The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Specimens
2.2. Femoral Morphology Characterisation
2.3. Finite Element Analysis
2.3.1. General Model Assumptions and Discretization Strategy
2.3.2. Boundary Conditions and Material Properties
2.3.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | rstumbling | pstumbling | rlateral fall | plateral fall | |
---|---|---|---|---|---|
ATA | [°] | 0.099 | 0.677 | −0.027 | 0.911 |
aMSA | [°] | −0.003 | 0.992 | 0.401 | 0.080 |
BA | [°] | −0.090 | 0.706 | 0.163 | 0.492 |
DCHD | [mm] | 0.212 | 0.369 | 0.571 | 0.009 |
DCVD | [mm] | 0.324 | 0.164 | −0.294 | 0.208 |
FHD | [mm] | 0.370 | 0.108 | 0.430 | 0.059 |
FNAL | [mm] | 0.181 | 0.445 | 0.513 | 0.021 |
GTH | [mm] | 0.114 | 0.632 | 0.728 | <0.001 |
NCDF | [mm] | 0.163 | 0.493 | 0.283 | 0.227 |
NCDS | [mm] | 0.203 | 0.390 | 0.212 | 0.369 |
ND | [mm] | 0.418 | 0.067 | 0.532 | 0.016 |
NSA | [°] | −0.285 | 0.223 | −0.641 | 0.002 |
OSA | [mm] | 0.172 | 0.469 | 0.567 | 0.009 |
OSH | [mm] | 0.187 | 0.430 | 0.705 | 0.001 |
OSV | [mm] | 0.490 | 0.028 | −0.016 | 0.946 |
TFL | [mm] | 0.349 | 0.131 | 0.230 | 0.328 |
References
- Mubark, I.; Abouelela, A.; Genena, A.; Al Ghunimat, A.; Sarhan, I.; Ashwood, N. Mortality Following Distal Femur Fractures Versus Proximal Femur Fractures in Elderly Population: The Impact of Best Practice Tariff. Cureus 2020, 12, e10744. [Google Scholar] [CrossRef]
- Osnes, E.K.; Lofthus, C.M.; Meyer, H.E.; Falch, J.A.; Nordsletten, L.; Cappelen, I.; Kristiansen, I.S. Consequences of hip fracture on activities of daily life and residential needs. Osteoporos. Int. 2004, 15, 567–574. [Google Scholar] [CrossRef]
- Gregory, J.S.; Aspden, R.M. Femoral geometry as a risk factor for osteoporotic hip fracture in men and women. Med. Eng. Phys. 2008, 30, 1275–1286. [Google Scholar] [CrossRef]
- Ensrud, K.E. Epidemiology of fracture risk with advancing age. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1236–1242. [Google Scholar] [CrossRef]
- Neto, J.S.H.; Dias, C.R.; de Almeida, J.D.B. Epidemiological characteristics and causes of proximal femoral fractures among the elderly. Rev. Bras. Ortop. (Engl. Ed.) 2011, 46, 660–667. [Google Scholar] [CrossRef]
- Wainwright, S.A.; Marshall, L.M.; Ensrud, K.E.; Cauley, J.A.; Black, D.M.; Hillier, T.A.; Hochberg, M.C.; Vogt, M.T.; Orwoll, E.S. Hip fracture in women without osteoporosis. J. Clin. Endocrinol. Metab. 2005, 90, 2787–2793. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, P.M.; Thomas, C.D.; Clement, J.G.; Loveridge, N.; Beck, T.J.; Bonfield, W.; Burgoyne, C.J.; Reeve, J. Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 2005, 366, 129–135. [Google Scholar] [CrossRef]
- Blain, H.; Chavassieux, P.; Portero-Muzy, N.; Bonnel, F.; Canovas, F.; Chammas, M.; Maury, P.; Delmas, P.D. Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 2008, 43, 862–868. [Google Scholar] [CrossRef]
- Schuit, S.C.E.; Van der Klift, M.; Weel, A.E.A.M.; De Laet, C.E.D.H.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.G.; Van Leeuwen, J.P.T.M.; Pols, H.A.P. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Zhang, M.; Fan, Y.; Kwok, W.L.; Leung, P.C. Relationships between femoral strength evaluated by nonlinear finite element analysis and BMD, material distribution and geometric morphology. Ann. Biomed. Eng. 2012, 40, 1575–1585. [Google Scholar] [CrossRef]
