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Abstract: High-quality echocardiogram images are the cornerstone of accurate and reliable measure-
ments of the heart. Therefore, this study aimed to develop, validate and compare machine learning
and deep learning algorithms for accurate and automated assessment of transthoracic echocardio-
gram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram
images were used from apical 4-chamber, apical 2-chamber and parasternal long-axis views sampled
from 3530 adult patients. The data were extracted from CAMUS and Unity Imaging open-source
datasets. For every raw image, additional grayscale block histograms were developed. For block
histogram datasets, six classic machine learning algorithms were tested. Moreover, convolutional
neural networks based on the pre-trained EfficientNetB4 architecture were developed for raw image
datasets. Classic machine learning algorithms predicted image quality with 0.74 to 0.92 accuracy
(AUC 0.81 to 0.96), whereas convolutional neural networks achieved between 0.74 and 0.89 pre-
diction accuracy (AUC 0.79 to 0.95). Both approaches are accurate methods of echocardiogram
image quality assessment. Moreover, this study is a proof of concept of a novel method of training
classic machine learning algorithms on block histograms calculated from raw images. Automated
echocardiogram image quality assessment methods may provide additional relevant information to
the echocardiographer in daily clinical practice and improve reliability in clinical decision making.

Keywords: echocardiography; machine learning; artificial intelligence; image quality; classification;
convolutional neural networks

1. Introduction

Echocardiography is an essential tool in clinical diagnosis, accurate treatment, and
patient prognosis prediction; therefore, high-quality echocardiogram images are the cor-
nerstone of accurate and reliable measurements of heart structures [1–4]. In the field of
echocardiography, advanced AI-based computerized measurement methods are being
intensively developed [1–3,5,6]. Technologies such as semi-automated left ventricle ejection
fraction (LVEF) or global longitudinal strain (GLS) calculations are now widely used in
daily clinical practice to guide clinical decisions regarding patient appropriateness for
medical and interventional therapies as well as routine monitoring of the resulting clinical
outcomes [7–9]. They are also used to perform follow-ups in cohort studies and randomized
controlled trials [8–10]. The constantly growing dependency of echocardiography on sophis-
ticated mathematical models may lead to the discovery of new diagnostic and prognostic
methods and help develop precise, personalized and holistic medicine [5,11,12]. Moreover,
high automation of measurements may aid in reducing human error and the number of
measurement steps [5,7,11,12]. This will improve the objectiveness of the analysis as well

Life 2024, 14, 761. https://doi.org/10.3390/life14060761 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life14060761
https://doi.org/10.3390/life14060761
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-8448-0800
https://orcid.org/0000-0002-4722-4015
https://orcid.org/0000-0002-2269-1880
https://doi.org/10.3390/life14060761
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life14060761?type=check_update&version=2


Life 2024, 14, 761 2 of 19

as save time in echocardiographic workflow. Overall, using AI-enabled echocardiography
may bring rapid improvement in the quality of patient care and medical research and result
in a colossal change for the better [12].

However, the reliability of advanced machine learning and human-derived echocar-
diographic measurements will always depend on the echocardiogram image quality [3].
The lower the image quality, the greater the inter-observer variability in such important
parameters as the LVEF and GLS [1]. Moreover, automated test–retest GLS measurements
using speckle-tracking artificial intelligence (AI) algorithms depend on image quality,
too [2,3]. In addition, echocardiograms with poor image quality show a lower correlation
between automated echocardiographic analysis and reference measurements calculated
using cardiac magnetic resonance [2]. Poor-quality images may also lead to false clinical
diagnoses of cardiac dysfunction in some clinical situations [2].

In comparison to many studies that aim to highlight the potential benefits of the use
of AI and the development of AI models [5,11–16], only Sengupta et al., Huang et al.,
Nagata et al., and Saikhan et al. analyzed the impact of image quality on the accuracy of
clinically relevant echocardiographic measurements and outcomes regarding diagnosis
and prognosis [1–4]. Moreover, a small number of studies aim to predict image quality
from two-dimensional raw, unprocessed echocardiogram images [17–19]. All of them use
convolutional neural networks [17–19].

Convolutional neural networks are one of the most sophisticated mathematical mod-
elling tools that significantly improve prediction accuracy in various fields [20–22]. How-
ever, compared to less advanced traditional machine learning algorithms, other than neural
networks, their training and validation require more computational power and time [14].
Thus, exploring additional machine learning tools, methods and techniques within this
research area is valuable. Classic machine learning usually uses tabular data to predict a
given end-point [23,24]. A tabular data set for an image could be its histogram, defined
as the frequency of occurrence of each brightness value from 0 to 255 [25]. Next, a classic
machine learning algorithm could use the histogram data to predict the image quality.

