Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing and Experimental Design
- Sham group: 6 cc of physiological saline was given orally to rats 3 times a day for 4 days at 8 h intervals.
- Ethanol (EtOH) group: 6 cc of EtOH was administered orally to rats 3 times a day for 4 days at 8 h intervals.
- EtOH + zonisamide group: Rats were given 6 cc of EtOH orally 3 times a day for 4 days at 8 h intervals. One hour before each EtOH administration, 100 mg/kg of zonisamide was administered to the rats once a day for 4 days.
2.2. Open Field Maze
2.3. Measurement of Serum TNF-α
2.4. Tissue Preparation
2.5. Immunohistochemical Examination
2.6. Semi-Quantitative Histological Scoring
2.7. Functional Enrichment Analysis
2.8. Statistical Analysis
3. Results
3.1. Zonisamide Elevated Locomotor Activities of Rats
3.2. Zonisamide Decreased the Serum TNF-α Levels
3.3. Zonisamide Improved Histopathology of Cerebellar Tissue
3.4. Zonisamide Prevented Apoptosis and Neuroinflammation in Cerebellum
3.5. Zonisamide Downregulated Expression of APAF-1 and TNF-α
3.6. AA Is Molecularly Associated with APAF-1 and TNF-α Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roostaei, T.; Nazeri, A.; Sahraian, M.A.; Minagar, A. The human cerebellum: A review of physiologic neuroanatomy. Neurol. Clin. 2014, 32, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M.; Doron, K. Cerebellum: Connections and functions. Cerebellum 2008, 7, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, M.; van Reekum, R.; Mayberg, H. The role of the cerebellum in cognition and behavior: A selective review. J. Neuropsychiatry Clin. Neurosci. 2000, 12, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, E.V.; Rosenbloom, M.J.; Deshmukh, A.; Desmond, J.E.; Pfefferbaum, A. Alcohol and the Cerebellum: Effects on Balance, Motor Coordination, and Cognition. Alcohol. Health Res. World 1995, 19, 138–141. [Google Scholar] [PubMed]
- Federico, A.; Cotticelli, G.; Festi, D.; Schiumerini, R.; Addolorato, G.; Ferrulli, A.; Merli, M.; Lucidi, C.; Milani, S.; Panella, C.; et al. The effects of alcohol on gastrointestinal tract, liver and pancreas: Evidence-based suggestions for clinical management. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1922–1940. [Google Scholar] [PubMed]
- Faingold, C.L. The Majchrowicz binge alcohol protocol: An intubation technique to study alcohol dependence in rats. Curr. Protoc. Neurosci. 2008, 44, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Collins, M.A.; Dlugos, C.; Littleton, J.; Wilkins, L.; Neafsey, E.J.; Pentney, R.; Snell, L.D.; Tabakoff, B.; Zou, J.; et al. Alcohol-induced neurodegeneration: When, where and why? Alcohol. Clin. Exp. Res. 2004, 28, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Nixon, K.; Crews, F.T. Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J. Neurochem. 2002, 83, 1087–1093. [Google Scholar] [CrossRef]
- Crews, F.T.; Nixon, K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol. Alcohol. 2009, 44, 115–127. [Google Scholar] [CrossRef]
- Liu, Y.D.; Liu, W.; Liu, Z. Influence of long-term drinking alcohol on the cytokines in the rats with endogenous and exogenous lung injury. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 403–409. [Google Scholar]
- Heberlein, A.; Kaser, M.; Lichtinghagen, R.; Rhein, M.; Lenz, B.; Kornhuber, J.; Bleich, S.; Hillemacher, T. TNF-alpha and IL-6 serum levels: Neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol 2014, 48, 671–676. [Google Scholar] [CrossRef]