- Fajar, J.K.; Taufan, T.; Syarif, M.; Azharuddin, A. Hip geometry and femoral neck fractures: A meta-analysis. J. Orthop. Translat. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Luo, Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: A critical review. J. Bone Miner. Metab. 2021, 39, 523–533. [Google Scholar] [CrossRef]
- Ulivieri, F.M.; Rinaudo, L. Beyond bone mineral density: A new dual X-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index. Front. Med. 2020, 7, 590139. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Melton, L.J.; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Eastell, R.; Viceconti, M.; Pahr, D.; Yang, L. Experimental validation of DXA-based finite element models for prediction of femoral strength. J. Mech. Behav. Biomed. Mater. 2016, 63, 17–25. [Google Scholar] [CrossRef]
- Leslie, W.D.; Lix, L.M. Comparison between various fracture risk assessment tools. Osteoporos. Int. 2014, 25, 1–21. [Google Scholar] [CrossRef]
- Soodmand, E.; Zheng, G.; Steens, W.; Bader, R.; Nolte, L.; Kluess, D. Surgically Relevant Morphological Parameters of Proximal Human Femur: A Statistical Analysis Based on 3D Reconstruction of CT Data. Orthop. Surg. 2019, 11, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Qiao, L.; Qin, J.; Xu, J.; Zhou, S.; Chen, D.; Shi, D.; Dai, J.; Yao, Y.; Jiang, Q.; et al. The assessment of femoral shaft morphology in the sagittal plane in Chinese patients with osteoarthritis-a radiographic analysis. J. Orthop. Surg. Res. 2017, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Wakabayashi, Y.; Kurosa, Y.; Ishizuki, M.; Okawa, A. Stress fracture of the bowed femoral shaft is another cause of atypical femoral fracture in elderly Japanese: A case series. J. Orthop. Sci. 2014, 19, 579–586. [Google Scholar] [CrossRef]
- Maeda, Y.; Sugano, N.; Saito, M.; Yonenobu, K. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Clin. Orthop. Relat. Res. 2011, 469, 884–889. [Google Scholar] [CrossRef]
- Kaptoge, S.; Beck, T.J.; Reeve, J.; Stone, K.L.; Hillier, T.A.; Cauley, J.A.; Cummings, S.R. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J. Bone Miner. Res. 2008, 23, 1892–1904. [Google Scholar] [CrossRef]
- Yang, L.; Parimi, N.; Orwoll, E.S.; Black, D.M.; Schousboe, J.T.; Eastell, R. Association of incident hip fracture with the estimated femoral strength by finite element analysis of DXA scans in the Osteoporotic Fractures in Men (MrOS) study. Osteoporos. Int. 2018, 29, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Bouxsein, M.L.; Zysset, P.; Glüer, C.C.; McClung, M.; Biver, E.; Pierroz, D.D.; Ferrari, S.L. Perspectives on the non-invasive evaluation of femoral strength in the assessment of hip fracture risk. Osteoporos. Int. 2020, 31, 393–408. [Google Scholar] [CrossRef]
- Viceconti, M.; Qasim, M.; Bhattacharya, P.; Li, X. Are CT-based finite element model predictions of femoral bone strength clinically useful? Curr. Osteoporos. Rep. 2018, 16, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Orwoll, E.S.; Marshall, L.M.; Nielson, C.M.; Cummings, S.R.; Lapidus, J.; Cauley, J.A.; Ensrud, K.; Lane, N.; Hoffmann, P.R.; Kopperdahl, D.L.; et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J. Bone Miner. Res. 2009, 24, 475–483. [Google Scholar] [CrossRef]
- Johannesdottir, F.; Thrall, E.; Muller, J.; Keaveny, T.M.; Kopperdahl, D.L.; Bouxsein, M.L. Comparison of non-invasive assessments of strength of the proximal femur. Bone 2017, 105, 93–102. [Google Scholar] [CrossRef]