Overall, automated evaluation of the echocardiogram image will lead to a more objec-
tive estimation of the image quality indices [19]. Such a system can aid in the training of new
echocardiographers. Moreover, automated analysis of large image datasets could support
medical researchers in the inclusion/exclusion of individual patients in future clinical stud-
ies. Finally, this tool may provide additional relevant information to the echocardiographer
in daily clinical practice and may improve reliability in clinical decision making.

Aim

To develop, validate, and compare machine learning and deep learning algorithms for
accurate, automated, and objective transthoracic echocardiogram image quality assessment.

2. Materials and Methods
2.1. Materials

In total, 4090 single-frame two-dimensional transthoracic echocardiogram images
from apical 4-chamber, apical 2-chamber and parasternal long-axis views were used. The
data were extracted from two free open-source datasets [15,26].

2.2. CAMUS Dataset

Five hundred apical 4-chamber and 500 apical 2-chamber end-diastolic images from
500 patients were extracted from the CAMUS dataset (Figure 1, Table 1). This dataset was
originally provided to resolve the problem of echocardiographic image segmentation and
volume estimation [26]. For every image in this dataset, its quality was assessed by an
experienced cardiologist and was labelled as “good”, “medium” or “poor”.
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For this study, to make the classes in the dataset more balanced and to perform binary
image quality classification, medium- and poor-quality images were considered as poor-
quality images. In total, there were 217 good-quality and 283 poor-quality images for the
apical 2-chamber view dataset (43.4% and 56.6% of the dataset, respectively). Moreover,
there were 288 good-quality and 212 poor-quality images for the apical 4-chamber view
dataset (57.6% and 42.4% of the dataset, respectively).
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Table 1. Characteristics of CAMUS and Unity Imaging datasets.

Dataset (View) Characteristics Mean Median Min Max Standard
Deviation

CAMUS (apical
2-chamber)

image height in pixels 984.0 973.0 584.0 1945.0 157.8

image width in pixels 600.9 591.0 323.0 1181.0 104.5

mean brightness 50.2 49.3 14.8 104.0 12.2

number of pixels 606,740.2 575,043.0 206,736.0 229,7045.0 202,752.9

width-to-height ratio 0.6 0.6 0.5 0.9 0.0

CAMUS (apical
4-chamber)

image height in pixels 985.2 973.0 584.0 1945.0 160.8

image width in pixels 599.4 591.0 323.0 1181.0 105.6

mean brightness 50.5 49.8 20.0 95.0 11.8

number of pixels 606,721.2 575,043.0 206,736.0 229,7045.0 205,842.2

width-to-height ratio 0.6 0.6 0.5 0.9 0.0

Unity Imaging
(parasternal

long-axis)

image height in pixels 554.7 600.0 300.0 768.0 81.1

image width in pixels 749.3 800.0 400.0 1024.0 95.7

mean brightness 17.6 17.0 3.7 42.1 6.5

number of pixels 423,200.0 480,000.0 120,000.0 786,432.0 110,102.8

width-to-height ratio 1.4 1.3 1.3 1.5 0.1

Unity Imaging
(apical

4-chamber)

image height in pixels 548.0 600.0 300.0 768.0 101.2

image width in pixels 754.4 800.0 400.0 1024.0 108.9

mean brightness 18.7 17.4 5.2 71.4 7.7

number of pixels 424,257.0 480,000.0 120,000.0 786,432.0 140,175.5

width-to-height ratio 1.4 1.3 1.3 1.5 0.1

2.3. Unity Imaging Collaborative Dataset

This dataset contains 7523 echocardiographic images in parasternal long-axis and
apical views and was created for the development and validation of AI in cardiology [15].
Every image in this dataset contains a set of labels of clinically relevant structures that
can be located and used for the measurement of cardiac chambers. For every image, each
label was described in the original dataset as “off” (if the structure was not fully present in
the image), “blurred” (if the structure was too blurry to provide an exact location in the
image, but was fully present) or “point”/“curve” (if it was possible to locate the structure
accurately—it was fully present in the image and the borders depicting the structure were
not blurred). The structures were originally labelled by at least one expert in the field.

For the purpose of this study, labels described as “off” received 0 points, “blurred”
received 1 point and “point”/“curve” received 3 points. When there were many similar
images for one patient for a given view only one randomly chosen image was included
in the final datasets used in our study. In total, 1531 parasternal long-axis and 1559 apical
4-chamber images from 3030 patients were extracted from this dataset. The Unity Imaging
dataset did not specify in the original data whether the frames are end-diastolic or end-
systolic. For the apical 4-chamber view 21 structures were considered relevant and for the
parasternal long-axis view 44 structures were analyzed. In a given echocardiographic view,
a structure was considered “relevant” if it could be technically visualized in that projection.
Next, for every image dataset, a median number of points received by the images in this
dataset was calculated. Images that received fewer points than the median or median
number of points were considered poor-quality (since a limited number of structures could
be identified and measured), while images that had higher than the median number of
points were considered good-quality (Table 1). Therefore, in total, there were 529 good-
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quality and 1002 poor-quality images for the parasternal long-axis view dataset (34.6%
and 65.4% of the dataset, respectively). The median cut-off value was 55. Moreover, there
were 532 good-quality and 1027 poor-quality images for the apical 4-chamber view dataset
(34.1% and 65.9% of the dataset, respectively). The median cut-off value was 36. The
skewed distribution resulted from the fact that many images received exactly the median
number of points.

