Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sponge Material, Extraction, and Isolation
2.2. General Experimental Procedures
2.3. Extraction and Isolation
2.4. Methylation of the Mixture of Plakortinic Acids C (1) and D (2)
2.5. Antiplasmodial Activity against the Parasite Plasmodium berghei
2.6. Erythrocyte Cell Lysis Assay
2.7. In Silico Predicted ADMET Properties
3. Results
3.1. In Vitro Drug Luminescence Assay against Plasmodium berghei
3.2. Erythrocyte Cell Lysis Assay
3.3. In Silico Predicted ADMET Properties of the Mixture of Plakortinic Acid C (1) and D (2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuteja, R. Malaria—An Overview. FEBS J. 2007, 274, 4670–4679. [Google Scholar] [CrossRef] [PubMed]
- Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell 2016, 167, 610–624. [Google Scholar] [CrossRef]
- Talapko, J.; Škrlec, I.; Alebić, T.; Jukić, M.; Včev, A. Malaria: The Past and the Present. Microorganisms 2019, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization (WHO). Malaria. Available online: https://www.who.int/news-room/questions-and-answers/item/malaria?gad_source=1&gclid=CjwKCAiAuNGuBhAkEiwAGId4anGxpTZuyjZ_UXzRk3JZH3BQk2fX8_2D0NqSptoW-gxB8cQ9rD83ZhoCO8IQAvD_BwE (accessed on 19 February 2024).
- Geleta, G.; Ketema, T. Severe Malaria Associated with Plasmodium falciparum and P. vivax among Children in Pawe Hospital, Northwest Ethiopia. Malar. Res. Treat. 2016, 2016, 1240962. [Google Scholar] [CrossRef]
- Maqbool, M.; Dar, A.M.; Rasool, S.; Khan, M. Curious Case of Drug Resistant Malaria And Artemisinin Compounds in the Modern Era. J. Appl. Pharm. Sci. Res. 2019, 2, 1–4. [Google Scholar] [CrossRef]
- Hall, B.F.; Fauci, A.S. Malaria Control, Elimination, and Eradication: The Role of the Evolving Biomedical Research Agenda. J. Infect. Dis. 2009, 200, 1639–1643. [Google Scholar] [CrossRef]
- Rasmussen, C.; Alonso, P.; Ringwald, P. Current and Emerging Strategies to Combat Antimalarial Resistance. Expert Rev. Anti Infect. Ther. 2022, 20, 353–372. [Google Scholar] [CrossRef] [PubMed]
- Eyasu, M. Antimalarial Drug Resistance: In the Past, Current Status and Future Perspectives. Br. J. Pharmacol. Toxicol. 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Sinha, S.; Medhi, B.; Sehgal, R. Challenges of Drug-Resistant Malaria. Parasite 2014, 21, 61. [Google Scholar] [CrossRef]
- Daily, J.P. Antimalarial Drug Therapy: The Role of Parasite Biology and Drug Resistance. J. Clin. Pharmacol. 2006, 46, 1487–1497. [Google Scholar] [CrossRef]
- Oliveira, T.M.P.; Laporta, G.Z.; Bergo, E.S.; Chaves, L.S.M.; Antunes, J.L.F.; Bickersmith, S.A.; Conn, J.E.; Massad, E.; Sallum, M.A.M. Vector Role and Human Biting Activity of Anophelinae Mosquitoes in Different Landscapes in the Brazilian Amazon. Parasites Vectors 2021, 14, 236. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Malaria. Available online: https://www.cdc.gov/malaria/about/index.html (accessed on 23 May 2024).
