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Abstract: Amino acids are one of the most important building blocks of life. During the biochemical
process of translation, cells sequentially connect amino acids via amide bonds to synthesize proteins,
using the genetic information in messenger RNA (mRNA) as a template. From a prebiotic perspective
(i.e., without enzymatic catalysis), joining amino acids to peptides via amide bonds is difficult due
to the highly endergonic nature of the condensation reaction. We show here that amides can be
formed in reactions catalyzed by the transition metal sulfides from acetylene, carbon monoxide
and ammonia under aqueous conditions. Some α- and β-amino acids were also formed under the
same conditions, demonstrating an alternative cyanide-free path for the formation of amino acids in
prebiotic environments. Experiments performed with stable isotope labeled precursors, like 15NH4Cl
and 13C-acetylene, enabled the accurate mass spectroscopic identification of the products formed
from the starting materials and their composition. Reactions catalyzed using the transition metal
sulfides seem to offer a promising alternative pathway for the formation of amides and amino acids
in prebiotic environments, bypassing the challenges posed by the highly endergonic condensation
reaction. These findings shed light on the potential mechanisms by which the building blocks of life
could have originated on early Earth.

Keywords: amino acids; amide; peptide bond; acetylene; transition metal sulfides; hydrothermal
conditions; origin of life

1. Introduction

The role of amino acids as the fundamental building blocks of life is paramount in both
modern biochemistry and theories of the origin of life. For modern biochemistry, α-amino
acids are essential building blocks for peptides and proteins. In the context of the origin
of life, various abiotic conditions, whether terrestrial or extraterrestrial in nature, have
been proposed to explain their formation. One of the first experiments, which synthesized
organic compounds such as amino acids from an inorganic starting material, were the
experiments by Miller and Urey [1,2]. These pioneers of research on the origin of life used
electric discharges as an energy form in a reducing gas atmosphere consisting of NH3, H2
and CH4. Additionally, later, there were also experiments using a more neutral atmosphere
consisting of CO2, CO, N2 and H2O; however, the yields were not as high as the ones in a
reducing gas atmosphere [3].

In the meantime, many other types of energy sources were considered to form organic
compounds from simple precursors on the early Earth. There have been attempts using
UV [4–8], X-ray [9,10] and proton irradiation [11,12], shock heating from 90 ◦C [13] to
over 200 ◦C [14–16] or using volcanism-induced electric discharges as other possible
energy sources [17,18]. In the iron–sulfur theory of the origin of metabolism [19], chemical
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energy acts in the formation of amino acids [20] and peptides [21] using FeS/NiS catalysts.
Herrera, another pioneer in the origin of life field, simply mixed ammonium thiocyanate
with formaline and discovered amino acids and further organic molecules [22].

However, amino acids could also have originated from extra-terrestrial sources. Amino
acids were detected in carbonaceous meteorites of various types from C1 [23–25], through
to C2 [26–28] and C3 [24,29,30]. Recently, glycine oligopeptides were synthesized from C,
CO and NH3 under simulated stellar conditions [31].

The prebiotic synthesis of amino acids likely follows a Strecker reaction [32], starting
from an aldehyde (Scheme 1). With the addition of ammonia, an imine is built, which
reacts with cyanide to form α-aminonitrile which is finally hydrolyzed to an α-amino acid.
Depending on the structure of R in the starting aldehyde, different amino acids can be
synthesized by this type of reaction [33].
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show the simultaneous metal-catalyzed formation of amino acids from acetylene, carbon 
monoxide and ammonia under simulated hydrothermal conditions, again demonstrating 
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Scheme 1. Basic process of the Strecker reaction. The reaction proceeds via the nucleophilic addition
of ammonia to the aldehyde (1). This generally extends to the iminium ion (2). The cyanide adds to
this electrophilic species, resulting in an α-aminonitrile (3). The amino acid (4) is ultimately formed
through hydrolysis.

