Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eggs Collection Process
2.2. Larvae Collection Process
2.3. Cluster Analysis of Inhabited Building
2.4. Hot-Spots Analysis
2.5. Relationship between Hotspot and Non-Residential Larval Habitats
2.6. Priors and Fixed Effects
2.7. Overfitting Avoiding and Software
3. Results
3.1. Eggs Collection
3.2. Larvae Collection
3.3. Inhabited Buildings Clusters Analysis
3.4. Eggs Hot-Spot Analysis
3.5. Relation of Non-Residential Larval Habits in Hot-Spot Production: Evaluation of the Model
3.6. Multilevel Model Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, O.J.; Gething, P.W.; Bhatt, S.; Messina, J.P.; Brownstein, J.S.; Hoen, A.G.; Moyes, C.L.; Farlow, A.W.; Scott, T.W.; Hay, S.I. Refining the Glob-al Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl. Trop Dis. 2012, 6, e1760. [Google Scholar] [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef]
- Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X. Chikungunya in the Americas. Lancet 2014, 383, 514. [Google Scholar] [CrossRef]
- Simmons, C.P.; Farrar, J.J.; van Vinh Chau, N.; Wills, B. Dengue. N. Engl. J. Med. 2012, 366, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Grard, G.; Caron, M.; Mombo, I.M.; Nkoghe, D.; Mboui Ondo, S.; Jiolle, D.; Fontenille, D.; Paupy, C.; Leroy, E.M. Zika Virus in Gabon (Central Africa)—2007: A New Threat from Aedes albopictus? PLoS Negl. Trop. Dis. 2014, 8, e2681. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Aedes Aegypti—Factsheet for Experts. 2023. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/mosquito-factsheets/aedes-aegypti (accessed on 10 July 2023).
- Lounibos, L.P.; Kramer, L.D. Invasiveness of Aedes aegypti and Aedes albopictus and Vectorial Capacity for Chikungunya Virus. J. Infect. Dis. 2016, 214 (Suppl. S5), S453–S458. [Google Scholar] [CrossRef]
- World Health Organization. Dengue and Severe Dengue. 2019. Available online: https://www.who.int/news-room/questions-and-answers/item/dengue-and-severe-dengue (accessed on 10 July 2023).
- Lepe López, M.A.; Dávila, M.; Canet, M.; Lopez, Y.; Flores, E.; Dávila, A.; Escobar, L.E. Distribución de Aedes aegypti y Aedes albopictus en Guatemala 2016. Cienc. Tecnol. A Y Salud 2017, 4, 21–31. [Google Scholar] [CrossRef]
- Monroy, C.; Yuichiro, T.; Rodas, A.; Mejía, M.; Pichilla, R.; Mauricio, H.; Pérez, M. Distribución de Aedes albopictus (Diptera: Culicidad) en Guatemala, Seguimiento a Una Colonización de 1995. Re-vista Científica de la Facultad de Ciencias Químicas y Farmacia. 1999, Volume 12. Available online: http://revistasguatemala.usac.edu.gt/index.php/qyf/article/view/350 (accessed on 22 December 2022).