There were fewer than 300 single-patient apical 2-chamber and apical 3-chamber
images and, therefore, they were not included in the development of AI algorithms.

2.4. Methods

This study was conducted following the framework of the Proposed Requirements for
Cardiovascular Imaging-Related Machine Learning Evaluation (PRIME) [27].

2.5. Histogram Dataset

For every raw echocardiogram image, additional grayscale block histograms were
developed. For this purpose, every raw image in its native resolution was divided into
blocks. The blocks were geometrically represented as a square grid (square tilting). The
number of blocks per image was equal to a square of grid length. The grid lengths
examined in the study were equal to 1, 3, 5, 8 and 10. Thus, the number of blocks per
image ranged from one (for a grid length equal to 1) to a hundred (for a grid length equal
to 10). A histogram, defined as the frequency of occurrence of each brightness value from
0 to 255 [25], was developed for every block. Next, to reduce computing time, every
consecutive five values in the generated histogram were averaged. To make the block
histograms comparable in between images, the absolute counts of values in the histogram
were then divided by the sum of all values in the histogram. Thus, the sum of all values in
every block histogram was equal to 1. For every grid length, a resulting dataset of block
histograms was then used for the development of non-deep learning algorithms (classic
machine learning).

2.6. Machine Learning

For every histogram dataset 6 classic machine learning algorithms were tested (Ran-
dom Forest, AdaBoost, Support Vector classifier, Decision Tree, K-Neighbors and XGBoost).
All algorithms were developed for all histogram grid lengths (from 1 to 10) and were tested
with the use of stratified 5-fold cross-validation (Figure 2). Every model performed a binary
classification of the data with the use of their default hyperparameters.
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2.7. Deep Learning—Convolutional Neural Networks

For every image dataset, a convolutional neural network with the use of the pre-
trained EfficientNetB4 architecture was developed (Figure 3). This architecture was chosen
because it has one of the best ratios of accuracy to training time and model complexity [22].
Moreover, the use of the pre-trained state-of-the-art network architecture not only improved
the stability of the training but also allowed for high classification accuracy as well as
reliability and credibility of the obtained results. The image input size was 224/224/3.
The feature extraction block (convolutional block) consisting of the convolutional layers
of EfficientNetB4 with ImageNet weights was followed by a flattening layer. Next, the
classification block included four fully connected layers with 512 neurons, each followed
by a Dropout of 0.25. The last layer contained two neurons responsible for the results’
binary classification. An Adam optimizer with a learning rate equal to 0.0001 was used.
All models were evaluated with the use of stratified 5-fold cross-validation.
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2.8. Statistical Analysis

Continuous data were summarized with the use of means and standard deviations.
The developed algorithms’ accuracy, sensitivity, specificity, and area under the receiver
operating curve (AUC) were summarized as percentages. Moreover, receiver operating
curves (ROCs), true positive, true negative, false positive and false positive values from
confusion matrixes were also calculated. The chi-square test with Yates’ correction was
used to analyze the differences in accuracies of the presented AI models. The threshold of
statistical significance was set at p < 0.05. Additionally, 95% lower and upper confidence
intervals (95% CIs) were also computed.

All analyses were performed using Python 3.10.9 and Numpy, 1.23.5, Pandas 2.1.3,
Scikit-learn 1.2.1, XGBoost 2.0.1, Keras 2.10 and Tensorflow 2.10 libraries.

3. Results
3.1. CAMUS Apical 2-Chamber View

For the best machine learning model, the average classification accuracy of image
quality for the histogram dataset calculated for the apical 2-chamber view was equal to 0.76
(95% CI 0.72–0.79) with 0.68 (95% CI 0.64–0.72) sensitivity, 0.82 (95% CI 0.78–0.85) specificity
and 0.82 (95% CI 0.78–0.85) AUC. This model was based on a Random Forest classifier with
a histogram grid length of 5 (Table 2, Figure 4a).
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Table 2. Machine learning models with the best classification performance. The average and standard
deviation are derived from 5-fold cross-validation. AUC—area under the curve.