In nature, amino acids are linked together via a peptide bond to form larger molecules.
In this process, the carboxy group of one amino acid reacts with the amino group of another
amino acid in a condensation reaction. However, an aqueous solution is unfavorable
for the formation of amide bonds [34] and the reaction can, therefore, not be performed
under normal conditions without catalysis. An alternative to the formation of peptides
by stringing together individual amino acids via peptide bonds could be the formation of
amino acids using simple molecules directly from the previous amino acid. Amides could
play a central role in this scenario, where a functional peptide can be formed without being
dependent on the unfavorable condensation reaction. In the context of the origin of life, the
formation of amides has been shown in wet–dry cycles [35,36] or in reactions coupled to
pyrite formation [37].

In previous works, we demonstrated the formation of fatty acids [38,39] and intermedi-
ates of existing carbon fixation cycles [40] using acetylene and carbon monoxide as carbon
sources under simulated volcanic hydrothermal conditions. Nitrogen was successfully
introduced into the system via ammonia, as shown by the formation of pyrrole, another
essential unit in the biochemistry of modern life [41]. In these reactions, transition metal
sulfides served as catalysts, in accordance with the iron–sulfur world theory of Günter
Wächtershäuser [19]. In contrast to the typical cyanide-based Strecker scheme, we now
show the simultaneous metal-catalyzed formation of amino acids from acetylene, carbon
monoxide and ammonia under simulated hydrothermal conditions, again demonstrat-
ing the synthetic importance of acetylene for prebiotic chemistry. Moreover, we detected
various amides under these aqueous conditions underlining the putative role of amide
functionalities in the evolution of peptides and proteins.

2. Materials and Methods

All chemicals were purchased from Sigma Aldrich GmbH (Steinheim, Germany)
in the highest purity available. Acetylene 2.6 (acetone free) was purchased from Linde
AG (Pullach, Germany), and CO 2.5 and argon 4.6 were purchased from Westfalen AG
(Münster, Germany).
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Experiments were performed as published previously [41]. Briefly, in a typical run
(run 1, Table S2), a 125 mL glass serum bottle was charged with 1.0 mmol NiSO4 · 6 H2O
and 1.0 mmol NH4Cl and closed with a gas tight silicon stopper.

The bottle was evacuated three times and filled with argon, finally resulting in a
de-aerated state. Subsequently, the bottle was filled with argon-saturated water, 1 M
Na2S solution and 1 M NaOH solution, resulting in a total reaction volume of 5 mL. In
this mixture, a precipitate of black NiS was immediately formed due to its low solubility
constant of 1 ×10−22 [42,43] in aqueous solution. Finally, 60 mL of acetylene gas and 60 mL
of CO were added. Reactions were carried out at 105 ◦C using reaction times up to seven
days. Variations were achieved through the addition of different volumes of NaOH or
Na2S solution and the use of FeSO4 or CoSO4 instead of or additionally to NiSO4. After
the defined reaction time, 1 mL of the reaction mixture was freeze dried and derivatized
with 0.5 mL acetonitrile and 0.5 mL N-tert-butyldimethylsilyl-N-methyltrifluoracetamide
(MTBSTFA) at 70 ◦C for one hour.

Stable isotope precursors (13CO, 13C2-Acetylene and 15 NH4Cl) were used to elucidate
the composition of the products. 13CO and 15 NH4Cl were directly added instead of their
analogs. 13C2-Acetylene gas was obtained by adding tetra-n-butylammonium fluoride
(TBAF) to solid 13C2-(trimethylsilyl)acetylene in an evacuated serum bottle via a syringe.
The resulting 13C2-acetylene gas was then used for experiments.

The TBDMS derivatives of the products were analyzed by GC-MS using a GC-
2010, coupled with MS-QP2010 Ultra (Shimadzu GmbH, Duisburg, Germany) with a
30 m × 0.25 mm × 0.25 µm fused silica capillary column (Equity TM5, Supelco, Bellefonte,
PA, USA) and an AOC-20i auto injector.