- Wang, S.; Pacher, P.; De Lisle, R.C.; Huang, H.; Ding, W.X. A Mechanistic Review of Cell Death in Alcohol-Induced Liver Injury. Alcohol. Clin. Exp. Res. 2016, 40, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wu, Y.Y.; Wei, L.Q. MiR-221 affects the proliferation and apoptosis of laryngeal cancer cells through the PI3K/AKT signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, J.; Yang, W.; Bi, Y.; Chi, J.; Tian, J.; Li, W. High-dose alcohol induces reactive oxygen species-mediated apoptosis via PKC-β/p66Shc in mouse primary cardiomyocytes. Biochem. Biophys. Res. Commun. 2015, 456, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Hajnóczky, G.; Buzas, C.J.; Pacher, P.; Hoek, J.B.; Rubin, E. Alcohol and mitochondria in cardiac apoptosis: Mechanisms and visualization. Alcohol. Clin. Exp. Res. 2005, 29, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Day, E.; Daly, C. Clinical management of the alcohol withdrawal syndrome. Addiction 2022, 117, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.J.; Niciu, M.J.; Drew, S.; Arias, A.J. Anticonvulsants for the treatment of alcohol withdrawal syndrome and alcohol use disorders. CNS Drugs 2015, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.E.; McGuier, N.S.; Griffin, W.C.; Lopez, M.F.; Becker, H.C.; Mulholland, P.J. Novel anticonvulsants for reducing alcohol consumption: A review of evidence from preclinical rodent drinking models. OA Alcohol 2013, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.M.; Ciraulo, D.A.; Sarid-Segal, O.; Richardson, M.A.; Devine, E.; Streeter, C.C.; Oscar-Berman, M.; Surprise, C.; Colaneri, L.; Putnam, M.; et al. Zonisamide, topiramate, and levetiracetam: Efficacy and neuropsychological effects in alcohol use disorders. J. Clin. Psychopharmacol. 2015, 35, 34–42. [Google Scholar] [CrossRef]
- Landmark, C.J. Targets for antiepileptic drugs in the synapse. Med. Sci. Monit. 2007, 13, RA1–RA7. [Google Scholar]
- Arias, A.J.; Feinn, R.; Oncken, C.; Covault, J.; Kranzler, H.R. Placebo-controlled trial of zonisamide for the treatment of alcohol dependence. J. Clin. Psychopharmacol. 2010, 30, 318–322. [Google Scholar] [CrossRef]
- Miranda, R., Jr.; MacKillop, J.; Monti, P.M.; Rohsenow, D.J.; Tidey, J.; Gwaltney, C.; Swift, R.; Ray, L.; McGeary, J. Effects of topiramate on urge to drink and the subjective effects of alcohol: A preliminary laboratory study. Alcohol. Clin. Exp. Res. 2008, 32, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Demirci, A.Y.; Seckin, H.; Besalti, O.; Arikok, A.T.; Yigitkanli, T.; Caliskan, M.; Yigitkanli, K.; Bavbek, M. Study the effects of zonisamide on fine structure of rabbit basilar artery and hippocampus in rabbit subarachnoid hemorrhage model. Acta Neurochir. 2013, 155, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Krupa-Burtnik, A.; Zwierzynska, E.; Kordala, A.; Pietrzak, B. The Impact of Zonisamide on the Development and Course of Alcohol Dependence in Rabbits. A pharmaco-EEG study. Alcohol Alcohol. 2017, 52, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.M.; Mercado, M.; Markley, T.L.; Crosby, S.; Ciraulo, D.A.; Kornetsky, C. Zonisamide decreases ethanol intake in rats and mice. Pharmacol. Biochem. Behav. 2007, 87, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Miwa, H.; Hama, K.; Kajimoto, Y.; Kondo, T. Effects of zonisamide on experimental tremors in rats. Parkinsonism Relat. Disord. 2008, 14, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Medhi, B.; Modi, M.; Saikia, B.; Attri, S.V.; Patial, A. A mechanistic approach to explore the neuroprotective potential of zonisamide in seizures. Inflammopharmacology 2018, 26, 1125–1131. [Google Scholar] [CrossRef]
- Seibenhener, M.L.; Wooten, M.C. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J. Vis. Exp. 2015, 96, e52434. [Google Scholar] [CrossRef]
- Keşim, D.A.; Aşır, F.; Ayaz, H.; Korak, T. The Effects of Ellagic Acid on Experimental Corrosive Esophageal Burn Injury. Curr. Issues Mol. Biol. 2024, 46, 1579–1592. [Google Scholar] [CrossRef]
- Crowe, A.R.; Yue, W. Semi-quantitative Determination of Protein Expression using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio Protoc. 2019, 9, e3465. [Google Scholar] [CrossRef]
- Aşır, F.; Ağaçayak, E.; Oğlak, S.C.; Deveci, E.; Akkuş, M. WIPI-2 protein expression increases in the placentas of patients with preeclampsia. Perinat. J. 2023, 31, 219–223. [Google Scholar]
- Oliveros, J.C. Venny: An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 15 February 2024).
