Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Reproduction and Rearing
2.3. Determination of Ploidy
2.4. Microsatellite Marker Analysis
2.5. Sex Determination with SSM4 Analysis
2.6. Histological Analysis of the Gonads
2.7. Statistical Analysis
3. Results
3.1. Hybrid Origin and Ploidy Levels of Each Hybrid Specimen
3.2. Genetic Sex of Hybrids and Purebred Specimens
3.3. Gonads and Gametes of Hybrids and Purebred Specimens
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gregory, T.R.; Mable, K.B. Polyploidy in Animals. In The Evolution of the Genome; Gregory, T.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; p. 428. [Google Scholar]
- Collares-Pereira, M.J.; Matos, I.; Morgado-Santos, M.; Coelho, M.M. Natural Pathways towards Polyploidy in Animals: The Squalius alburnoides Fish Complex as a Model System to Study Genome Size and Genome Reorganization in Polyploids. Cytogenet. Genome Res. 2013, 140, 97–116. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Fan, J.; Qin, Q.; Huo, Y.; Wang, Y.; Wu, C.; Liu, Q.; Li, W.; Chen, X.; Cao, L.; et al. The Sterility of Allotriploid Fish and Fertility of Female Autotriploid Fish. Front. Genet. 2019, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Lumaret, R. The evolutionary dynamics of polyploid plants: Origins, establishment and persistence. Trends Ecol. Evol. 1992, 7, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Ludwig, A.; Wang, D.; Diogo, R.; Wei, Q.; He, S. Age and biogeography of major clades in sturgeons and paddlefishes (Pisces: Acipenseriformes). Mol. Phylogenet. Evol. 2007, 42, 854–862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jarić, I.; Roberts, D.L.; He, Y.; Du, H.; Wu, J.; Wang, C.; Wei, Q. Extinction of one of the world’s largest freshwater fishes: Lessons for conserving the endangered Yangtze fauna. Sci. Total Environ. 2020, 710, 136242. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Tagliavini, J.; Congiu, L. Sturgeon genetics and cytogenetics: Recent advancements and perspectives. Genetica 2001, 111, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Birstein, V.J.; Hanner, R.; DeSalle, R. Phylogeny of the Acipenseriformes: Cytogenetic and molecular approaches. Environ. Biol. Fishes 1997, 48, 127–155. [Google Scholar] [CrossRef]
- Birstein, V.J.; Vasil’ev, V.P. Tetraploid-octoploid relationships and karyological evolution in the order Acipenseriformes (Pisces). Karyotypes, nucleoli, and nucleolus-organizer regions in four acipenserid species. Genetica 1987, 72, 3–12. [Google Scholar] [CrossRef]
- Ludwig, A.; Belfiore, M.N.; Pitra, C.; Svirsky, V.; Jenneckens, I. Genome Duplication Events and Functional Reduction of Ploidy Levels in Sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 2001, 158, 1203–1215. [Google Scholar] [CrossRef] [PubMed]
- Redmond, A.K.; Casey, D.; Gundappa, M.K.; Macqueen, D.J.; McLysaght, A. Independent rediploidization masks shared whole genome duplication in the sturgeon-paddlefish ancestor. Nat. Commun. 2023, 14, 2879. [Google Scholar] [CrossRef] [PubMed]