The applied temperature of the column oven was as follows: 0–6 min at 90 ◦C;
6–25 min at 90–310 ◦C, 10 ◦C/min; injector and transfer temperature were kept at 260 ◦C.

Identification was performed by comparison of retention times and mass spectra
of purchased reference compounds, as well as with data from the National Institute of
Standards and Technology (NIST) spectral library. Retention times are given in Table S1.

Quantification was performed by external calibration using a solution of alanine with
different concentrations.

For comparison, blank runs with argon instead of acetylene and runs without a
transition metal compound were performed.

3. Results

We reacted acetylene, carbon monoxide and ammonia under demanding anaerobic,
aqueous conditions at 105 ◦C for up to 7 days. As transition metal catalysts, FeS, NiS, CoS
and mixtures of them were used, which were freshly prepared in situ from metal sulfates
and sodium sulfide.

Under similar conditions, mainly unsaturated, odd numbered carboxylic acids from
formic acid up to nonadecenoic acids were detected [38,39]. We now show the formation of
carboxylic acid amides up to a chain length of C5 and the simultaneous formation of amino
acids (Table 1). Runs with 13CO, H13C≡13CH and 15NH4Cl obtained these products as
genuine reaction products and it could be seen that they were composed from the starting
materials. In the absence of NiS, FeS or CoS, these amides and amino acids were not formed.

Specifically, we detected α-alanine, β-alanine, glycine, aspartic acid and β-homoserine
and 13 amides including formamide, propionamide and succinamic acid (Table 1). All sub-
stances were analyzed as their corresponding tert-butyldimethylsilyl (TBDMS) derivatives
by GC-MS.

Further condensation to detectable amounts of peptides under otherwise similar con-
ditions would probably require higher concentrations [44,45]. In an origin of life scenario,
this could be achieved through surface bonding on the catalyzing mineral [46], thermal
concentration in hydrothermal rock pores [47] and dehydration–hydration cycles [48]. Nev-
ertheless, the detection of surrogate amides provides evidence for the one-pot formation of
amides and amino acids from acetylene, CO and ammonia in a hydrothermal environment.



Life 2024, 14, 719 4 of 14

It is tempting to speculate that this scenario could support further evolution into peptides
on the early Earth, avoiding the unfavorable condensation of amino acids.

Table 1. Amino acids and amides formed from acetylene (2.71 mmol), ammonia (1.00 mmol) and
carbon monoxide (2.68 mmol) in the presence of NiS (1.00 mmol) in 5 mL H2O at 105 ◦C after 7 days.
All substances were analyzed as their corresponding TBDMS derivatives. Number of carbon and
nitrogen atoms derived from the reactants are identified by stable isotope labelling as indicated.

Compound # C # N 13C2H2
15NH4Cl 13CO

Amino acids

Glycine 2 1 2 1 -
Alanine 3 1 3 1 -
β-Alanine 3 1 2 1 1

Aspartic acid 4 1 2 1 2
β-Homoserine 4 1 2 1 2

Amides

Formamide 1 1 1 1 -
Urea 1 2 - 2 1

Acetamide 2 1 2 1 -
Acrylamide 3 1 2 1 1

Propionamide 3 1 2 1 1
β-Alanine amide 3 1 2 2 1
Succinamic acid 4 1 2 1 2
Fumaramic acid 4 1 2 1 2