- Ehrlich, H.Y.; Somé, A.F.; Bazié, T.; Ebou, C.N.; Dembélé, E.L.; Balma, R.; Goodwin, J.; Wade, M.; Bei, A.K.; Ouédraogo, J.-B.; et al. Tracking Antimalarial Drug Resistance Using Mosquito Blood Meals: A Cross-Sectional Study. Lancet Microbe 2023, 4, e461–e469. [Google Scholar] [CrossRef] [PubMed]
- Le Bras, J.; Durand, R. The Mechanism of Resistance to Antimalarial Drugs in Plasmodium falciparum. Fundam. Clin. Pharmacol. 2003, 17, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Travassos, M.A.; Laufer, M.K. Resistance to Antimalarial Drugs: Molecular, Pharmacologic, and Clinical Considerations. Pediatr. Res. 2009, 65, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Battle, K.E.; Karhunen, M.S.; Bhatt, S.; Gething, P.W.; Howes, R.E.; Golding, N.; Van Boeckel, T.P.; Messina, J.P.; Shanks, G.D.; Smith, D.L.; et al. Geographical Variation in Plasmodium vivax Relapse. Malar. J. 2014, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Su, X. Discovery, Mechanisms of Action and Combination Therapy of Artemisinin. Expert Rev. Anti Infect. Ther. 2009, 7, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New Antimalarial Drugs. Angew. Chem. Int. Ed. 2003, 42, 5274–5293. [Google Scholar] [CrossRef] [PubMed]
- Guantai, E.; Chibale, K. How Can Natural Products Serve as a Viable Source of Lead Compounds for the Development of New/Novel Anti-Malarials? Malar. J. 2011, 10, S2. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E.K.; Hoepfner, D.; Krastel, P. Natural Products as Probes in Pharmaceutical Research. J. Ind. Microbiol. Biotechnol. 2016, 43, 249–260. [Google Scholar] [CrossRef] [PubMed]
- White, N.J. Antimalarial Drug Resistance. J. Clin. Investig. 2004, 113, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, T.; Daskum, A.; Chessed, G.; Qadeer, M.A. Antimalarial Chemotherapy, Mechanism of Action and Resistance to Major Antimalarial Drugs in Clinical Use: A Review. Microbes Infect. Dis. 2020, 2, 130–142. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A. Next-generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res. 2010, 71, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Meshnick, S.R. Artemisinin: Mechanisms of Action, Resistance and Toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef]
- Jiménez-Romero, C.; Ortiz, I.; Vicente, J.; Vera, B.; Rodríguez, A.D.; Nam, S.; Jove, R. Bioactive Cycloperoxides Isolated from the Puerto Rican Sponge Plakortis halichondrioides. J. Nat. Prod. 2010, 73, 1694–1700. [Google Scholar] [CrossRef]
- Jiménez-Romero, C.; Amador, L.A.; Rodríguez, A.D. Plakortinic Acids C and D: A Pair of Peroxide-Polyketides Possessing a Rare 7,8-Dioxatricyclo [4.2.2.02,5]Dec-9-Ene Core from a Two-Sponge Association of Plakortis symbiotica–Xestospongia deweerdtae. Tetrahedron Lett. 2021, 66, 152833. [Google Scholar] [CrossRef] [PubMed]
- Marty, M.J.; Vicente, J.; Oyler, B.L.; Place, A.; Hill, R.T. Sponge Symbioses between Xestospongia deweerdtae and Plakortis spp. Are Not Motivated by Shared Chemical Defense against Predators. PLoS ONE 2017, 12, e0174816. [Google Scholar] [CrossRef] [PubMed]