Dataset—Best Model
(Grid Length)

Evaluation
Metrics

Fold during 5-Fold Cross-Validation
Average Standard

Deviation1 2 3 4 5

CAMUS apical
2-chamber

view—Random Forest
classifier (grid length 5)

Accuracy 0.72 0.79 0.79 0.71 0.78 0.76 0.04

Sensitivity 0.68 0.70 0.70 0.63 0.70 0.68 0.03

Specificity 0.75 0.86 0.86 0.77 0.84 0.82 0.05

AUC 0.80 0.86 0.83 0.78 0.83 0.82 0.03

True negative 42 48 49 44 48 46.20 3.03

False positive 14 8 8 13 9 10.40 2.88

False negative 14 13 13 16 13 13.80 1.30

True positive 30 31 30 27 30 29.60 1.52

CAMUS apical
4-chamber

view—Random Forest
classifier (grid length 10)

Accuracy 0.71 0.80 0.71 0.78 0.72 0.74 0.04

Sensitivity 0.70 0.82 0.81 0.86 0.84 0.81 0.06

Specificity 0.72 0.77 0.57 0.67 0.55 0.65 0.09

AUC 0.77 0.86 0.78 0.83 0.78 0.81 0.04

True negative 31 33 24 28 23 27.80 4.32

False positive 12 10 18 14 19 14.60 3.85

False negative 17 10 11 8 9 11.00 3.54

True positive 40 47 47 50 49 46.60 3.91

Unity Imaging
parasternal long-axis

view—XGBoost
classifier (grid length 10)

Accuracy 0.80 0.81 0.84 0.85 0.83 0.83 0.02

Sensitivity 0.53 0.57 0.63 0.67 0.64 0.61 0.06

Specificity 0.94 0.94 0.95 0.95 0.93 0.94 0.01

AUC 0.85 0.86 0.89 0.91 0.86 0.88 0.03

True negative 189 189 190 189 185 188.40 1.95

False positive 12 12 10 11 15 12.00 1.87

False negative 50 45 39 35 38 41.40 6.02

True positive 56 60 67 71 68 64.40 6.19

Unity Imaging apical
4-chamber

view—XGBoost
classifier (grid length 8)

Accuracy 0.92 0.93 0.92 0.90 0.91 0.92 0.01

Sensitivity 0.79 0.88 0.80 0.80 0.82 0.82 0.03

Specificity 0.98 0.96 0.99 0.95 0.96 0.97 0.02

AUC 0.96 0.98 0.97 0.95 0.96 0.96 0.01

True negative 201 196 203 196 197 198.60 3.21

False positive 4 9 3 10 8 6.80 3.11

False negative 22 13 21 21 19 19.20 3.63

True positive 85 94 85 85 87 87.20 3.90

A convolutional neural network based on the corresponding image dataset achieved
on average 0.76 (95% CI 0.72–0.79) accuracy, 0.64 (95% CI 0.59–0.68) sensitivity, 0.85 (95% CI
0.82–0.88) specificity and 0.84 (95% CI 0.81–0.87) AUC (Table 3, Figure 5a). There were no
statistically significant differences between the deep learning and machine learning models
(p > 0.05 for all metrics, Table 4).
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Figure 4. (a) Best model for CAMUS apical 2-chamber view image quality classification—Random
Forest classifier (histogram grid length 5) with Receiver Operating Curve. AUC—area under the
curve. (b) Best model for CAMUS apical 4-chamber view image quality classification—Random
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Forest classifier (histogram grid length 10) with Receiver Operating Curve. AUC—area under the
curve. (c) Best model for Unity Imaging parasternal long-axis view image quality classification—
XGBoost classifier (histogram grid length 10) with Receiver Operating Curve. AUC—area under the
curve. (d) Best model for Unity Imaging apical 4-chamber view image quality classification—XGBoost
classifier (histogram grid length 8) with Receiver Operating Curve. AUC—area under the curve.

Table 3. Convolutional neural networks with the best classification performance. The average and
standard deviation are derived from 5-fold cross-validation. AUC—area under the curve.