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J. The risks associated with alcohol use and alcoholism. Alcohol. Res. Health 2011, 34, 135–143. [Google Scholar] [PubMed]
- Jerlhag, E. Gut-brain axis and addictive disorders: A review with focus on alcohol and drugs of abuse. Pharmacol. Ther. 2019, 196, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.; Perrotta, G. Toxic-induced cerebellar syndrome: From the fetal period to the elderly. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 155, pp. 333–352. [Google Scholar] [CrossRef]
- Mitoma, H.; Manto, M.; Shaikh, A.G. Mechanisms of Ethanol-Induced Cerebellar Ataxia: Underpinnings of Neuronal Death in the Cerebellum. Int. J. Environ. Res. Public Health 2021, 18, 8678. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.; Chen, Y.; Singh, S.; Berrios-Carcamo, P.; Heit, C.; Apostolopoulos, N.; Golla, J.P.; Thompson, D.C.; Vasiliou, V. Engineered Animal Models Designed for Investigating Ethanol Metabolism, Toxicity and Cancer. Adv. Exp. Med. Biol. 2018, 1032, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.E.; Nunes, M.E.M.; Rodrigues, N.R.; Fontana, B.D.; Hartmann, D.D.; Franco, J.L.; Rosemberg, D.B. Neurochemical mechanisms underlying acute and chronic ethanol-mediated responses in zebrafish: The role of mitochondrial bioenergetics. Neurochem. Int. 2019, 131, 104584. [Google Scholar] [CrossRef] [PubMed]
- Schauf, C.L. Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res. 1987, 413, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Masuda, Y.; Karasawa, T. Inhibitory effect of zonisamide on human carbonic anhydrase in vitro. Arzneimittelforschung 1993, 43, 416–418. [Google Scholar]
- Sarid-Segal, O.; Knapp, C.M.; Burch, W.; Richardson, M.A.; Bahtia, S.; DeQuattro, K.; Afshar, M.; Richambault, C.; Sickels, L.; Devine, E.; et al. The anticonvulsant zonisamide reduces ethanol self-administration by risky drinkers. Am. J. Drug Alcohol. Abuse 2009, 35, 316–319. [Google Scholar] [CrossRef]
- Wang, Z.; Tan, Y.; Xu, F. Zonisamide improves Fas/FasL-mediated apoptosis and inflammation in a degenerative cervical myelopathy rat model. Tissue Cell 2023, 81, 102024. [Google Scholar] [CrossRef]
- Owen, A.J.; Ijaz, S.; Miyashita, H.; Wishart, T.; Howlett, W.; Shuaib, A. Zonisamide as a neuroprotective agent in an adult gerbil model of global forebrain ischemia: A histological, in vivo microdialysis and behavioral study. Brain Res. 1997, 770, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Higuchi, Y.; Nigami, H.; Hattori, H. Zonisamide reduces hypoxic-ischemic brain damage in neonatal rats irrespective of its anticonvulsive effect. Eur. J. Pharmacol. 1994, 257, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, R.; Kheirollahi, A.; Davoodi, J. Apaf-1: Regulation and function in cell death. Biochimie 2017, 135, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.A.; Chuffa, L.G.; Fioruci-Fontanelli, B.A.; Lizarte Neto, F.S.; Novais, P.C.; Tirapelli, L.F.; Oishi, J.C.; Takase, L.F.; Stefanini, M.A.; Martinez, M.; et al. Apoptosis of Purkinje and granular cells of the cerebellum following chronic ethanol intake. Cerebellum 2014, 13, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Song, L.; Ma, J.; Wang, H.; Li, Y.; Huang, D. Alcohol induces apoptosis and autophagy in microglia BV-2 cells. Food Chem. Toxicol. 2023, 177, 113849. [Google Scholar] [CrossRef] [PubMed]
- Anthony, B.; Zhou, F.C.; Ogawa, T.; Goodlett, C.R.; Ruiz, J. Alcohol exposure alters cell cycle and apoptotic events during early neurulation. Alcohol Alcohol. 2008, 43, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. Effects of Ethanol on the Cerebellum: Advances and Prospects. Cerebellum 2015, 14, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Diao, X.Y.; Peng, T.; Kong, F.G.; Huang, J.G.; Han, S.; Shang, Y.S.; Liu, H. Alcohol consumption promotes colorectal cancer by altering intestinal permeability. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9370–9377. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Quintela, A.; Campos, J.; Loidi, L.; Quinteiro, C.; Perez, L.F.; Gude, F. Serum TNF-alpha levels in relation to alcohol consumption and common TNF gene polymorphisms. Alcohol 2008, 42, 513–518. [Google Scholar] [CrossRef]