- Vicente, J.; Zea, S.; Hill, R.T. Sponge Epizoism in the Caribbean and the Discovery of New Plakortis and Haliclona Species, and Polymorphism of Xestospongia deweerdtae (Porifera). Zootaxa 2016, 4178, 209–233. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Romero, C.; Rode, J.E.; Pérez, Y.M.; Franzblau, S.G.; Rodríguez, A.D. Exploring the Sponge Consortium Plakortis symbiotica–Xestospongia deweerdtae as a Potential Source of Antimicrobial Compounds and Probing the Pharmacophore for Antituberculosis Activity of Smenothiazole A by Diverted Total Synthesis. J. Nat. Prod. 2017, 80, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Romero, C.; Rodríguez, A.D.; Nam, S. Plakortinic Acids A and B: Cytotoxic Cycloperoxides with a Bicyclo [4.2.0]Octene Unit from Sponges of the Genera Plakortis and Xestospongia. Org. Lett. 2017, 19, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sajid, M.; Ramesar, J.; Khan, S.M.; Janse, C.J.; Franke-Fayard, B. Screening Inhibitors of P. berghei Blood Stages Using Bioluminescent Reporter Parasites. Methods Mol. Biol. 2013, 923, 507–522. [Google Scholar] [PubMed]
- Colón-Lorenzo, E.E.; Colón-López, D.D.; Vega-Rodríguez, J.; Dupin, A.; Fidock, D.A.; Baerga-Ortiz, A.; Ortiz, J.G.; Bosch, J.; Serrano, A.E. Structure-Based Screening of Plasmodium berghei Glutathione S-Transferase Identifies CB-27 as a Novel Antiplasmodial Compound. Front. Pharmacol. 2020, 11, 246. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.H.; Urgaonkar, S.; Mazitschek, R.; Celatka, C.; Skerlj, R.; Cortese, J.F.; Tyndall, E.; Liu, H.; Cromwell, M.; Sidhu, A.B.; et al. Aminoindoles, a Novel Scaffold with Potent Activity against Plasmodium falciparum. Antimicrob. Agents Chemother. 2011, 55, 2612–2622. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M.S.; Pierce, M.L.; Howe, K.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Pharmacol. Res. 2022, 183, 106391. [Google Scholar] [CrossRef] [PubMed]
- Nweze, J.A.; Mbaoji, F.N.; Li, Y.-M.; Yang, L.-Y.; Huang, S.-S.; Chigor, V.N.; Eze, E.A.; Pan, L.-X.; Zhang, T.; Yang, D.-F. Potentials of Marine Natural Products against Malaria, Leishmaniasis, and Trypanosomiasis Parasites: A Review of Recent Articles. Infect. Dis. Poverty 2021, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.; Costa, L.; Pinto, E.; Sousa, E.; Fernandes, C. Therapeutic Potential of Marine-Derived Cyclic Peptides as Antiparasitic Agents. Mar. Drugs 2023, 21, 609. [Google Scholar] [CrossRef]
- Álvarez-Bardón, M.; Pérez-Pertejo, Y.; Ordóñez, C.; Sepúlveda-Crespo, D.; Carballeira, N.M.; Tekwani, B.L.; Murugesan, S.; Martinez-Valladares, M.; García-Estrada, C.; Reguera, R.M.; et al. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria. Mar. Drugs 2020, 18, 187. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Cai, Z.-M.; Li, P.-J.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. Trends of Antimalarial Marine Natural Products: Progresses, Challenges and Opportunities. Nat. Prod. Rep. 2022, 39, 969–990. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Kamihira, R.; Nakao, Y.; Nonaka, M.; Takano, R.; Xuan, X.; Kato, K. The Efficacy of Marine Natural Products Against Plasmodium falciparum. J. Parasitol. 2021, 107, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Negm, W.; Kabbash, A.; Ezzat, S.; Zayed, A. Marine-Derived Metabolites as Antimalarial Candidates Targeting Various Life Stages. J. Adv. Med. Pharm. Res. 2022, 3, 12–18. [Google Scholar]