Pentenoic amides 5 1 4 1 1
Pentanoic amide 5 1 4 1 1

2-Aminobenzamide 7 2 6 2 1
2,4-Heptadienoic amide 7 1 6 1 1

Benzamide 7 1 6 1 1

For more a more specific study, two amino acids and two amides were chosen as
representatives. In Figures 1–4 the mass spectra of differently labelled propionamide
(Figure 1), succinamic acid (Figure 2), alanine (Figure 3) and aspartic acid (Figure 4) are
shown. In each Figure A shows the corresponding spectra of the unlabeled compounds;
B shows the spectra of the reaction products in which 13C-acetylene was used; C, in
which 13CO was used, and D, in which 15N-labelled ammonia was used. Propionamide,
succinamic acid and aspartic acid, which were used in high amounts, were measured in
SCAN mode. Due to the comparatively low yield of alanine, we used single-ion monitoring
(SIM) to show the labelling patterns of alanine. Here, only the typical masses of TBDMS-
alanine, which are m/z = 260, m/z = 232 and m/z = 158, were measured (Figure S1).
The most intensive mass peak usually represents the fragment lacking a t-butyl group
(M-57+). In the case of propionamide, succinamic acid and aspartic acid these are m/z = 130,
m/z = 288 and m/z = 418, respectively. It should be noted that peptides or peptide-like
assemblies could not be observed.

Based on the specific mass data for the reaction products obtained from the experi-
ments with different stable isotope labelled precursors, the starting materials from which
the individual compounds were synthesized could be identified. It turned out that pro-
pionamide was formed from one molecule of acetylene, carbon monoxide and ammonia,
succinamic acid from one molecule of acetylene, two molecules of CO and one molecule of
ammonia, alanine from one and a half molecule of acetylene, two molecules of water and
one molecule of ammonia, and aspartic acid from one molecule of acetylene, two molecules
of carbon monoxide, two molecules of water and one molecule of ammonia (Scheme 2).
Interestingly, all of the carbon atoms in alanine came from acetylene. In contrast, β-alanine
was formed from one molecule of acetylene and one molecule of carbon monoxide (Table 1).
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Scheme 2. Retrosynthesis of propionamide from one molecule of ammonia, acetylene and car-
bon monoxide (A); succinamic acid from one molecule of ammonia, one molecule of acetylene,
two molecules of carbon monoxide and one molecule of water (B); alanine from one molecule of
ammonia, one and a half molecules of acetylene and two molecules of water (C); and aspartic acid
from one molecule of ammonia and acetylene and two molecules of carbon monoxide and water (D).

Different reaction parameters were investigated. Tables S2–S5 show all of the reactions
which were performed to elucidate the influence of the metal ion catalysts, pH value,
reaction time and the amount of Na2S in the reaction mixture.

As shown in previous works [41], only metal sulfides, which were freshly formed in
situ from metal sulfates and sodium sulfide, were catalytically active in our reaction setup.
To analyze the role of the metal sulfide catalysts, we used NiSO4, CoSO4 and FeSO4 as
well as 50/50 (mol%) mixtures of two of them and a 33/33/33 (mol%) mixture of all three
transition metals to form the respective sulfides. In previous works [41], nickel sulfide
showed the best yields in product formation. However, in the case of propionamide and
succinamic acid, cobalt sulfide or mixtures of the sulfides gave the best yields. In the
case of alanine and aspartic acid, nickel sulfide or sulfide mixtures were superior catalysts
(Figure 5).
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Different pH values were achieved by adding NaOH to the reaction mixtures (Table S5).
Propionamide, succinamic acid, aspartic acid and alanine showed maximum yields at
about pH 8.4 (Figure 6). At acidic pH values, no formation of amides and amino acids
could be detected. At pH values > 9.0 the formation of amides and amino acids both
rapidly decreased.
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acid (orange) in the presence of NiS at different pH values. pH values were measured at the end of
the reaction time.

The formation of amides and amino acids was detected in reaction times ranging from
0 min to 7 days (Figure 7). However, product formation started comparatively slowly and
constantly increased until the reaction was stopped at 7 days. According to our data, it
seems promising to increase the reaction time beyond 7 days. However, all of the gases in
the serum bottle were consumed after this time. Filling up the missing gas volume with CO
and acetylene after that point showed no increase in product formation. This can probably
be explained by a deactivation of the catalyst during the reaction period.
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alanine (blue) and aspartic acid (orange) from acetylene, carbon monoxide and ammonia.