- Havelka, M.; Kašpar, V.; Hulák, H.; Flajšhans, M. Sturgeon genetics and cytogenetics: A review related to ploidy levels and interspecific hybridization. Folia Zool. 2011, 60, 93–103. [Google Scholar] [CrossRef]
- Lebeda, I.; Ráb, P.; Majtánová, Z.; Flajšhans, M. Artifcial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci. Rep. 2020, 10, 19705. [Google Scholar] [CrossRef] [PubMed]
- Vasil’ev, V.P. Mechanisms of polyploid evolution in fish: Polyploidy in Sturgeons. In Biology, Conservation and Sustainable Development of Sturgeons; Carmona, R., Domezain, A., García-Gallego, M., Hernando, J.A., Rodríguez, F., Ruiz-Rejón, M., Eds.; Springer: Amsterdam, The Netherlands, 2009; pp. 97–117. [Google Scholar]
- Trifonov, A.V.; Romanenko, S.S.; Beklemisheva, R.V.; Biltueva, S.L.; Makunin, I.A.; Lemskaya, A.N.; Kulemzina, I.A.; Stanyon, R.; Graphodatsky, S.A. Evolutionary plasticity of acipenseriform genomes. Chromosoma 2016, 125, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, H.; Guiguen, Y.; Höhne, C.; Kreuz, E.; Du, K.; Klopp, C.; Lopez-Roques, C.; Yebra-Pimentel, S.E.; Ciorpac, M.; Gessner, J.; et al. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Philos. Trans. R. Soc. B 2021, 376, 20200089. [Google Scholar] [CrossRef] [PubMed]
- Shelton, L.W.; Mims, D.S. Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture 2012, 356–357, 116–118. [Google Scholar] [CrossRef]
- Havelka, M.; Hulák, M.; Bailie, D.A.; Prodöhl, P.A.; Flajšhans, M. Extensive Genome Duplication in Sturgeons: New Evidence from Microsatellite Data. J. Appl. Ichthyol. 2013, 29, 704–708. [Google Scholar] [CrossRef]
- Káldy, J.; Mozsár, A.; Fazekas, G.; Farkas, M.; Fazekas, D.L.; Fazekas, G.L.; Goda, K.; Gyöngy, Z.; Kovács, B.; Semmens, K.; et al. Hybridization of Russian Sturgeon (Acipenser gueldenstaedtii, Brandt and Ratzeberg, 1833) and American Paddlefish (Polyodon spathula, Walbaum 1792) and evaluation of their progeny. Genes 2020, 11, 753. [Google Scholar] [CrossRef] [PubMed]
- Flamio, R., Jr.; Chojnacki, A.K.; DeLonay, J.A.; Dodson, J.M.; Gocker, M.R.; Jenkins, A.J.; Powell, J.; Heist, J.E. Production of haploid gynogens to inform genomic resource development in the paleotetraploid pallid sturgeon (Scaphirhynchus albus). Aquaculture 2021, 538, 736529. [Google Scholar] [CrossRef]
- Káldy, J.; Fazekas, G.; Kovács, B.; Molnár, M.; Lázár, B.; Pálinkás-Bodzsár, N.; Ljubobratović, U.; Fazekas, G.; Kovács, G.; Várkonyi, E. Unidirectional hybridization between American paddlefish Polyodon spathula (Walbaum, 1792) and sterlet Acipenser ruthenus (Linnaeus, 1758). PeerJ 2024, 12, e16717. [Google Scholar] [CrossRef] [PubMed]
- Fontana, F.; Congiu, L.; Mudrak, A.V.; Quattro, M.J.; Smith, I.J.T.; Ware, K.; Doroshov, I.S. Evidence of hexaploid karyotype in shortnose sturgeon. Genome 2008, 51, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Bruslé, J.; Bruslé, S. La gonadogenèse des Poissons. Reprod. Nutr. Dév. 1983, 23, 453–491. [Google Scholar] [CrossRef]
- Arnold, M.L.; Hodges, S.A. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995, 10, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.A.; Burke, J.M. Genetic divergence and hybrid speciation. Evolution 2007, 61, 1773–1780. [Google Scholar] [CrossRef]
