Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Virus Detection and Sequencing
2.3. Sequence Data Analysis
2.4. Bayesian Evolutionary Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shepard, D.S.; Undurraga, E.A.; Halasa, Y.A.; Stanaway, J.D. The global economic burden of dengue: A systematic analysis. Lancet Infect. Dis. 2016, 16, 935–941. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Hay, S.I. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Roy, S.K.; Bhattacharjee, S. Dengue virus: Epidemiology, biology, and disease aetiology. Can. J. Microbiol. 2021, 67, 687–702. [Google Scholar] [CrossRef]
- Ooi, E.E.; Gubler, D.J. Dengue in Southeast Asia: Epidemiological characteristics and strategic challenges in disease prevention. Cad. de Saude Publica 2009, 25, S115–S124. [Google Scholar] [CrossRef]
- Shaw, W.R.; Catteruccia, F. Vector biology meets disease control: Using basic research to fight vector-borne diseases. Nat. Microbiol. 2019, 4, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Sparacio, S.; Bartenschlager, R. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J. Biol. Chem. 2006, 281, 8854–8863. [Google Scholar] [CrossRef] [PubMed]
- Perera, R.; Kuhn, R.J. Structural proteomics of dengue virus. Curr. Opin. Microbiol. 2008, 11, 369–377. [Google Scholar] [CrossRef]
- Iglesias, N.G.; Gamarnik, A.V. Dynamic RNA structures in the dengue virus genome. RNA Biol. 2011, 8, 249–257. [Google Scholar] [CrossRef]
- Pierson, T.C.; Diamond, M.S. The continued threat of emerging flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef]
- Yan, H.; Ding, Z.; Yan, J.; Yao, W.; Pan, J.; Yang, Z.; Zhang, Y. Epidemiological characterization of the 2017 dengue outbreak in Zhejiang, China and molecular characterization of the viruses. Front. Cell. Infect. Microbiol. 2018, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Yang, H.; Zhang, L.; Fang, S.H.; Zhan, X.F.; Yang, L.Y. The analysis of clinical and laboratory data: A large outbreak of dengue fever in Chaozhou, Guangdong province, China. Arch. Virol. 2019, 164, 2131–2135. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Zhang, J.; Wang, Y.; Chen, F.; Zheng, C.; Xie, L. Genomic characterization of travel-associated dengue viruses isolated from the entry-exit ports in Fujian province, China, 2013–2015. Jpn. J. Infect. Dis. 2017, 70, 554–558. [Google Scholar] [CrossRef]
- Jiang, T.; Yu, X.D.; Hong, W.X.; Zhou, W.Z.; Yu, M.; Deng, Y.Q.; Zhang, F.C. Co-circulation of two genotypes of dengue virus serotype 3 in Guangzhou, China, 2009. Virol. J. 2012, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Liu, Q. Exploring epidemiological characteristics of domestic imported dengue fever in mainland China, 2014–2018. Int. J. Environ. Res. Public Health 2019, 16, 3901. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Liu, L.C.; Jiang, L.Y.; Liu, Q.; Cao, Y.M.; Xu, Y.; Jing, Q.L.; Luo, L.; Yang, Z.C.; Di Biao, D.B. Complete genome sequence of dengue virus serotype 4 from Guangzhou, China. Genome Announcements 2013, 1, e00299-13. [Google Scholar] [PubMed]
- Wu, T.; Wu, Z.; Li, Y.P. Dengue fever and dengue virus in the People’s Republic of China. Rev. Med. Virol. 2022, 32, e2245. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.C.; Twiddy, S.S. The origin, emergence and evolutionary genetics of dengue virus. Infect. Genet. Evol. 2003, 3, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Goncalvez, A.P.; Escalante, A.A.; Pujol, F.H.; Ludert, J.E.; Tovar, D.; Salas, R.A.; Liprandi, F. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002, 303, 110–119. [Google Scholar] [CrossRef]
- Mathew, A.; Rothman, A.L. Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunol. Rev. 2008, 225, 300–313. [Google Scholar] [CrossRef]
- Wahala, W.M.P.B.; De Silva, A.M. The human antibody response to dengue virus infection. Viruses 2011, 3, 2374–2395. [Google Scholar] [CrossRef]
- Lau, L.; Green, A.M.; Balmaseda, A.; Harris, E. Antibody avidity following secondary dengue virus type 2 infection across a range of disease severity. J. Clin. Virol. 2015, 69, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Dejnirattisai, W.; Jumnainsong, A.; Onsirisakul, N.; Fitton, P.; Vasanawathana, S.; Limpitikul, W.; Screaton, G. Cross-reacting antibodies enhance dengue virus infection in humans. Science 2010, 328, 745–748. [Google Scholar] [CrossRef] [PubMed]
- De Alwis, R.; Williams, K.L.; Schmid, M.A.; Lai, C.Y.; Patel, B.; Smith, S.A.; de Silva, A.M. Dengue viruses are enhanced by distinct populations of serotype cross-reactive antibodies in human immune sera. PLoS Pathog. 2014, 10, e1004386. [Google Scholar] [CrossRef] [PubMed]
- Guzman, M.G.; Alvarez, M.; Halstead, S.B. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 2013, 158, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Harris, E. Antibody-dependent enhancement of severe dengue disease in humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef] [PubMed]