Dataset Evaluation
Metrics

Fold during 5-Fold Cross-Validation
Average Standard

Deviation1 2 3 4 5

CAMUS apical
2-chamber view

Accuracy 0.72 0.80 0.72 0.79 0.76 0.76 0.04

Sensitivity 0.49 0.77 0.58 0.64 0.70 0.64 0.11

Specificity 0.89 0.82 0.82 0.91 0.80 0.85 0.05

AUC 0.82 0.90 0.79 0.84 0.85 0.84 0.04

True negative 51 47 47 51 45 48.20 2.68

False positive 6 10 10 5 11 8.40 2.70

False negative 22 10 18 16 13 15.80 4.60

True positive 21 33 25 28 31 27.60 4.77

CAMUS apical
4-chamber view

Accuracy 0.82 0.69 0.74 0.76 0.71 0.74 0.05

Sensitivity 0.89 0.95 0.74 0.84 0.71 0.83 0.10

Specificity 0.72 0.35 0.74 0.64 0.71 0.63 0.16

AUC 0.86 0.89 0.85 0.81 0.81 0.84 0.04

True negative 31 15 31 27 30 26.80 6.80

False positive 12 28 11 15 12 15.60 7.09

False negative 6 3 15 9 17 10.00 5.92

True positive 51 54 43 49 41 47.60 5.46

Unity Imaging
parasternal

long-axis view

Accuracy 0.78 0.75 0.76 0.75 0.72 0.75 0.02

Sensitivity 0.71 0.35 0.55 0.53 0.60 0.55 0.13

Specificity 0.81 0.97 0.88 0.88 0.78 0.86 0.07

AUC 0.83 0.81 0.80 0.75 0.77 0.79 0.03

True negative 163 194 175 175 156 172.60 14.47

False positive 38 6 25 25 45 27.80 14.92

False negative 31 69 48 50 42 48.00 13.87

True positive 75 37 58 56 63 57.80 13.77

Unity Imaging apical
4-chamber view

Accuracy 0.88 0.88 0.89 0.89 0.89 0.89 0.01

Sensitivity 0.79 0.68 0.78 0.86 0.84 0.79 0.07

Specificity 0.93 0.98 0.95 0.91 0.92 0.94 0.03

AUC 0.94 0.96 0.95 0.95 0.97 0.95 0.01

True negative 190 201 195 188 189 192.60 5.41

False positive 15 4 11 18 16 12.80 5.54

False negative 22 34 23 15 17 22.20 7.40

True positive 85 73 83 91 89 84.20 7.01
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Figure 5. (a) Best convolutional neural network model for CAMUS apical 2-chamber view image quality
classification with Receiver Operating Curve. AUC—area under the curve. (b) Best convolutional
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neural network model for CAMUS apical 4-chamber view image quality classification with Receiver
Operating Curve. AUC—area under the curve. (c) Best convolutional neural network model for
Unity Imaging parasternal long-axis view image quality classification with Receiver Operating
Curve. AUC—area under the curve. (d) Best convolutional neural network model for Unity Imaging
parasternal long-axis view image quality classification with Receiver Operating Curve. AUC—area
under the curve.

Table 4. Statistical analysis of the best models. The average values of evaluation metrics are presented.
CNN—convolutional neural network. AUC—area under the curve. 95% CI—95% confidence interval.

Dataset and Best Models Evaluation Metrics CNN (Deep Learning) Machine Learning p-Value

CAMUS apical 2-chamber view:
CNN versus Random Forest

classifier (grid length 5)

Accuracy 0.76 (95% CI 0.72–0.79) 0.76 (95% CI 0.72–0.79) 1.000

Sensitivity 0.64 (95% CI 0.59–0.68) 0.68 (95% CI 0.64–0.72) 0.140

Specificity 0.85 (95% CI 0.82–0.88) 0.82 (95% CI 0.78–0.85) 0.155

AUC 0.84 (95% CI 0.81–0.87) 0.82 (95% CI 0.78–0.85) 0.406

CAMUS apical 4-chamber view:
CNN versus Random Forest

classifier (grid length 10)

Accuracy 0.74 (95% CI 0.70–0.78) 0.74 (95% CI 0.70–0.78) 1.000

Sensitivity 0.83 (95% CI 0.79–0.86) 0.81 (95% CI 0.77–0.84) 0.503

Specificity 0.63 (95% CI 0.59–0.67) 0.65 (95% CI 0.61–0.70) 0.513

AUC 0.84 (95% CI 0.81–0.87) 0.81 (95% CI 0.77–0.84) 0.138

Unity Imaging parasternal
long-axis view:

CNN versus XGBoost classifier
(grid length 10)

Accuracy 0.75 (95% CI 0.73–0.77) 0.83 (95% CI 0.81–0.84) <0.001

Sensitivity 0.55 (95% CI 0.52–0.57) 0.61 (95% CI 0.58–0.63) <0.001

Specificity 0.86 (95% CI 0.84–0.88) 0.94 (95% CI 0.93–0.95) <0.001

AUC 0.79 (95% CI 0.77–0.81) 0.88 (95% CI 0.86–0.89) <0.001

Unity Imaging apical
4-chamber view:

CNN versus XGBoost classifier
(grid length 8)

Accuracy 0.89 (95% CI 0.87–0.90) 0.92 (95% CI 0.90–0.93) 0.008

Sensitivity 0.79 (95% CI 0.77–0.81) 0.82 (95% CI 0.80–0.84) 0.054

Specificity 0.94 (95% CI 0.92–0.95) 0.97 (95% CI 0.96–0.97) <0.001

AUC 0.95 (95% CI 0.94–0.96) 0.96 (95% CI 0.95–0.97) 0.172

3.2. CAMUS Apical 4-Chamber View

The best average prediction accuracy for the histogram dataset calculated from the
apical 4-chamber view was achieved by a Random Forest model with a histogram grid
length of 10, this time with 0.74 (95% CI 0.70–0.78) accuracy, 0.81 (95% CI 0.77–0.84)
sensitivity, 0.65 (95% CI 0.61–0.70) specificity and 0.81 (95% CI 0.77–0.84) AUC (Table 2,
Figure 4b).