- Vasil’ev, V.P.; Rachek, E.I.; Lebedeva, E.B.; Vasil’eva, E.D. Karyological study in backcross hybrids between the sterlet, Acipenser ruthenus, and kaluga, A. dauricus (Actinopterygii: Acipenseriformes: Acipenseridae): A. ruthenus × (A. ruthenus × A. dauricus) and A. dauricus × (A. ruthenus × A. dauricus). Acta Ichthyol. Piscat. 2014, 44, 301–308. [Google Scholar] [CrossRef]
- Linhartová, Z.; Havelka, M.; Pšenička, M.; Flajšhans, M. Interspecific Hybridization of Sturgeon Species Affects Differently Their Gonadal Development. Czech J. Anim. Sci. 2018, 63, 1–10. [Google Scholar] [CrossRef]
- Štěch, L.; Linhart, O.; Shelton, L.W.; Mims, D.S. Minimally Invasive Surgical Removal of Ovulated Eggs from Paddlefish. Aquac. Int. 1999, 7, 129–133. [Google Scholar] [CrossRef]
- Heist, E.J.; Nicholson, E.H.; Sipiorski, J.T.; Keeney, D.B. Microsatellite Markers for the Paddlefish (Polyodon spathula). Conserv. Genet. 2002, 3, 205–207. [Google Scholar] [CrossRef]
- McQuown, E.C.; Sloss, B.L.; Sheehan, R.J.; Rodzen, J.; Tranah, G.J.; May, B. Microsatellite Analysis of Genetic Variation in Sturgeon: New Primer Sequences for Scaphirhynchus and Acipenser. Trans. Am. Fish. Soc. 2000, 129, 1380–1388. [Google Scholar] [CrossRef]
- Ruan, R.; Feng, T.; Li, Y.; Yue, H.; Ye, H.; Du, H.; Liu, Q.; Ruan, J.; Li, C.; Wei, Q. Screening and identification of female-specific DNA sequences in octaploid sturgeon using comparative genomics with high-throughput sequencing. Genomics 2021, 113, 4237–4244. [Google Scholar] [CrossRef]
- Hurvitz, A.; Jackson, K.; Degani, G.; Levavi-Sivan, B. Use of endoscopy for gender and ovarian stage determinations in Russian sturgeon (Acipenser gueldenstaedtii) grown in aquaculture. Aquaculture 2007, 270, 158–166. [Google Scholar] [CrossRef]
- Vizziano-Cantonnet, D.; Di Landro, S.; Lasalle, A.; Martinez, A.; Mazzoni, S.T.; Quagio-Grassiotto, I. Identification of the Molecular Sex-Differentiation Period in the Siberian Sturgeon. Mol. Reprod. Dev. 2016, 83, 19–36. [Google Scholar] [CrossRef] [PubMed]
- Fajkowska, M.; Ostaszewska, T.; Rzepkowska, M. Review: Molecular mechanisms of sex differentiation in sturgeons. Rev. Aquac. 2019, 12, 1003–1027. [Google Scholar] [CrossRef]
- Devlin, H.R.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Guiguen, Y.; Fostier, A.; Piferrer, F.; Chang, C.F. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen. Comp. Endocrinol. 2010, 165, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, S.; Yamashita, R.; Yamamoto, S.; Ishihara, M.; Abe, T.; Ijiri, S.; Adachi, S. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J. Appl. Ichthyol. 2014, 30, 1557–1564. [Google Scholar] [CrossRef]
- Wuertz, S.; Güralp, H.; Pšenička, M.; Chebanov, M. Sex Determination in Sturgeon. In Sex Control in Aquaculture; Wang, H.-P., Piferrer, F., Chen, S.-L., Shen, Z.-G., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2019; p. 655. [Google Scholar]
