Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Subjects and Sample Collection
2.2. Multiplex Immunoassay
2.3. Nested Polymerase Chain Reaction (PCR)
2.4. Statistical Analysis
3. Results
3.1. Main Clinical Characteristics and Laboratory Findings of the Cohort Study Group
3.2. Increased Concentration of TIM-3, LAG-3, and PD-1 in HFRS Patients
3.3. Differential Expression of LAG-3 and PD-1 in PUUV Negative Compared to PUUV-Positive HFRS Patients
3.4. Correlation of TIM-3, LAG-3, and PD-1 Protein Concentration in Serum Samples with Clinical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Milholland, M.T.; Castro-Arellano, I.; Suzán, G.; Garcia-Peña, G.E.; Lee, T.E.; Rohde, R.E.; Alonso Aguirre, A.; Mills, J.N. Global Diversity and Distribution of Hantaviruses and Their Hosts. EcoHealth 2018, 15, 163–208. [Google Scholar] [CrossRef] [PubMed]
- Andreychev, A.; Boyarova, E.; Brandler, O.; Tukhbatullin, A.; Kapustina, S. Terrestrial and Subterranean Mammals as Reservoirs of Zoonotic Diseases in the Central Part of European Russia. Diversity 2023, 15, 39. [Google Scholar] [CrossRef]
- Markotić, A.; Nichol, S.T.; Kuzman, I.; Sanchez, A.J.; Ksiazek, T.G.; Gagro, A.; Rabatić, S.; Zgorelec, R.; Avšič-Županc, T.; Beus, I.; et al. Characteristics of Puumala and Dobrava Infections in Croatia*. J. Med. Virol. 2002, 66, 542–551. [Google Scholar] [CrossRef]
- Tadin, A.; Turk, N.; Korva, M.; Margaletić, J.; Beck, R.; Vucelja, M.; Habuš, J.; Svoboda, P.; Županc, T.A.; Henttonen, H.; et al. Multiple Co-Infections of Rodents with Hantaviruses, Leptospira, and Babesia in Croatia. Vector-Borne Zoonotic Dis. 2012, 12, 388–392. [Google Scholar] [CrossRef]
- Avšič Županc, T.; Korva, M.; Markotić, A. HFRS and Hantaviruses in the Balkans/South-East Europe. Virus Res. 2014, 187, 27–33. [Google Scholar] [CrossRef]
- Tariq, M.; Kim, D.-M. Hemorrhagic Fever with Renal Syndrome: Literature Review, Epidemiology, Clinical Picture and Pathogenesis. Infect. Chemother. 2022, 54, 1–19. [Google Scholar] [CrossRef]
- Kuzman, I.; Puljiz, I.; Turčinov, D.; Markotić, A.; Turković, B.; Aleraj, B.; Andrić, Z.; Petković, D.; Tutek, V.; Herendić, B.; et al. The Biggest Epidemic of Hemorrhagic Fever with Renal Syndrome in Croatia. Acta Medica Croat. 2003, 57, 337–346. [Google Scholar]
- Vaheri, A.; Strandin, T.; Hepojoki, J.; Sironen, T.; Henttonen, H.; Mäkelä, S.; Mustonen, J. Uncovering the Mysteries of Hantavirus Infections. Nat. Rev. Microbiol. 2013, 11, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Du, H.; Wang, L.M.; Wang, P.Z.; Bai, X.F. Hemorrhagic Fever with Renal Syndrome: Pathogenesis and Clinical Picture. Front. Cell. Infect. Microbiol. 2016, 6, 1. [Google Scholar] [CrossRef]
- Cai, H.; Liu, G.; Zhong, J.; Zheng, K.; Xiao, H.; Li, C.; Song, X.; Li, Y.; Xu, C.; Wu, H.; et al. Immune Checkpoints in Viral Infections. Viruses 2020, 12, 1051. [Google Scholar] [CrossRef]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Kurachi, M. Molecular and Cellular Insights into T Cell Exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Monney, L.; Sabatos, C.A.; Gaglia, J.L.; Ryu, A.; Waldner, H.; Chernova, T.; Manning, S.; Green, E.A.; Freeman, G.J.; Kuchroo, V.K. Th1-Specific Cell Surface Protein Tim-3 Regulates Macrophage Activation and Severity of an Autoimmune Disease. Nature 2002, 415, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Elahi, S.; Dinges, W.L.; Lejarcegui, N.; Laing, K.J.; Collier, A.C.; Koelle, D.M.; McElrath, M.J.; Horton, H. Protective HIV-Specific CD8+ T Cells Evade Treg Cell Suppression. Nat. Med. 2011, 17, 989–995. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fueyo, A.; Tian, J.; Picarella, D.; Domenig, C.; Zheng, X.X.; Sabatos, C.A.; Manlongat, N.; Bender, O.; Kamradt, T.; Kuchroo, V.K.; et al. Tim-3 Inhibits T Helper Type 1–Mediated Auto- and Alloimmune Responses and Promotes Immunological Tolerance. Nat. Immunol. 2003, 4, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, K.; Tao, K.; Chen, L.; Zheng, Q.; Lu, X.; Liu, J.; Shi, L.; Liu, C.; Wang, G.; et al. Tim-3/Galectin-9 Signaling Pathway Mediates T-Cell Dysfunction and Predicts Poor Prognosis in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma. Hepatology 2012, 56, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 Ligand Galectin-9 Negatively Regulates T Helper Type 1 Immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Maçon-Lemaître, L.; Triebel, F. The Negative Regulatory Function of the Lymphocyte-Activation Gene-3 Co-Receptor (CD223) on Human T Cells. Immunology 2005, 115, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Chocarro, L.; Blanco, E.; Zuazo, M.; Arasanz, H.; Bocanegra, A.; Fernández-Rubio, L.; Morente, P.; Fernández-Hinojal, G.; Echaide, M.; Garnica, M.; et al. Understanding LAG-3 Signaling. Int. J. Mol. Sci. 2021, 22, 5282. [Google Scholar] [CrossRef]
- Triebel, F. LAG-3: A Regulator of T-Cell and DC Responses and Its Use in Therapeutic Vaccination. Trends Immunol. 2003, 24, 619–622. [Google Scholar] [CrossRef]
- Wherry, E.J. T Cell Exhaustion. Nat. Immunol. 2011, 12, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Annunziato, F.; Manetti, R.; Tomasévic, I.; Guidizi, M.G.; Biagiotti, R.; Giannò, V.; Germano, P.; Mavilia, C.; Maggi, E.; Romagnani, S. Expression and Release of LAG-3-Encoded Protein by Human CD4+ T Cells Are Associated with IFN-Gamma Production. FASEB J. 1996, 10, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Burton, B.R.; Britton, G.J.; Fang, H.; Verhagen, J.; Smithers, B.; Sabatos-Peyton, C.A.; Carney, L.J.; Gough, J.; Strobel, S.; Wraith, D.C. Sequential Transcriptional Changes Dictate Safe and Effective Antigen-Specific Immunotherapy. Nat. Commun. 2014, 5, 4741. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Agata, Y.; Kawasaki, A.; Sato, M.; Imamura, S.; Minato, N.; Yagita, H.; Nakano, T.; Honjo, T. Developmentally Regulated Expression of the PD-1 Protein on the Surface of Double-Negative(CD4-CD8-) Thymocytes. Int. Immunol. 1996, 8, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 Expression on HIV-Specific T Cells Is Associated with T-Cell Exhaustion and Disease Progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Urbani, S.; Amadei, B.; Tola, D.; Massari, M.; Schivazappa, S.; Missale, G.; Ferrari, C. PD-1 Expression in Acute Hepatitis C Virus (HCV) Infection Is Associated with HCV-Specific CD8 Exhaustion. J. Virol. 2006, 80, 11398–11403. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.; Coleman, A.; Kuri-Cervantes, L.; Bower, M.; Nelson, M.; Goodier, M.R. PD-1 Expression on Natural Killer Cells and CD8(+) T Cells during Chronic HIV-1 Infection. Viral Immunol. 