- Wellems, T.E.; Plowe, C.V. Chloroquine-Resistant Malaria. J. Infect. Dis. 2001, 184, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Njiro, B.J.; Mutagonda, R.F.; Chamani, A.T.; Mwakyandile, T.; Sabas, D.; Bwire, G.M. Molecular Surveillance of Chloroquine-Resistant Plasmodium falciparum in Sub-Saharan African Countries after Withdrawal of Chloroquine for Treatment of Uncomplicated Malaria: A Systematic Review. J. Infect. Public Health 2022, 15, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.T.; Maharaj, L.; Oyegoke, O.; Akoniyon, O.P.; Adeleke, M.A.; Maharaj, R.; Okpeku, M. Chloroquine and Sulfadoxine–Pyrimethamine Resistance in Sub-Saharan Africa—A Review. Front. Genet. 2021, 12, 668574. [Google Scholar] [CrossRef] [PubMed]
- Foguim, F.T.; Bogreau, H.; Gendrot, M.; Mosnier, J.; Fonta, I.; Benoit, N.; Amalvict, R.; Madamet, M.; Wein, S.; Pradines, B.; et al. Prevalence of Mutations in the Plasmodium falciparum Chloroquine Resistance Transporter, PfCRT, and Association with Ex Vivo Susceptibility to Common Anti-Malarial Drugs against African Plasmodium falciparum Isolates. Malar. J. 2020, 19, 201. [Google Scholar] [CrossRef] [PubMed]
- Bwire, G.M.; Ngasala, B.; Mikomangwa, W.P.; Kilonzi, M.; Kamuhabwa, A.A.R. Detection of Mutations Associated with Artemisinin Resistance at K13-Propeller Gene and a near Complete Return of Chloroquine Susceptible falciparum Malaria in Southeast of Tanzania. Sci. Rep. 2020, 10, 3500. [Google Scholar] [CrossRef] [PubMed]
- Zomuanpuii, R.; Hmar, C.L.; Lallawmzuala, K.; Hlimpuia, L.; Balabaskaran Nina, P.; Senthil Kumar, N. Epidemiology of Malaria and Chloroquine Resistance in Mizoram, Northeastern India, a Malaria-Endemic Region Bordering Myanmar. Malar. J. 2020, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Shafik, S.H.; Cobbold, S.A.; Barkat, K.; Richards, S.N.; Lancaster, N.S.; Llinás, M.; Hogg, S.J.; Summers, R.L.; McConville, M.J.; Martin, R.E. The Natural Function of the Malaria Parasite’s Chloroquine Resistance Transporter. Nat. Commun. 2020, 11, 3922. [Google Scholar] [CrossRef] [PubMed]
- Wicht, K.J.; Mok, S.; Fidock, D.A. Molecular Mechanisms of Drug Resistance in Plasmodium falciparum Malaria. Annu. Rev. Microbiol. 2020, 74, 431–454. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.C. Chapter 35 Chemotherapeutic Agents Used in Tropical Medicine. Princ. Med. Biol. 1998, 9, 615–630. [Google Scholar]
- Petersen, E.; Rønne, T.; Rønn, A.; Bygbjerg, I.; Larsen, S.O. Reported Side Effects to Chloroquine, Chloroquine plus Proguanil, and Mefloquine as Chemoprophylaxis against Malaria in Danish Travelers. J. Travel Med. 2006, 7, 79–84. [Google Scholar] [CrossRef] [PubMed]
- e Braga, C.B.; Martins, A.C.; Cayotopa, A.D.E.; Klein, W.W.; Schlosser, A.R.; da Silva, A.F.; de Souza, M.N.; Andrade, B.W.B.; Filgueira-Júnior, J.A.; de Jesus Pinto, W.; et al. Side Effects of Chloroquine and Primaquine and Symptom Reduction in Malaria Endemic Area (Mâncio Lima, Acre, Brazil). Interdiscip. Perspect. Infect. Dis. 2015, 2015, 346853. [Google Scholar] [CrossRef] [PubMed]
- Coban, C. The Host Targeting Effect of Chloroquine in Malaria. Curr. Opin. Immunol. 2020, 66, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Mihreteab, S.; Platon, L.; Berhane, A.; Stokes, B.H.; Warsame, M.; Campagne, P.; Criscuolo, A.; Ma, L.; Petiot, N.; Doderer-Lang, C.; et al. Increasing Prevalence of Artemisinin-Resistant HRP2-Negative Malaria in Eritrea. N. Engl. J. Med. 2023, 389, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Hanboonkunupakarn, B.; Tarning, J.; Pukrittayakamee, S.; Chotivanich, K. Artemisinin Resistance and Malaria Elimination: Where Are We Now? Front. Pharmacol. 2022, 13, 876282. [Google Scholar] [CrossRef] [PubMed]