- Omoto, N.; Maebayashi, M.; Adachi, S.; Arai, K.; Yamauchi, K. Sex ratios of triploids and gynogenetic diploids induced in the hybrid sturgeon, the bester (Huso huso female × Acipenser ruthenus male). Aquaculture 2005, 245, 39–47. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Van Eenennaam, J.P.; Medrano, J.F.; Doroshov, S.I. Evidence of female heterogametic genetic sex determination in white sturgeon. J. Hered. 1999, 90, 231–233. [Google Scholar] [CrossRef]
- Wertheim, B.; Beukeboom, L.W.; van de Zande, L. Polyploidy in animals: Effects of gene expression on sex determination, evolution and ecology. Cytogenet. Genome Res. 2013, 140, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Stöck, M.; Dedukh, D.; Reifová, R.; Lamatsch, D.K.; Starostová, Z.; Janko, K. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: Along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B 2021, 376, 20200103. [Google Scholar] [CrossRef]
- Vasil’ev, V.P.; Rachek, E.I.; Amvrosov, D.Y.; Barmintseva, A.E.; Vasil’eva, E.D. Fertility of females of sturgeon hybrids obtained from species with different levels of ploidy (Acipenser ruthenus and A. dauricus) and their cloning. J. Appl. Ichthyol. 2021, 37, 186–197. [Google Scholar] [CrossRef]
- Haldane, J. Sex ration and unisexual sterility in animal hybrids. J. Genet. 1922, 12, 101–109. [Google Scholar] [CrossRef]
Locus | Inheritance | Primer’s Sequences (5′-3′) | Anneling Temperature (°C) | Repeat Motif | |
---|---|---|---|---|---|
P. spathula | A. gueldenstaedtii | ||||
Psp-28 | Disomic | Tetrasomic | F: Tail-CAAAGGCATCCCCTACCAC | 56 | GA |
R: GCTGGACAAAAAGTATGGAGTGC | |||||
Psp-29 | Tetrasomic | Disomic | F: Tail-GGGGTCTAATAAAATCCACCGTTC | 56 | GCAC |
R: TTGCCTTGTGCTCTGTGTTCC | |||||
Psp-32 | Monomorf | Tetrasomic | F: Tail-AATGACTCAGTTGTGTGCTGC | 60 | GT |
R: AAGTGTAGGGGAATCTCACCAG | |||||
Spl-101 | Monomorf | Tetrasomic | F: Tail-CCCTCCACTGGAAATTTGA C | 52 | TCTA |
R: GCAATCAACAAG GTCTCTTTCA | |||||
Tail (17bp) | - | - | ATTACCGCGGCTGCTGG | - | - |
Ploidy | Body Weight (g) | Number of Ventral Scutes | Number of Dorsal Scutes |
---|---|---|---|
p (Mann–Whitney) | 0.000 | 0.000 | 0.002 |
Pentaploid (H1–H10) | 61.55 ± 12.19 | 6.3 ± 0.9 | 14.6 ± 1.5 |
Triploid (H11–H20) | 32.57 ± 10.35 | 2 ± 2.3 | 5.3 ± 3.7 |
Asymptotic significance 95% | 0.335 | 0.06 | 0.046 |
Pentaploid (AAp1–AAp4) | 2587.7 ± 965.21 | 7 ± 0.81 | 12.25 ± 0.5 |
Triploid (Ap1 and Ap2) | 1930.2 ± 862.95 | 3.5 ± 2.12 | 6 ± 0.0 |
Individuals | Psp-28 | Psp-29 | Psp-32 | Spl-101 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Russian sturgeon | 220 | 222 | 201 | 134 | 162 | 164 | 166 | 304 | 322 | 330 | 334 | ||||||
American paddlefish | 260 | 267 | 211 | 225 | 196 | 274 | |||||||||||
HP1 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 162 | 166 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HP2 | 220 | 267 | 201 | 211 | 225 | 134 | 164 | 166 | 196 | 304 | 322 | 330 | 334 | 274 | |||
HP3 | 220 | 222 | 267 | 201 | 211 | 225 | 134 | 162 | 164 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HP4 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 164 | 166 | 196 | 304 | 330 | 334 | 274 | |||
HP5 | 220 | 260 | 201 | 211 | 225 | 134 | 164 | 196 | 304 | 322 | 330 | 334 | 274 | ||||