As was shown before [41], metal sulfate alone was not catalytically active in our setup.
Therefore, the concentration of catalyst in the reaction can be controlled by changing the
amount of Na2S. As expected, an equimolar concentration of metal sulfate and sodium
sulfide showed the best yields of amino acids and amides (Figure 8). Lesser concentrations
of sulfide resulted in lesser amounts of active catalysts. Higher concentrations also had a
negative effect, which was probably due to their effect on the pH value.
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4. Discussion

The synthesis of peptide bonds in non-biological systems is, despite recent success [49,50],
a challenging issue [51]. These problems are even more serious considering that, in an origin
of life scenario, complex protecting groups and appropriate solvents are not available.

Supported by stable isotope labelling, here, we provided proof of the formation of
simple amides, potential synthons for more complex peptides, in abiotic reactions starting
from acetylene, ammonium chloride, carbon monoxide and metal sulfides under aqueous
conditions at 105 ◦C. The best yields were achieved at a pH of 8.4, equimolar concentrations
of metal sulfates and sodium sulfide and seven days of reaction time. Different metal
sulfides and mixtures thereof showed catalytic potential in the formation of amino acids
and simple amides. The conditions of our experiments were chosen to fit an Hadean
scenario, where life possibly emerged near volcanic exhalations [52] or hydrothermal
vents [53].

Based on the 13C label distribution in the detected products, three mechanisms
of amide formation from acetylene, carbon monoxide and ammonia can be postulated
(Scheme 3). The dominant mechanism is the carbonylation or double carbonylation of
acetylene, followed by amide formation leading to, e.g., propionamide and succinamic acid
(Scheme 3A). A second pathway includes the hydration of acetylene, followed by oxidation
and amination, leading to, e.g., acetic acid amide (Scheme 3B). In a third reaction pathway,
the cleavage of acetylene is involved, as reflected by the about 66% 13C enrichment in formic
acid amide when 13C labeled acetylene was used as starting material (Scheme 3C). The
residual 33% represents a formic acid amide derived from CO (Scheme 3D). We hypothesize
that in our experiments, all of the reaction steps took place in the reaction sphere of the
metal sulfide precipitates.

Amino acids can be formed from α, β unsaturated carboxylic acids through the
addition of NH3 (Scheme 4A), leading to α and β alanine (Scheme 4B) and aspartic acid
(Scheme 4C), a reaction which has to compete with the addition of H2O (Scheme 4D) or the
reductive amination of α-ketoacids (Scheme 4E) [54].

As mentioned before, the difference in the synthesis of alanine and β-alanine is
particularly significant. The carbon atoms of β-alanine originate from one molecule of
acetylene and one molecule of carbon monoxide. In contrast, all of the carbon atoms in
α-alanine are from acetylene. Interestingly, evolution did not choose the more available anti-
Markownikow product, β-alanine, as one of its basic building blocks, but rather preferred an
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alternative route to the Markownikow product, α-alanine. This could indicate an early form
of control over life processes through the preference for a less present reaction product.
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mechanism of NH3 addition to α, β unsaturated carboxylic acids. (B,C): mechanism for the example
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possible mechanism via reductive amination of α-ketoacids.

We would like to mention that our analytical setup did not discern between the D and
L forms of amino acids. We assume, in the first instance, the formation of racemic mixtures
which, in consecutive steps, are selected by different binding constants on the catalytic
surfaces [19]. The formation of homochiral peptides and their stability in the Earth’s crust
was recently discussed by S. Toxvaerd [55].