- Schileo, E.; Dall’ara, E.; Taddei, F.; Malandrino, A.; Schotkamp, T.; Baleani, M.; Viceconti, M. An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J. Biomech. 2008, 41, 2483–2491. [Google Scholar] [CrossRef] [PubMed]
- Cristofolini, L.; Schileo, E.; Juszczyk, M.; Taddei, F.; Martelli, S.; Viceconti, M. Mechanical testing of bones: The positive synergy of finite-element models and in vitro experiments. Philos. Trans. A Math. Phys. Eng. Sci. 2010, 368, 2725–2763. [Google Scholar] [CrossRef] [PubMed]
- Schileo, E.; Taddei, F.; Cristofolini, L.; Viceconti, M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 2008, 41, 356–367. [Google Scholar] [CrossRef]
- Ali, A.A.; Cristofolini, L.; Schileo, E.; Hu, H.; Taddei, F.; Kim, R.H.; Rullkoetter, P.J.; Laz, P.J. Specimen-specific modeling of hip fracture pattern and repair. J. Biomech. 2014, 47, 536–543. [Google Scholar] [CrossRef]
- Keyak, J.H.; Sigurdsson, S.; Karlsdottir, G.; Oskarsdottir, D.; Sigmarsdottir, A.; Zhao, S.; Kornak, J.; Harris, T.B.; Sigurdsson, G.; Jonsson, B.Y.; et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: A finite element analysis study. Bone 2011, 48, 1239–1245. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A. Hip joint contact forces during stumbling. Langenbeck’s Arch. Surg. 2004, 389, 53–59. [Google Scholar] [CrossRef]
- Cong, A.; Buijs, J.O.D.; Dragomir-Daescu, D. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Med. Eng. Phys. 2011, 33, 164–173. [Google Scholar] [CrossRef]
- Dragomir-Daescu, D.; Op Den Buijs, J.; McEligot, S.; Dai, Y.; Entwistle, R.C.; Salas, C.; Melton, L.J.; Bennet, K.E.; Khosla, S.; Amin, S. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip. Ann. Biomed. Eng. 2011, 39, 742–755. [Google Scholar] [CrossRef]
- Miura, M.; Nakamura, J.; Matsuura, Y.; Wako, Y.; Suzuki, T.; Hagiwara, S.; Orita, S.; Inage, K.; Kawarai, Y.; Sugano, M.; et al. Prediction of fracture load and stiffness of the proximal femur by CT-based specimen specific finite element analysis: Cadaveric validation study. BMC Musculoskelet. Disord. 2017, 18, 536. [Google Scholar] [CrossRef]
- Op Den Buijs, J.; Dragomir-Daescu, D. Validated finite element models of the proximal femur using two-dimensional projected geometry and bone density. Comput. Methods Programs Biomed. 2011, 104, 168–174. [Google Scholar] [CrossRef]
- Varga, P.; Schwiedrzik, J.; Zysset, P.K.; Fliri-Hofmann, L.; Widmer, D.; Gueorguiev, B.; Blauth, M.; Windolf, M. Nonlinear quasi-static finite element simulations predict in vitro strength of human proximal femora assessed in a dynamic sideways fall setup. J. Mech. Behav. Biomed. Mater. 2016, 57, 116–127. [Google Scholar] [CrossRef]
- Falcinelli, C.; Schileo, E.; Balistreri, L.; Baruffaldi, F.; Bordini, B.; Viceconti, M.; Albisinni, U.; Ceccarelli, F.; Milandri, L.; Toni, A.; et al. Multiple loading conditions analysis can improve the association between finite element bone strength estimates and proximal femur fractures: A preliminary study in elderly women. Bone 2014, 67, 71–80. [Google Scholar] [CrossRef]
- Kluess, D.; Souffrant, R.; Mittelmeier, W.; Wree, A.; Schmitz, K.-P.; Bader, R. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: Modeling and experimental validation. Comput. Methods Programs Biomed. 2009, 95, 23–30. [Google Scholar] [CrossRef]
- ABAQUS Analysis User’s Manual; Version 6.14; Dassault Systemes Simulia, Inc.: Johnston, RI, USA, 2014.