- Egwu, C.O.; Pério, P.; Augereau, J.-M.; Tsamesidis, I.; Benoit-Vical, F.; Reybier, K. Resistance to Artemisinin in falciparum Malaria Parasites: A Redox-Mediated Phenomenon. Free Radic. Biol. Med. 2022, 179, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Balikagala, B.; Fukuda, N.; Ikeda, M.; Katuro, O.T.; Tachibana, S.-I.; Yamauchi, M.; Opio, W.; Emoto, S.; Anywar, D.A.; Kimura, E.; et al. Evidence of Artemisinin-Resistant Malaria in Africa. N. Eng. J. Med. 2021, 385, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Witmer, K.; Dahalan, F.A.; Delves, M.J.; Yahiya, S.; Watson, O.J.; Straschil, U.; Chiwcharoen, D.; Sornboon, B.; Pukrittayakamee, S.; Pearson, R.D.; et al. Transmission of Artemisinin-Resistant Malaria Parasites to Mosquitoes under Antimalarial Drug Pressure. Antimicrob. Agents Chemother. 2020, 65, e00898-20. [Google Scholar] [CrossRef] [PubMed]
- Wellems, T.E.; Sá, J.M.; Su, X.; Connelly, S.V.; Ellis, A.C. ‘Artemisinin Resistance’: Something New or Old? Something of a Misnomer? Trends Parasitol. 2020, 36, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.-G.; Van Dyke, K.; Wimmer, M. Effect of Artemisinin (Qinghaosu) and Chloroquine on Drug-Sensitive and Drug-Resistant Strains of Plasmodium Falciparum Malaria: Use of [2,8-3H]Adenosine as an Alternative to [G-3H]Hypoxanthine in the Assessment of in Vitro Antimalarial Activity. Exp. Parasitol. 1987, 64, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Alin, M.H.; Björkman, A.; Landberg-Lindgren, A.; Ashton, M. The Effect of Artemisinin, Its Derivatives and Mefloquine against Chloroquine-Resistant Strains of Plasmodium falciparum in Vitro. Trans. R. Soc. Trop. Med. Hyg. 1992, 86, 365–367. [Google Scholar] [CrossRef]
- Calit, J.; Araújo, J.E.; Deng, B.; Miura, K.; Gaitán, X.A.; da Silva Araújo, M.; Medeiros, J.F.; Long, C.A.; Simeonov, A.; Eastman, R.T.; et al. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Ookluc. Antimicrob. Agents Chemother. 2023, 67, e0146522. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.W.; Diagana, T.T.; Yeung, B.K.S. Progressing the Global Antimalarial Portfolio: Finding Drugs Which Target Multiple Plasmodium Life Stages. Parasitology 2014, 141, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Raether, W.; Enders, B.; Hofmann, J.; Schwannecke, U.; Seidenath, H.; Hänel, H.; Uphoff, M. Antimalarial Activity of New Floxacrine-Related Acridinedione Derivatives: Studies on Blood Schizontocidal Action of Potential Candidates AgainstP. Berghei in Mice AndP. Falciparum in Vivo and in Vitro. Parasitol. Res. 1989, 75, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Rathnapala, U.L.; Goodman, C.D.; McFadden, G.I. A Novel Genetic Technique in Plasmodium berghei Allows Liver Stage Analysis of Genes Required for Mosquito Stage Development and Demonstrates That de Novo Heme Synthesis Is Essential for Liver Stage Development in the Malaria Parasite. PLoS Pathog. 2017, 13, e1006396. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, H.; Oshaghi, M.A.; Mosa-Kazemi, S.H.; Abai, M.R.; Rafie, F.; Nateghpour, M.; Mohammadzadeh, H.; Farivar, L.; Mohammadi Bavani, M. Experimental Study on Plasmodium berghei, Anopheles stephensi, and BALB/c Mouse System: Implications for Malaria Transmission Blocking Assays. Iran. J. Parasitol. 2018, 13, 549–559. [Google Scholar] [PubMed]