- Ogata, K.; López, A. Discovery of Aedes albopictus in Guatemala. J. Am. Mosq. Control Assoc. 1996, 12, 503–506. [Google Scholar]
- Rodríguez-Flores, J.; Monzón-Muñoz, M.V.; Diéguez- Fernández, L.; Yax-Caxaj, P.M.; Iannacone, J. Culícidos de relevancia médico-veterinario de Jutiapa, Guatemala: 2009–2017. Biotempo 2018, 15, 49–57. [Google Scholar] [CrossRef]
- Monzón, M.V.; Rodríguez, J.; Diéguez, L.; Alarcón-Elbal, P.M.; San Martín, J.L. Hábitats de cría de Aedes aegypti (Diptera: Culicidae) en Jutiapa, Guatemala. Novit Caribaea 2019, 14, 111–120. [Google Scholar] [CrossRef]
- Diéguez, L.; Hernández, C.A.; Zacarías, R.; Salazar, V. Contribución al estudio de la familia Culi-cidae de Guatemala: Relación y distribución geográfica de las principales especies en la región norte. Rev. Cubana Med. Trop. 2006, 58, 30–35. [Google Scholar]
- Soto López, J.D. Relación espacial entre Aedes aegypti (Linnaeus, 1762) y la enfermedad de dengue en Guatemala. Rev. Científica De La Fac. De Cienc. Químicas Y Farm. 2019, 29, 8–25. [Google Scholar] [CrossRef]
- Gray, K.; Scott, T.W.; Getis, A.; Morrison, A.C. Characteristics of the spatial pattern of the dengue vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 2003, 69, 494–505. [Google Scholar]
- Olanratmanee, P.; Kittayapong, P.; Chansang, C.; Hoffmann, A.A.; Weeks, A.R.; Endersby, N.M. Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy. PLoS Negl. Trop. Dis. 2013, 7, e1913. [Google Scholar] [CrossRef] [PubMed]
- Yee, D.A. Thirty Years of Aedes albopictus (Diptera: Culicidae) in America: An Introduction to Current Perspectives and Future Challenges. J. Med. Entomol. 2016, 53, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Faraji, A.; Unlu, I. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America. J. Med. Entomol. 2016, 53, 1029–1047. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease emergence. Nature 2005, 438, 355–359. [Google Scholar] [CrossRef]
- Ministerio de Salud Pública y Asistencia Social-Organización Panamericana de la Salud. Manual operativo de vigilancia y control entomológico de Aedes aegypti vector del dengue y Chikungunya en Guatemala. Guatemala; 2015. Available online: https://iris.paho.org/handle/10665.2/54945 (accessed on 22 December 2022).
- Bousema, T.; Griffin, J.T.; Sauerwein, R.W.; Smith, D.L.; Churcher, T.S.; Takken, W.; Ghani, A.; Drakeley, C.; Gosling, R. Hitting Hotspots: Spatial Targeting of Malaria for Control and Elimination. PLoS Med. 2012, 9, e1001165. [Google Scholar] [CrossRef]
- Bisanzio, D.; Dzul-Manzanilla, F.; Gomez-Dantés, H.; Pavia-Ruz, N.; Hladish, T.J.; Lenhart, A.; Palacio-Vargas, J.; Gonzalez Roldan, J.F.; Correa-Morales, F.; Sánchez-Tejeda, G.; et al. Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl. Trop. Dis. 2018, 12, e0006298. [Google Scholar] [CrossRef]
- Paull, S.H.; Song, S.; McClure, K.M.; Sackett, L.C.; Kilpatrick, A.M.; Johnson, P.T. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 2012, 10, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E.J.; Dye, C.; Etard, J.F.; Smith, T.; Charlwood, J.D.; Garnett, G.P.; Hagan, P.; Hii, J.X.; Ndhlovu, P.D.; Quinnell, R.J.; et al. Heterogeneities in the transmission of infectious agents: Implications for the design of control programs. Proc. Natl. Acad. Sci. USA 1997, 94, 338–342. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud. Documento Técnico Para la Implementación de Intervenciones Basado en Escenarios Operativos Genéricos Para el Control del Aedes Aegypti; Organización Panamericana de la Salud: Washington, DC, USA, 2019. [Google Scholar]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife 2015, 4, e08347. [Google Scholar] [CrossRef] [PubMed]
- Escobar, L.E.; Romero-Alvarez, D.; Leon, R.; Lepe-Lopez, M.A.; Craft, M.E.; Borbor-Cordova, M.J.; Svenning, J.C. Declining Prevalence of Disease Vectors Under Climate Change. Sci. Rep. 2016, 6, 39150. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Criscione, C.D.; Anderson, J.D.; Sudimack, D.; Subedi, J.; Upadhayay, R.P.; Jha, B.; Williams, K.D.; Williams-Blangero, S.; Anderson, T.J. Landscape Genetics Reveals Focal Transmission of a Human Macroparasite. PLoS Negl. Trop. Dis. 2010, 4, e665. [Google Scholar] [CrossRef]
- Clements, A.C.; Firth, S.; Dembelé, R.; Garba, A.; Touré, S.; Sacko, M.; Landouré, A.; Bosqué-Oliva, E.; Barnett, A.G.; Brooker, S.; et al. Use of Bayesian geostatistical prediction to estimate local variations in Schistosoma haematobium infection in western Africa. Bull World Health Organ. 2009, 87, 921–929. [Google Scholar] [CrossRef] [PubMed]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2022. Available online: https://qgis.org (accessed on 9 March 2022).