2012, 25, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Jubel, J.M.; Barbati, Z.R.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. The Role of PD-1 in Acute and Chronic Infection. Front. Immunol. 2020, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Schönrich, G.; Raftery, M.J. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front. Cell. Infect. Microbiol. 2019, 9, 207. [Google Scholar] [CrossRef]
- Bowen, M.D.; Gelbmann, W.; Ksiazek, T.G.; Nichol, S.T.; Nowotny, N. Puumala Virus and Two Genetic Variants of Tula Virus Are Present in Austrian Rodents. J. Med. Virol. 1997, 53, 174–181. [Google Scholar] [CrossRef]
- Nichol, S.T.; Spiropoulou, C.F.; Morzunov, S.; Rollin, P.E.; Ksiazek, T.G.; Feldmann, H.; Sanchez, A.; Childs, J.; Zaki, S.; Peters, C.J. Genetic Identification of a Hantavirus Associated with an Outbreak of Acute Respiratory Illness. Science 1993, 262, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A. Ggpubr: “ggplot2” Based Publication Ready Plots. 2023. Available online: https://cran.r-project.org/web/packages/ggpubr/index.html (accessed on 5 April 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- JASP Team. JASP, (Version 0.17.2); [Computer Software]; University of Amsterdam: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Chen, L.; Yu, X.; Lv, C.; Dai, Y.; Wang, T.; Zheng, S.; Qin, Y.; Zhou, X.; Wang, Y.; Pei, H.; et al. Increase in Serum Soluble Tim-3 Level Is Related to the Progression of Diseases After Hepatitis Virus Infection. Front. Med. 2022, 9, 880909. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B.; Ndhlovu, L.C.; Barbour, J.D.; Sheth, P.M.; Jha, A.R.; Long, B.R.; Wong, J.C.; Satkunarajah, M.; Schweneker, M.; Chapman, J.M.; et al. Tim-3 Expression Defines a Novel Population of Dysfunctional T Cells with Highly Elevated Frequencies in Progressive HIV-1 Infection. J. Exp. Med. 2008, 205, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Shi, Y.; Li, S.; Zhang, Y.; Liu, Y.; Wu, Y.; Chen, Z. Blockade of Tim-3 Signaling Restores the Virus-Specific CD8+ T-Cell Response in Patients with Chronic Hepatitis B. Eur. J. Immunol. 2012, 42, 1180–1191. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Joller, N.; Kuchroo, V.K. Lag-3, Tim-3, and TIGIT: Co-Inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2016, 44, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Buisson, S.; Triebel, F. LAG-3 (CD223) Reduces Macrophage and Dendritic Cell Differentiation from Monocyte Precursors. Immunology 2005, 114, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, J.; Wang, T.; Li, J.; Hui, L.; Ha, X. Thrombocytopenia as a Predictor of Severe Acute Kidney Injury in Patients with Hantaan Virus Infections. PLoS ONE 2013, 8, e53236. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, T.; Ahlm, C.; Mohamed, N.; Evander, M.; Ljunggren, H.-G.; Bjorkstrom, N.K. Longitudinal Analysis of the Human T Cell Response during Acute Hantavirus Infection. J. Virol. 2011, 85, 10252–10260. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Mehta, S.; Sahay, K.; Martynova, E.; Rizvanov, A.; Baranwal, M.; Chandy, S.; Khaiboullina, S.; Kabwe, E.; Davidyuk, Y. Hemorrhagic Fever with Renal Syndrome in Asia: History, Pathogenesis, Diagnosis, Treatment, and Prevention. Viruses 2023, 15, 561. [Google Scholar] [CrossRef]
