + | + | + | + | 1 | trnI |
F. catenata | 23 | + | - | 24 | + | + | + | - | + | - | + | + | + | 1 | - |
G. coulteri | 20 | + | - | 23 | + | + | + | - | + | - | + | + | + | - | - |
G. sinicola | 18 | + | - | 23 | + | + | + | - | + | - | + | + | + | - | - |
G. furcata | 23 | + | - | 24 | + | + | + | - | + | + | + | + | + | - | trnH |
G. andersonii | 18 | + | - | 25 | + | + | + | - | + | + | + | + | + | 1 | - |
G. elliptica | 20 | + | + | 26 | + | + | + | + | + | + | + | + | + | 1 | cox1 |
G. turuturu | 20 | + | + | 26 | + | + | + | - | + | + | + | + | + | 2 | cox1 |
H. rangiferina | 24 | + | - | 25 | + | + | + | - | + | + | + | + | + | 1 | trnI |
R. africana | 22 | + | - | 23 | + | + | + | - | + | - | + | + | + | - | trnI |
R. pseudopalmata a | 21 | + | - | 24 | + | + | + | - | + | - | + | + | + | 1 | trnI |
S. skottsbergii | 22 | + | - | 24 | + | + | + | - | + | + | + | + | + | - | - |
G. nostochinearum a,b | 25 | + | + | 34 | + | + | + | + | + | - | + | sdh2- | - | 4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, M.P.; Oktavitri, N.I.; Kim, Y.-R.; Yoon, S.; Lee, I.-C.; Kim, J.-O.; Kim, K. Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea. Life 2024, 14, 534. https://doi.org/10.3390/life14040534
Patil MP, Oktavitri NI, Kim Y-R, Yoon S, Lee I-C, Kim J-O, Kim K. Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea. Life. 2024; 14(4):534. https://doi.org/10.3390/life14040534
Chicago/Turabian StylePatil, Maheshkumar Prakash, Nur Indradewi Oktavitri, Young-Ryun Kim, Seokjin Yoon, In-Cheol Lee, Jong-Oh Kim, and Kyunghoi Kim. 2024. "Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea" Life 14, no. 4: 534. https://doi.org/10.3390/life14040534
APA StylePatil, M. P., Oktavitri, N. I., Kim, Y. -R., Yoon, S., Lee, I. -C., Kim, J. -O., & Kim, K. (2024). Complete Mitochondrial Genome and Its Phylogenetic Position in Red Algae Fushitsunagia catenata from South Korea. Life, 14(4), 534. https://doi.org/10.3390/life14040534