- Carrington, L.B.; Simmons, C.P. Human to mosquito transmission of dengue viruses. Front. Immunol. 2014, 5, 86757. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.S.; Pierson, T.C. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 2015, 162, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Li ChunHui, L.C.; Pan XingJie, P.X.; Wang DeJie, W.D.; Yu Tao, Y.T.; Liu JingYu, L.J. Density monitoring of Aedes albopictus in Yantai City from 2014 to 2016. Chin. J. Hyg. Insectic. Equip. 2018, 24, 162–163. [Google Scholar]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [PubMed]
- Stica, C.J.; Barrero, R.A.; Murray, R.Z.; Devine, G.J.; Phillips, M.J.; Frentiu, F.D. Global evolutionary history and dynamics of dengue viruses inferred from whole genome sequences. Viruses 2022, 14, 703. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Martin, D.P.; Varsani, A.; Roumagnac, P.; Botha, G.; Maslamoney, S.; Schwab, T.; Murrell, B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021, 7, veaa087. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, P.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 321, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Ayres, D.L.; Darling, A.; Zwickl, D.J.; Beerli, P.; Holder, M.T.; Lewis, P.O.; Suchard, M.A. BEAGLE: An application programming interface and high-performance computing library for statistical phylogenetics. Syst. Biol. 2012, 61, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Rieux, A.; Khatchikian, C.E. tipdatingbeast: An r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. 2017, 17, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Vasilakis, N.; Weaver, S.C. The history and evolution of human dengue emergence. Adv. Virus Res. 2008, 72, 1–76. [Google Scholar] [PubMed]
- Liu, Q.Y. Dengue fever in china: New epidemical trend, challenges and strategies for prevention and control. Chin. J. Vector Biol. Control. 2020, 31, 1–6. [Google Scholar]
- Fan, J.H.; Gao, Y.; Zhu, J.; Huang, Q.; Li, J.M.; Su, M.H.; Zhang, H.L. Epidemiological characteristics of dengue fever and surveillance results of Aedes mosquitoes in Xishuangbanna Prefecture, Yunnan province, China, 2006–2020. Chin. J. Vector Biol. Control. 2022, 33, 245–251. [Google Scholar]
- Liu, Y.Y.; Liu, Y.; Luo, L.; Wu, D.; Ma, M.; Ma, Y.; Liu, M. Epidemiological analysis on dengue fever cases in Guangzhou,2011–2019. Mod. Prev. Med. 2021, 48, 1925–1929. [Google Scholar]
- Lu, X.; Bambrick, H.; Pongsumpun, P.; Dhewantara, P.W.; Toan, D.T.T.; Hu, W. Dengue outbreaks in the COVID-19 era: Alarm raised for Asia. PLoS Neglected Trop. Dis. 2021, 15, e0009778. [Google Scholar] [CrossRef]
- Lai, S.; Huang, Z.; Zhou, H.; Anders, K.L.; Perkins, T.A.; Yin, W.; Yu, H. The changing epidemiology of dengue in China, 1990–2014: A descriptive analysis of 25 years of nationwide surveillance data. BMC Med. 2015, 13, 100. [Google Scholar] [CrossRef]
- Murray, N.E.A.; Quam, M.B.; Wilder-Smith, A. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013, 5, 299–309. [Google Scholar]
- Rocklöv, J.; Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef]
- Tangsathapornpong, A.; Thisyakorn, U. Dengue amid COVID-19 pandemic. PLoS Glob. Public Health 2023, 3, e0001558. [Google Scholar] [CrossRef]
- Jing-Chun, F.A.N.; Qi-Yong, L.I.U. Potential impacts of climate change on dengue fever distribution using RCP scenarios in China. Adv. Clim. Change Res. 2019, 10, 1–8. [Google Scholar]
- Chen, Q.L.; Song, W.T.; Mu, D.; Li Yu, L.Y.; Yin WenWu, Y.W.; Li ZhongJie, L.Z. Analysis on epidemiological characteristics of dengue fever in China, as of 31th August, 2017. Dis. Surveill. 2017, 32, 801–804. [Google Scholar]
Molecular Clock Model | Coalescent Tree Prior | Log Marginal Likelihood |
---|---|---|
Strict clock | Coalescent Bayesian skyline | −138,201.16 |
Strict clock | Coalescent constant population | −138,201.07 |
Strict clock | Coalescent exponential population | −138,198.30 |
Optimized Relaxed Clock | Coalescent Bayesian skyline | −137,786.76 |
Optimized Relaxed Clock | Coalescent constant population | −137,795.23 |
Optimized Relaxed Clock | Coalescent exponential population | −137,798.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; He, L.; Li, X.; Li, C.; Yan, S.; Zhang, Y.; Sun, Z. Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China. Life 2024, 14, 808. https://doi.org/10.3390/life14070808
Sun Y, He L, Li X, Li C, Yan S, Zhang Y, Sun Z. Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China. Life. 2024; 14(7):808. https://doi.org/10.3390/life14070808
Chicago/Turabian StyleSun, Yulou, Liqun He, Xia Li, Cong Li, Shicui Yan, Yi Zhang, and Zhenlu Sun. 2024. "Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China" Life 14, no. 7: 808. https://doi.org/10.3390/life14070808
APA StyleSun, Y., He, L., Li, X., Li, C., Yan, S., Zhang, Y., & Sun, Z. (2024). Unraveling the Genomic Evolution of Dengue Virus Serotype 1: A Case Study from Yantai, China. Life, 14(7), 808. https://doi.org/10.3390/life14070808