- Raftery, M.J.; Abdelaziz, M.O.; Hofmann, J.; Schönrich, G. Hantavirus-Driven PD-L1/PD-L2 Upregulation: An Imperfect Viral Immune Evasion Mechanism. Front. Immunol. 2018, 9, 2560. [Google Scholar] [CrossRef]
- Ahn, E.; Araki, K.; Hashimoto, M.; Li, W.; Riley, J.L.; Cheung, J.; Sharpe, A.H.; Freeman, G.J.; Irving, B.A.; Ahmed, R. Role of PD-1 during Effector CD8 T Cell Differentiation. Proc. Natl. Acad. Sci. USA 2018, 115, 4749–4754. [Google Scholar] [CrossRef] [PubMed]
- Ruibal, P.; Oestereich, L.; Lüdtke, A.; Becker-Ziaja, B.; Wozniak, D.M.; Kerber, R.; Korva, M.; Cabeza-Cabrerizo, M.; Bore, J.A.; Koundouno, F.R.; et al. Unique Human Immune Signature of Ebola Virus Disease in Guinea. Nature 2016, 533, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, J.; Wherry, E.J. Costimulatory and Coinhibitory Receptor Pathways in Infectious Disease. Immunity 2016, 44, 1052–1068. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, S.D.; Shin, H.; Haining, W.N.; Zou, T.; Workman, C.J.; Polley, A.; Betts, M.R.; Freeman, G.J.; Vignali, D.A.A.; Wherry, E.J. Coregulation of CD8+ T Cell Exhaustion during Chronic Viral Infection by Multiple Inhibitory Receptors. Nat. Immunol. 2009, 10, 29–37. [Google Scholar] [CrossRef] [PubMed]
Clinical Findings | Number of Patients (%) |
---|---|
Fever | 28 (100.0) |
Hyperpyrexia (>40 °C) | 7 (25.0) |
Headache | 27 (96.4) |
Myalgia | 21 (75.0) |
Blurred vision | 11 (39.3) |
Nausea | 17 (60.7) |
Hepatomegaly | 13 (46.6) |
Splenomegaly | 6 (21.4) |
Hypotension | 8 (28.6) |
Proteinuria | 24 (85.7) |
Laboratory Findings | Mean | Std. Deviation | Minimum | Maximum |
---|---|---|---|---|
Urea (mmol/L) | 8.3 | 5.3 | 2.6 | 23.7 |
Creatinine (umol/L) | 180.6 | 151.8 | 63 | 669 |
LDH (U/L) | 225.8 | 51.1 | 154 | 340 |
Thrombocytes (minimum) × 109/L | 72.4 | 39.7 | 19 | 192 |
Leukocytes (minimum) × 109/L | 7.1 | 2.1 | 1.5 | 12.3 |
Leukocytes (maximum) × 109/L | 9.8 | 2.3 | 5.1 | 14.2 |
Erythrocytes (minimum) × 109/L | 4.2 | 0.5 | 2.4 | 4.9 |
Erythrocytes (maximum) × 109/L | 5 | 0.5 | 3.9 | 6.3 |
Urine output (minimum) mL/day | 1390.4 | 852.4 | 50 | 3800 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mačak Šafranko, Ž.; Jakopec, L.; Svaguša, K.; Cvetko Krajinović, L.; Tomasović, D.; Lukić, Lj.; Markotić, A. Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome. Life 2024, 14, 551. https://doi.org/10.3390/life14050551
Mačak Šafranko Ž, Jakopec L, Svaguša K, Cvetko Krajinović L, Tomasović D, Lukić Lj, Markotić A. Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome. Life. 2024; 14(5):551. https://doi.org/10.3390/life14050551
Chicago/Turabian StyleMačak Šafranko, Željka, Lana Jakopec, Karla Svaguša, Lidija Cvetko Krajinović, Domagoj Tomasović, Ljiljana Lukić, and Alemka Markotić. 2024. "Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome" Life 14, no. 5: 551. https://doi.org/10.3390/life14050551
APA StyleMačak Šafranko, Ž., Jakopec, L., Svaguša, K., Cvetko Krajinović, L., Tomasović, D., Lukić, Lj., & Markotić, A. (2024). Serum Concentrations of TIM-3, LAG-3, and PD-1 in Patients with Hemorrhagic Fever with Renal Syndrome. Life, 14(5), 551. https://doi.org/10.3390/life14050551