The carbon sources in our reaction network were acetylene and carbon monoxide.
Acetylene would have been commonly available in an early world scenario as it can
be formed by volcanic processes [56] and/or from CaC2 in a reaction with water [57].
Acetylene is also considered an important reagent for the formation of smaller molecules
containing carbon atoms in interstellar chemistry [58,59]. Acetylene can form smaller
hydrocarbons, polyenes and benzenes and therefore lead to a variety of possible carbon
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precursors for early biochemistry [60]. In our experiments the labelling patterns of the
products show the utilization of acetylene as the main carbon source.

Here, we show that all the transition metals, nickel, cobalt and iron, and even mixtures,
can serve as potential catalysts in prebiotic reactions. All three can catalyze different reac-
tions to different degrees, which is an indication that different biochemical compounds may
have developed from them. These are used for different reactions in modern biochemistry.
The natural availability of these metals on early Earth supports this hypothesis. Iron, nickel
and cobalt are commonly found in the crust of the Earth [61,62].

Iron, as the most abundant mineral out of these three transition metals, was shown
to have the best catalytic properties in earlier studies on reductive amination [54] and
CO2 reduction [63]. In this study, we report enhanced results for amide and amino acid
formation by using nickel, cobalt and mixtures containing cobalt as one constituent. To
date, only a limited number of studies have dealt with the electrochemical and catalytic
properties of transition metals in an origin of life context and predictions are hard to give. A
summary of recent studies is given by de Graaf and Li [64,65]. However, the relevance of all
three transition metals as catalysts is supported by extant biochemistry. For example, iron
in FeS clusters and hemoglobin enable redox reactions and oxygen transport, respectively.
Nickel is important for hydrogen activation and in cofactor F430 for Methanogenesis.
Cobalt is contained in coenzyme B12, a cofactor in enzymes that are necessary in the
metabolism of amino acids.

As mentioned before, the amino acids are most likely synthesized via a Strecker
reaction in a prebiotic environment. We show here that the formation of amino acids is also
possible using ammonia only without cyanide, which is necessary for the Strecker reaction.
Ammonia, however, does not fit in a relatively oxidized atmosphere, which is assumed for
early Earth [66,67]. But, ammonia could be formed out of NO3

− due to reduction driven
by FeS/H2S [68]. Nitrate, in this scenario, could be formed from atmospheric N2 and
CO2 through electric discharges under oxygen free conditions [69] and subsequently be
dissolved in the ancient ocean.

The formation of peptides is an endergonic process, which means that it does not
occur spontaneously under aqueous conditions. This reaction occurs with a decrease in
entropy and is so energetically unfavorable that the equilibrium constant Ksyn for the
combination of two amino acids is <10−5 [34]. Therefore, in modern synthetic pathways,
amino acids must first be activated. To make matters worse, in a prebiotic scenario, an
aqueous environment is essential, concentrations are low and activating agents are not
available. This makes the condensation reaction even more difficult. Here, we can show
the formation of amides, carrying the functionality of dipeptides, in water. In an origin of
life context, this finding is important, because we now demonstrate that amides/peptides
are not necessarily formed by the condensation of a carboxy group with an amine, but
could also be synthesized directly from carbon monoxide, acetylene and ammonium. This
pathway avoids the adverse circumstances of peptide formation from individual amino
acids and underlines the importance of acetylene in origin of life syntheses.
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//www.mdpi.com/article/10.3390/life14060719/s1, Table S1. Retention time and typical fragment
mass of amino acids and amides, Table S2. Propionamide, succinamic acid, alanine and aspartic acid
formation based on different metal catalysts, Table S3. Propionamide, succinamic acid, alanine and
aspartic acid formation based on different reaction times, Table S4. Propionamide, succinamic acid,
alanine and aspartic acid formation based on different amounts of metal sulfide catalysts, Table S5.
Propionamide, succinamic acid, alanine and aspartic acid formation based on different pH values,
Figure S1. Typical fragments of TBDMS- amino acids in GC/MS experiments using the example
of alanine.
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