The prediction mean accuracy of the CNN for the apical 4-chamber view images
was equal to 0.74 (95% CI 0.70–0.78) with 0.83 (95% CI 0.79–0.86) sensitivity, 0.63 (95% CI
0.59–0.67) specificity and 0.84 (95% CI 0.81–0.87) AUC (Table 3, Figure 5b).

There were no statistically significant differences between the deep learning and
machine learning models (p > 0.05 for all evaluated metrics, Table 4).

3.3. Unity Imaging Parasternal Long-Axis View

For the best machine learning model, the average classification accuracy of image
quality for the histogram dataset was equal to 0.83 (95% CI 0.81–0.84) with 0.61 (95% CI
0.58–0.63) sensitivity, 0.94 (95% CI 0.93–0.95) specificity and 0.88 (95% CI 0.86–0.89) AUC.
This model was based on an XGBoost classifier with a histogram grid length of 10 (Table 2,
Figure 4c).

A convolutional neural network based on the corresponding image dataset achieved
on average 0.75 (95% CI 0.73–0.77) image quality classification accuracy, 0.55 (95% CI
0.52–0.57) sensitivity, 0.86 (95% CI 0.84–0.88) specificity and 0.79 (95% CI 0.77–0.81) AUC
(Table 3, Figure 5c).
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There were statistically significant differences between the models (p < 0.001 for all
evaluated metrics; Table 4).

3.4. Unity Imaging Apical 4-Chamber View

Among machine learning models, the best prediction mean accuracy for the histogram
dataset calculated from the apical 4-chamber view was also achieved by an XGBoost model
with a histogram grid length of 10, this time with 0.92 (95% CI 0.90–0.93) accuracy, 0.82
(95% CI 0.80–0.84) sensitivity, 0.97 (95% CI 0.96–0.97) specificity and 0.96 (95% CI 0.95–0.97)
AUC (Table 2, Figure 4d).

The average prediction accuracy of the CNN for the apical 4-chamber view images
was equal to 0.89 (95% CI 0.87–0.90) with 0.79 (95% CI 0.77–0.81) sensitivity, 0.94 (95% CI
0.92–0.95) specificity and 0.95 (95% CI 0.94–0.96) AUC (Table 3, Figure 5d).

There were statistically significant differences between the models in terms of mean
accuracy (0.92 for the machine learning model versus 0.89 for CNN, p = 0.008) and specificity
(0.97 for the machine learning model versus 0.94 for CNN, p < 0.001; Table 4).

3.5. Trends in Predictions

With the use of the machine learning algorithms, the mean prediction time for one
block of histograms derived from one image was below 1 ms.

For the convolutional neural network, the mean prediction time for one image was
304.1 ms with a standard deviation of 24.9 ms. For a batch of ten images, the mean
prediction time per image was 162.6 ms with a standard deviation of 18.2 ms.

Of note, algorithms like AdaBoost and the Support Vector classifier also had very
good performance. Usually, their classification accuracy is only about 1–4% lower than the
prediction accuracy of the best model (Supplementary Material).

Interestingly, the developed algorithms had very high specificity values for the his-
tograms derived from the Unity Imaging dataset (over 90%). Moreover, for the majority of
the tested cases, with the lengthening of the histogram grid (from 1 to 10), all performance
metrics gradually increased. The largest performance boost was usually for the transition
between grid lengths of 1 and 3. However, no one common grid length would define a
plateau after which the increase would stabilize (Supplementary Material).

The timing of the predictions was performed using Google Colab software (Python
3.10) and a Tesla T4 graphical processing unit (16 GB Video RAM).

3.6. Open-Source Availability of the Best Models

The best models that support the findings of this study are available from the corre-
sponding author, Wojciech Nazar, upon reasonable request. They can be used for scientific
purposes free of charge.

4. Discussion

This study aimed to develop, validate, and compare machine learning and deep
learning algorithms for accurate, automated and efficient assessment of transthoracic
echocardiogram image quality on two open-source datasets.

Classic machine learning models were trained on blocks of histograms calculated
from the original raw image. Deep learning algorithms analyzed raw images based on a
convolutional neural network using the pre-trained EfficientNetB4 architecture.

In the presented classification problem, classic machine learning can achieve prediction
accuracy comparable to or greater than the “gold standard” convolutional neural networks
in image data classification.

4.1. Accuracy of Predictions

Both classic machine learning models and convolutional neural networks predicted
the image quality of a transthoracic echocardiogram with at least 0.74 accuracy, reaching
over 0.90 for some datasets (Table 4). The echocardiogram image quality, the end-point for
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the prediction models, was assessed differently in the CAMUS and Unity Imaging datasets
(Figure 1). Images in CAMUS were directly labelled as “good”, “medium” or “poor” by
an experienced cardiologist. On the contrary, every image in the Unity Imaging dataset
initially contains a set of labels described as “off”, “blurred”, or “point/curve” for clinically
relevant structures. Next, for this study, sets of these labels were changed into scores to
describe images of “good” or “poor” quality. Even though two very different methods
were used for image quality assessment, the best algorithms could predict image quality
with an accuracy from 0.74 to over 0.90 (Table 3). Therefore, classical machine learning and
deep learning are valuable methodologies for image quality assessment (Figures 2 and 3).