- Mohammadi, H.; Pietruszczak, S.; Quenneville, C.E. Numerical analysis of hip fracture due to a sideways fall. J. Mech. Behav. Biomed. Mater. 2021, 115, 104283. [Google Scholar] [CrossRef]
- Bayraktar, H.H.; Morgan, E.F.; Niebur, G.L.; Morris, G.E.; Wong, E.K.; Keaveny, T.M. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 2004, 37, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Pottecher, P.; Engelke, K.; Duchemin, L.; Museyko, O.; Moser, T.; Mitton, D.; Vicaut, E.; Adams, J.; Skalli, W.; Laredo, J.D.; et al. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT). Radiology 2016, 280, 837–847. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Dall’Ara, E.; Luisier, B.; Schmidt, R.; Kainberger, F.; Zysset, P.; Pahr, D. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone 2013, 52, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Hambli, R.; Allaoui, S. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann. Biomed. Eng. 2013, 41, 2515–2527. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J. The classic: On the inner architecture of bones and its importance for bone growth. Clin. Orthop. Relat. Res. 2010, 468, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Nissen, N.; Hauge, E.M.; Abrahamsen, B.; Jensen, J.E.B.; Mosekilde, L.; Brixen, K. Geometry of the proximal femur in relation to age and sex: A cross-sectional study in healthy adult Danes. Acta Radiol. 2005, 46, 514–518. [Google Scholar] [CrossRef]
- Looker, A.C.; Beck, T.J.; Orwoll, E.S. Does body size account for gender differences in femur bone density and geometry? J. Bone Miner. Res. 2001, 16, 1291–1299. [Google Scholar] [CrossRef]
- Jepsen, K.J.; Bigelow, E.M.R.; Goulet, R.W.; Nolan, B.T.; Casden, M.A.; Kennedy, K.; Hertz, S.; Kadur, C.; Clines, G.A.; Leis, A.M.; et al. Structural differences contributing to sex-specific associations between FN BMD and whole-bone strength for adult White women and men. JBMR Plus 2024, 8, ziae013. [Google Scholar] [CrossRef]
- Morgan, E.F.; Bayraktar, H.H.; Keaveny, T.M. Trabecular bone modulus–density relationships depend on anatomic site. J. Biomech. 2003, 36, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Reilly, D.T.; Burstein, A.H. The elastic and ultimate properties of compact bone tissue. J. Biomech. 1975, 8, 393–405. [Google Scholar] [CrossRef]
- Katz, J.; Meunier, A. The elastic anisotropy of bone. J. Biomech. 1987, 20, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.L.; Uchida, T.K.; Seth, A.; Rajagopal, A.; Delp, S.L. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement. J. Biomech. Eng. 2015, 137, 20905. [Google Scholar] [CrossRef]
Number of Specimens | CT Scanner | Resolution [mm³] | Preparation Process |
---|---|---|---|
6 | Aquilion 64, Toshiba, Tokyo, Japan | 0.4 × 0.4 × 0.5 | fresh frozen |
4 | Brilliance CT Big Bore, Philips AG, Amsterdam, Netherlands | 0.4 × 0.4 × 0.5 | formalin-fixed |
1 | SOMATOM Definition AS + CT scanner, Siemens AG, Munich, Germany | 0.7 × 0.7 × 1.0 | fresh frozen |
9 | 0.3 × 0.3 × 0.6 | formalin-fixed |
Abbreviation [unit] | Explanation | Determination Method |
---|---|---|
ATA [°] | femoral antetorsion angle | transversal plane |
aMSA [°] | the angle between the mechanical axis and FSA projected on the frontal plane | frontal plane |
BA [°] | the bending angle of the femoral shaft projected on the sagittal plane | sagittal plane |
DCHD [mm] | distance between the FHC and a plane parallel to the frontal plane containing the projection of the FHC to the FNA, positive for the anterior position of the FHC and negative for the posterior position | transversal plane |