- Noedl, H.; Wernsdorfer, W.H.; Krudsood, S.; Wilairatana, P.; Kollaritsch, H.; Wiedermann, G.; Looareesuwan, S. Antimalarial Activity of Azithromycin, Artemisinin and Dihydroartemisinin in Fresh Isolates of Plasmodium falciparum in Thailand. Acta Trop. 2001, 80, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.N.; Chaulet, J.-F.; Brockman, A.; Chierakul, W.; Dondorp, A.; Ruangveerayuth, R.; Looareesuwan, S.; Mounier, C.; White, N.J. Pharmacokinetics of Oral Doxycycline during Combination Treatment of Severe falciparum Malaria. Antimicrob. Agents Chemother. 2005, 49, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Biamonte, M.A.; Wanner, J.; Le Roch, K.G. Recent Advances in Malaria Drug Discovery. Bioorg. Med. Chem. Lett. 2013, 23, 2829–2843. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, G.; Giannangelo, C.; De Paoli, A.; Schuh, A.K.; Heimsch, K.C.; Anderson, D.; Brown, T.G.; MacRaild, C.A.; Wu, J.; Wang, X.; et al. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infect. Dis. 2022, 8, 210–226. [Google Scholar] [CrossRef] [PubMed]
- Amador, L.A.; Rodríguez, A.D.; Carmona-Sarabia, L.; Colón-Lorenzo, E.E.; Serrano, A.E. Two Gracilioethers Containing a [2(5H)-Furanylidene]Ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides. Appl. Sci. 2023, 14, 281. [Google Scholar] [CrossRef]
Parameters | Predictors | CQ | Plakortinic Acids C (1) and D (2) | Unit |
---|---|---|---|---|
Absorption | Water solubility | −4.249 | −4.392 | log mol/L |
Caco2 | 1.624 | 0.635 | log Papp | |
Intestinal abs | 89.95 | 93.557 | % Absorbed | |
Skin perm | −2.679 | −2.735 | log Kp | |
Pgp subs | Yes | No | Yes/No | |
Pgp I inh | No | No | Yes/No | |
Pgp II inh | No | Yes | Yes/No | |
Distribution | VDss | 1.332 | −0.121 | log L/kg |
Fraction unbound | 0.191 | 0.089 | Fu | |
BBB perm | 0.349 | −0.681 | log BB | |
CNS perm | −2.191 | −2.894 | log PS | |
Metabolism | CYP2D6 subs | Yes | No | Yes/No |
CYP3A4 subs | Yes | Yes | Yes/No | |
CYP1A2 inh | No | No | Yes/No | |
CYP2C19 inh | No | No | Yes/No | |
CYP2C9 inh | No | No | Yes/No | |
CYP2D6 inh | Yes | No | Yes/No | |
CYP3A4 inh | No | No | Yes/No | |
Excretion | Total clearance | 1.092 | 0.953 | log mL/min/kg |
Renal OCT2 subs | Yes | No | Yes/No | |
Toxicity | AMES | Yes | No | Yes/No |
Max tol dose | −0.167 | −0.336 | log mg/kg/day | |
hERG I inh | No | No | Yes/No | |
hERG II inh | Yes | No | Yes/No | |
Oral rat LD50 | 2.85 | 2.128 | mol/kg | |
Oral rat LOAEL | 1.026 | 0.526 | log mg/kg_bw/day | |
Hepatotoxicity | Yes | No | Yes/No | |
Skin sens | No | No | Yes/No | |
T. pyriformis | 1.558 | 0.307 | Numeric (log ug/L) | |
Minnow | 0.747 | −1.011 | Numeric (log mM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador, L.A.; Colón-Lorenzo, E.E.; Rodríguez, A.D.; Serrano, A.E. Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico. Life 2024, 14, 684. https://doi.org/10.3390/life14060684
Amador LA, Colón-Lorenzo EE, Rodríguez AD, Serrano AE. Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico. Life. 2024; 14(6):684. https://doi.org/10.3390/life14060684
Chicago/Turabian StyleAmador, Luis A., Emilee E. Colón-Lorenzo, Abimael D. Rodríguez, and Adelfa E. Serrano. 2024. "Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico" Life 14, no. 6: 684. https://doi.org/10.3390/life14060684
APA StyleAmador, L. A., Colón-Lorenzo, E. E., Rodríguez, A. D., & Serrano, A. E. (2024). Probing the Antiplasmodial Properties of Plakortinic Acids C and D: An Uncommon Pair of Marine Peroxide-Polyketides Isolated from a Two-Sponge Association of Plakortis symbiotica and Xetospongia deweerdtae Collected near Puerto Rico. Life, 14(6), 684. https://doi.org/10.3390/life14060684