Interestingly, there were discrepancies between the best accuracy values of machine
learning and deep learning for the Unity Imaging dataset. Images in the parasternal
long-axis view were predicted with 0.83 (95% CI 0.81–0.84) accuracy using the XGBoost
classifier and 0.75 (95% CI 0.73–0.77) accuracy with the use of a convolutional neural
network (p < 0.001, Table 4). The image quality was predicted for the apical 4-chamber
dataset with 0.92 (95% CI 0.90–0.93) accuracy using the XGBoost model and 0.89 (95% CI
0.87–0.90) accuracy with the use of a convolutional neural network (p = 0.008). For the
CAMUS dataset, the differences between the machine learning and deep learning models
were lower. For apical 2-chamber views, the mean accuracy of the Random Forest classifier
and convolutional neural network were the same (0.76; 95% CI 0.72–0.79; p = 1.000, Table 3).
Further on, for the CAMUS apical 4-chamber dataset, the image quality was also predicted
with the same accuracy for both machine learning and deep learning techniques (0.74; 95%
CI 0.70–0.78; p = 1.000).

Overall, when tested on the Unity Imaging dataset, the machine learning model
trained on block histograms calculated from raw images outperformed gold-standard
convolutional neural networks trained on raw images. When tested on images from the
CAMUS dataset, machine learning and deep learning models achieved equal performance.
Nevertheless, both methods seem to be useful, and it is advised to train both classic machine
learning and deep learning algorithms on any available dataset. This will allow for robust
and reliable model development, validation, and comparison. Eventually, a model with the
best accuracy and/or clinical applicability will be selected.

4.2. Block Histograms: A Novel Approach for Image Quality Analysis

This study is a proof of concept of a novel approach to training classic machine
learning algorithms on block histograms calculated from raw images. The advantages of
this approach include easier and faster training of the model and much shorter prediction
times of below 1 ms per image. The high accuracy of this method can be explained by
the fact that histograms are calculated from an image in its native resolution. Moreover,
the aim of the algorithm is not to detect exact shapes (which is one of the principles of
computer vision based on convolutional neural networks) but to find general relationships
between the proportions of black and white pixels. These relationships can probably be
more easily modelled with the use of block histograms, which (1) transform raw image
pixel data into tabular data and (2) are the preprocessing step, which extracts relevant
information (proportions of different brightness values) for the final algorithm. Overall, it
contributes to the high prediction accuracy of the new approach.

4.3. Factors Determining the Accuracy of the Models

However, it must be remembered that a model’s prediction accuracy depends mainly
on three factors: the quality of the input data, mathematical modelling and, most impor-
tantly, the quality of the end-point assessment method. The image quality assessment
method applied for the Unity Imaging (sum of scores based on the visibility of clinically
relevant anatomical structures) is more methodologically objective than the direct and ad
hoc image quality labelling in the CAMUS dataset. Thus, the differences in the accuracy
of predictions may not only result from the mathematical principles on which various
machine and deep learning algorithms are based but also from the less accurate labelling of
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the endpoint. If the end-point assessment method is less objective, there might be more
noise between the input data and the predicted label. Thus, it might be more challenging for
the algorithm to learn mathematical relationships between the input data (images or their
histograms) and various classes of the forecasted endpoint (good or poor image quality).
In addition to that, the sample size in CAMUS datasets was lower (n = 500/500) than in
the Unity Imaging dataset (n = 1559/1531), which may also partially explain the lower
accuracy of the models trained on data from the CAMUS repository (Figure 1, Table 1).

4.4. Sensitivity and Specificity of the Algorithms

Sensitivity was defined as the ability of the algorithm to correctly detect images of
good quality [28]. Specificity was defined as the ability of the model to correctly classify
images of poor quality correctly [28]. Except for the CAMUS apical 4-chamber images, in all
other datasets, the proportion of images of poor quality was larger. A consequence of this
trend is also visible in the slightly skewed sensitivity and specificity of the predictions. The
sensitivity of the CAMUS apical 4-chamber images was over 80% for both machine learning
and deep learning models. However, the specificity was lower and equal to 63–65% for
the best models. Therefore, the model sometimes identified poor-quality images as good-
quality images which resulted in a higher false positive rate. In contrast, for the rest of the
datasets, both approaches resulted in prediction models with over 80% specificity in most
cases. However, for the CAMUS apical 2-chamber and Unity Imaging parasternal long-axis
datasets the sensitivity was relatively low (64–68% and 0.55–0.61%, respectively). Therefore,
these models tended to identify good-quality images very reliably (high specificity of over
80%), but sometimes, good-quality images were falsely predicted as poor-quality images,
which resulted in relatively low sensitivity and a higher false-negative rate.