- Nanji, A.A.; Zakim, D.; Rahemtulla, A.; Daly, T.; Miao, L.; Zhao, S.; Khwaja, S.; Tahan, S.R.; Dannenberg, A.J. Dietary saturated fatty acids down-regulate cyclooxygenase-2 and tumor necrosis factor alfa and reverse fibrosis in alcohol-induced liver disease in the rat. Hepatology 1997, 26, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Mandrekar, P.; Oak, S.; Mayerle, J. Effect of ethanol on inflammatory responses. Implications for pancreatitis. Pancreatology 2007, 7, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Conigrave, J.H.; Lewohl, J.; Haber, P.; Morley, K.C. Alcohol use disorder and circulating cytokines: A systematic review and meta-analysis. Brain Behav. Immun. 2020, 89, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Czerwinska-Blaszczyk, A.; Pawlak, E.; Pawlowski, T. The Significance of Toll-Like Receptors in the Neuroimmunologic Background of Alcohol Dependence. Front. Psychiatry 2021, 12, 797123. [Google Scholar] [CrossRef] [PubMed]
- Varodayan, F.P.; Pahng, A.R.; Davis, T.D.; Gandhi, P.; Bajo, M.; Steinman, M.Q.; Kiosses, W.B.; Blednov, Y.A.; Burkart, M.D.; Edwards, S.; et al. Chronic ethanol induces a pro-inflammatory switch in interleukin-1beta regulation of GABAergic signaling in the medial prefrontal cortex of male mice. Brain Behav. Immun. 2023, 110, 125–139. [Google Scholar] [CrossRef]
- Medici, V.; Halsted, C.H. Folate, alcohol, and liver disease. Mol. Nutr. Food Res. 2013, 57, 596–606. [Google Scholar] [CrossRef]
- Werner, S.; Nies, E. Olfactory dysfunction revisited: A reappraisal of work-related olfactory dysfunction caused by chemicals. J. Occup. Med. Toxicol. 2018, 13, 28. [Google Scholar] [CrossRef]
- Teixeira, M.C.; Pacheco, F.T.; Souza, J.N.; Silva, M.L.; Ines, E.J.; Soares, N.M. Strongyloides stercoralis Infection in Alcoholic Patients. Biomed. Res. Int. 2016, 2016, 4872473. [Google Scholar] [CrossRef]
- de Souza, J.N.; Oliveira, C.L.; Araujo, W.A.C.; Souza, A.B.S.; Silva, M.L.S.; da Cruz, I.D.R.; Sampaio, L.M.; Dos Santos, J.S.B.; Teixeira, M.C.A.; Soares, N.M. Strongyloides stercoralis in Alcoholic Patients: Implications of Alcohol Intake in the Frequency of Infection and Parasite Load. Pathogens 2020, 9, 422. [Google Scholar] [CrossRef]
- King, J.R.; Gillevet, T.C.; Kabbani, N. A G protein-coupled alpha7 nicotinic receptor regulates signaling and TNF-alpha release in microglia. FEBS Open Bio 2017, 7, 1350–1361. [Google Scholar] [CrossRef]
- Li, X.; Korner, H.; Liu, X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front. Microbiol. 2020, 11, 1643. [Google Scholar] [CrossRef] [PubMed]
- Blaine, S.K.; Ridner, C.M.; Campbell, B.R.; Crone, L.; Claus, E.D.; Wilson, J.R.; West, S.N.; McClanahan, A.J.; Siddiq, A.S.; Layman, I.M.P.; et al. IL-6, but not TNF-alpha, response to alcohol cues and acute consumption associated with neural cue reactivity, craving, and future drinking in binge drinkers. Brain Behav. Immun. Health 2023, 31, 100645. [Google Scholar] [CrossRef] [PubMed]
Groups | Distance (cm) | Multiple Comparisons |
---|---|---|
Sham | 1301 (1161–1443) | p = 0.0006 |
EtOH | 1017 (934–1100) | |
EtOH + zonisamide | 1174 (1135–1234) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aşır, F.; Erdemci, F.; Çankırı, Z.; Korak, T.; Başaran, S.Ö.; Kaplan, Ö.; Yükselmiş, Ö.; Dönmezdil, N.; Ayaz, H.; Kaplan, Ş.; et al. Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life 2024, 14, 795. https://doi.org/10.3390/life14070795
Aşır F, Erdemci F, Çankırı Z, Korak T, Başaran SÖ, Kaplan Ö, Yükselmiş Ö, Dönmezdil N, Ayaz H, Kaplan Ş, et al. Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life. 2024; 14(7):795. https://doi.org/10.3390/life14070795
Chicago/Turabian StyleAşır, Fırat, Fikri Erdemci, Zuhal Çankırı, Tuğcan Korak, Süreyya Özdemir Başaran, Özge Kaplan, Özkan Yükselmiş, Nilüfer Dönmezdil, Hayat Ayaz, Şehmus Kaplan, and et al. 2024. "Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model" Life 14, no. 7: 795. https://doi.org/10.3390/life14070795
APA StyleAşır, F., Erdemci, F., Çankırı, Z., Korak, T., Başaran, S. Ö., Kaplan, Ö., Yükselmiş, Ö., Dönmezdil, N., Ayaz, H., Kaplan, Ş., & Tunik, S. (2024). Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life, 14(7), 795. https://doi.org/10.3390/life14070795