DCVD [mm] | the vertical distance between the FHC and a plane parallel to the transversal plane containing the projection of the FHC to the FNA; positive for cranial positions of the FHC and negative for caudal positions | frontal plane |
FHD [mm] | femoral head diameter | best fit sphere |
FNAL [mm] | distance from the intersection of the FSA and FNA to the FHC (representing the ideal lever arm) | frontal plane |
GTH [mm] | the vertical distance between FHC and the plane parallel to the transversal plane containing the most proximal point of the greater trochanter | frontal plane |
NCDF [mm] | distance between FHC and FNA projected to the frontal plane | frontal plane |
NCDS [mm] | distance between FHC and FNA projected to the sagittal plane | sagittal plane |
ND [mm] | neck diameter projected on the frontal plane | frontal plane |
NSA [°] | femoral neck-shaft-angle | frontal plane |
OSA [mm] | distance between FHC and FSA | 3-dimensional |
OSH [mm] | projected distance between FHC and FSA in the frontal plane | frontal plane |
OSV [mm] | the vertical distance between the FHC and the plane parallel to the transversal plane containing the center of the lesser trochanter | frontal plane |
TFL [mm] | total femoral length | frontal plane |
Parameter | Mean | SD | Minimum | Maximum | |
---|---|---|---|---|---|
Fracture strength | |||||
Fstumbling | [N] | 6115 | 1339 | 3900 | 8500 |
Flateral fall | [N] | 5640 | 1420 | 2700 | 8800 |
Morphological parameters | |||||
ATA | [°] | 10.26 | 5.64 | 1.99 | 24.44 |
aMSA | [°] | 5.24 | 1.31 | 3.27 | 8.78 |
BA | [°] | 11.19 | 2.62 | 4.44 | 15.75 |
DCHD | [mm] | 1.13 | 1.98 | −3.75 | 5.11 |
DCVD | [mm] | −0.19 | 1.26 | −1.68 | 2.25 |
FHD | [mm] | 48.74 | 4.04 | 42.48 | 55.76 |
FNAL | [mm] | 51.90 | 7.23 | 36.05 | 64.15 |
GTH | [mm] | 7.89 | 5.01 | −0.27 | 17.57 |
NCDF | [mm] | 2.00 | 0.93 | 0.54 | 4.40 |
NCDS | [mm] | 2.12 | 0.89 | 0.67 | 4.37 |
ND | [mm] | 38.02 | 3.35 | 32.11 | 44.83 |
NSA | [°] | 124.84 | 4.56 | 115.15 | 134.62 |
OSA | [mm] | 45.71 | 6.41 | 30.49 | 59.12 |
OSH | [mm] | 41.85 | 7.09 | 27.47 | 58.53 |
OSV | [mm] | 59.31 | 5.68 | 49.41 | 71.37 |
TFL | [mm] | 468.44 | 37.71 | 396.42 | 531.31 |
PC | Eigenvalue | Percentage of Variance | Cumulative Percentage of Variance |
---|---|---|---|
1 | 4.5 | 63.7 | 63.7 |
2 | 1.2 | 16.7 | 80.4 |
Parameter | PC-1 | PC-2 |
---|---|---|
DCHD | 0.680 | 0.298 |
FNAL | 0.915 | 0.293 |
GTH | 0.499 | −0.776 |
ND | 0.729 | 0.277 |
NSA | −0.724 | 0.547 |
OSA | 0.954 | 0.111 |
OSH | 0.971 | 0.004 |
Model | Unstandardized Coefficient | Standardized Coefficient | p-Value | |
---|---|---|---|---|
Regression Coefficient B | Standard Error | Beta | ||
Constant | 5640.0 | 202.3 | 0.000 | |
PC-1 | 710.1 | 207.5 | 0.5 | 0.003 |
PC-2 | 940.8 | 207.5 | 0.6 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sass, J.-O.; Saemann, M.; Kebbach, M.; Soodmand, E.; Wree, A.; Bader, R.; Kluess, D. The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study. Life 2024, 14, 841. https://doi.org/10.3390/life14070841
Sass J-O, Saemann M, Kebbach M, Soodmand E, Wree A, Bader R, Kluess D. The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study. Life. 2024; 14(7):841. https://doi.org/10.3390/life14070841
Chicago/Turabian StyleSass, Jan-Oliver, Michael Saemann, Maeruan Kebbach, Ehsan Soodmand, Andreas Wree, Rainer Bader, and Daniel Kluess. 2024. "The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study" Life 14, no. 7: 841. https://doi.org/10.3390/life14070841
APA StyleSass, J. -O., Saemann, M., Kebbach, M., Soodmand, E., Wree, A., Bader, R., & Kluess, D. (2024). The Morphology of the Femur Influences the Fracture Risk during Stumbling and Falls on the Hip—A Computational Biomechanical Study. Life, 14(7), 841. https://doi.org/10.3390/life14070841