For the developed models, the values of AUC were usually slightly higher than the
reported corresponding accuracies (Table 4). Thus, the models seem to provide rather
balanced prediction capabilities from the statistical point of view [27,29].

Since the automated LVEF and GLS calculation principles are based on the semi-
automatic detection of endocardial borders, which implements computer vision methods,
LVEF/GLS measurement can be biased and have higher variability due to poor image
quality [1,2,27]. Thus, high specificity will be helpful in clinical practice, as it will reliably
detect images of poor quality that should be used with caution for advanced AI-guided
measurements.

4.5. Comparison with Other Studies

Labs et al. predicted transthoracic echocardiogram image quality with 96.2% accuracy
using a dataset of 33,784 images in parasternal long-axis and apical 4-chamber views [19].
Loung et al. achieved 87.0% in image quality prediction using a dataset of 14,086 images in
nine views [18]. Either developed algorithms based on convolutional neural networks are
considered the gold standard of computer vision [20,30]. Our study analyzed parasternal
long-axis, apical 4-chamber and apical 2-chamber views (sample size from 500 to 1559 im-
ages, Figure 1, Table 1). Classic machine learning algorithms predicted image quality with
0.74 to 0.92 accuracy (AUC 0.81 to 0.96), whereas convolutional neural networks achieved
between 0.74 and 0.89 prediction accuracy (AUC 0.79 to 0.95; Table 4). Thus, the accuracy
on some datasets was lower than the one presented by Labs et al. and comparable to the
one described by Loung et al. However, our study was based on datasets with a much
smaller sample size, which can explain the differences in the compared accuracies.

5. Limitations

In our study, two open-source echocardiogram image datasets were compared. The
datasets could not be fused because they initially utilized a different methodology for
image quality assessment. Thus, it was not possible.to develop one machine and/or deep
learning algorithm to fit all available data.
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Moreover, both datasets provided few clinically relevant open-source individual
patient data about the patients from which the echocardiogram images came [15,26]. This
is not only the case with these particular dataset sources but also other studies and open-
source data on which machine learning studies are based [31,32]. Moreover, even studies
that use their private data sometimes provide scarce clinical characteristics regarding the
inclusion/exclusion criteria of the patients included in the study [19,32]. They usually focus
on advanced mathematical modelling and the performance of AI algorithms. However, it
is not only the performance but also the clinical applicability of the algorithm that makes it
valuable for use in daily clinical practice [33]. Thus, future studies should focus on reporting
not only open-source high-quality image datasets but also individual patient data so that
the studies based on these open-source data would analyze the mathematical principles and
accuracy of the models and the clinical characteristics of the studied population. Moreover,
the open-source availability of echocardiogram image classification algorithms developed
in other studies is also limited [17–19]. Thus, performing a head-to-head validation and
comparison of the newly developed model with the existing ones was not possible.

Further, the heterogeneous nature of image quality definition is also a limitation in
our study. The variability in how image quality is defined and assessed across the analyzed
datasets could impact the performance of our model. Image quality is subjectively evalu-
ated, with different observers potentially having varied perceptions of what constitutes
a “high-quality” image. Therefore, to address this issue, future projects should focus on
developing more standardized and universally accepted definitions and assessment meth-
ods for image quality and incorporating a diverse range of images from various sources
and conditions into training datasets to improve the robustness and generalizability of
echocardiogram image quality assessment models.

Another limitation of this study is the lack of comparison between the algorithm’s
performance and inter-observer variability. Understanding how the algorithms’ accuracy
and uncertainty compare to the variability between different human observers would
provide an important context for its reliability. However, such data were not available in
the original datasets. Future research should aim to include this comparison to offer a more
comprehensive evaluation of the algorithm’s performance.

Ultimately, numerous algorithms, particularly advanced deep learning models (convo-
lutional neural networks), are characterized as “black box algorithms,” and the transparency
of their predictive mechanisms remains unknown. Even the less advanced machine learn-
ing models only partially explain the most predictive features. Given the opacity of how
the model arrives at its output, there is ongoing discussion about whether such algorithms
should be integrated into routine clinical practice [33,34].

6. Conclusions

Both classic machine learning models based on image histograms and convolutional
neural networks trained on raw images are accurate and valuable automated echocar-
diogram image quality assessment methods. However, the training of machine learning
algorithms is easier and faster, and the prediction time per image is shorter in comparison
to convolutional neural networks. In addition, this study is a proof of concept of a novel
and accurate method of training classic machine learning algorithms on block histograms
calculated from raw images. Automated echocardiogram image quality assessment meth-
ods may provide additional relevant information to the echocardiographer in daily clinical
practice and may improve reliability in clinical decision making.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life14060761/s1, Table S1: Detailed performance results of the
developed machine learning models.

https://www.mdpi.com/article/10.3390/life14060761/s1
https://www.mdpi.com/article/10.3390/life14060761/s1
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