HP6 | 220 | 222 | 267 | 201 | 211 | 225 | 164 | 164 | 166 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HP7 | 220 | 267 | 201 | 211 | 225 | 134 | 162 | 164 | 196 | 322 | 330 | 334 | 274 | ||||
HP8 | 220 | 222 | 267 | 201 | 211 | 225 | 162 | 166 | 196 | 304 | 334 | 274 | |||||
HP9 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 164 | 166 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HP10 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 162 | 164 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HT11 | 220 | 222 | 267 | 201 | 211 | 225 | 134 | 164 | 166 | 196 | 304 | 330 | 274 | ||||
HT12 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 164 | 196 | 304 | 322 | 274 | |||||
HT13 | 220 | 222 | 260 | 201 | 211 | 225 | 162 | 164 | 196 | 304 | 330 | 334 | 274 | ||||
HT14 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 162 | 166 | 196 | 304 | 330 | 334 | 274 | |||
HT15 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 164 | 196 | 304 | 322 | 274 | |||||
HT16 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 164 | 196 | 304 | 322 | 330 | 274 | ||||
HT17 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 162 | 196 | 304 | 322 | 330 | 274 | ||||
HT18 | 220 | 260 | 201 | 211 | 225 | 162 | 164 | 196 | 304 | 330 | 274 | ||||||
HT19 | 220 | 222 | 260 | 201 | 211 | 225 | 134 | 162 | 164 | 196 | 304 | 322 | 330 | 334 | 274 | ||
HT20 | 220 | 222 | 267 | 201 | 211 | 225 | 162 | 164 | 196 | 304 | 322 | 330 | 334 | 274 | |||
Ap1 | 220 | 267 | 201 | 211 | 225 | 134 | 162 | 196 | 304 | 322 | 274 | ||||||
Ap2 | 220 | 260 | 201 | 211 | 225 | 164 | 166 | 196 | 304 | 322 | 274 | ||||||
AAp1 | 220 | 260 | 201 | 211 | 225 | 134 | 162 | 164 | 196 | 304 | 322 | 274 | |||||
AAp2 | 220 | 260 | 201 | 211 | 225 | 134 | 162 | 166 | 196 | 304 | 330 | 274 | |||||
AAp3 | 220 | 267 | 201 | 211 | 225 | 162 | 166 | 196 | 304 | 322 | 274 | ||||||
AAp4 | 220 | 260 | 201 | 211 | 225 | 134 | 164 | 166 | 196 | 304 | 322 | 274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogár, K.; Stanivuk, J.; Géczi, A.; Fazekas, G.L.; Kovács, B.; Lázár, B.; Molnár, M.; Ardó, L.; Ljubobratović, U.; Kovács, G.; et al. Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids. Life 2024, 14, 818. https://doi.org/10.3390/life14070818
Bogár K, Stanivuk J, Géczi A, Fazekas GL, Kovács B, Lázár B, Molnár M, Ardó L, Ljubobratović U, Kovács G, et al. Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids. Life. 2024; 14(7):818. https://doi.org/10.3390/life14070818
Chicago/Turabian StyleBogár, Katalin, Jelena Stanivuk, Aliz Géczi, Georgina Lea Fazekas, Balázs Kovács, Bence Lázár, Mariann Molnár, László Ardó, Uroš Ljubobratović, Gyula Kovács, and et al. 2024. "Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids" Life 14, no. 7: 818. https://doi.org/10.3390/life14070818
APA StyleBogár, K., Stanivuk, J., Géczi, A., Fazekas, G. L., Kovács, B., Lázár, B., Molnár, M., Ardó, L., Ljubobratović, U., Kovács, G., Péter, D., Várkonyi, E., & Káldy, J. (2024). Investigation of Sexes and Fertility Potential of Female Russian Sturgeon (Acipenser gueldenstaedtii) and Male American Paddlefish (Polyodon spathula) Hybrids. Life, 14(7), 818. https://doi.org/10.3390/life14070818