- Pan American Health Organization (PAHO). Dengue and Dengue Hemorrhagic Fever in the Americas: Guidelines for Prevention and Control; Publication No. 548; Pan American Health Organization: Washington, DC, USA, 1994. [Google Scholar]
- Bova, J.; Paulson, S.; Paulson, G. Morphological Differentiation of the Eggs of North American Container-Inhabiting Aedes Mosquitoes. J. Am. Mosq. Control Assoc. 2016, 32, 244–246. [Google Scholar] [CrossRef]
- Matsuo, K.; Yoshida, Y.; Lien, J.C. Scanning Electron Microscopy of Mosquitoes: II. The egg sur-face structure of 13 species of Aedes from Taiwan. J. Med. Entomol. 1974, 11, 179–188. [Google Scholar] [CrossRef]
- Farajollahi, A.; Price, D.C. A Rapid Identification Guide for Larvae of the Most Common North American Container-Inhabiting Aedes Species of Medical Importance. J. Am. Mosq. Control Assoc. 2013, 29, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Rueda, L. Pictorial Keys for the identification of mosquitoes (Diptera: Culicidae) associated with Dengue Virus Transmission; Online Edition; Magnolia Press: Auckland, New Zealand, 2004. [Google Scholar]
- Soto-López, J.; Vieira-Lista, C.; Barrios-Izás, M. Efecto de la cobertura vegetal de terrenos deshabitados en la percepción de recipientes ecológicamente viables para Aedes aegypti Linnaeus, 1762. Cienc. Tecnol. Y Salud 2024, 10, 134–148. [Google Scholar] [CrossRef]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns Methodology and Applications with R; Chapman and Hall/CRC Press: London, UK, 2015; Available online: http://www.crcpress.com/Spatial-Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/9781482210200/ (accessed on 9 March 2022).
- LaCon, G.; Morrison, A.C.; Astete, H.; Stoddard, S.T.; Paz-Soldan, V.A.; Elder, J.P.; Halsey, E.S.; Scott, T.W.; Kitron, U.; Vazquez-Prokopec, G.M. Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru. PLoS Negl. Trop. Dis. 2014, 8, e3038. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 9 March 2022).
- Harrington, L.; Scott, T.; Lerdthusnee, K.; Coleman, R.; Costero, A.; Clark, G.; Jones, J.J.; Kitthawee, S.; Kittayapong, P.; Sithiprasasna, R.; et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 2005, 72, 209–220. [Google Scholar] [CrossRef]
- Anselin, L.; GeoDa Workbook. Maps for Rates or Proportions. 2018. Available online: https://geodacenter.github.io/ (accessed on 8 March 2022).
- McElreath, R. Rethinking: Statistical Rethinking Book Package; Chapman and Hall/CRC: London, UK, 2020. [Google Scholar]
- Russell, B.M.; Kay, B.H.; Shipton, W. Survival of Aedes aegypti; (Diptera: Culicidae) Eggs in Surface and Subterranean Breeding Sites During the Northern Queensland Dry Season. J. Med. Entomol. 2001, 38, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, D.; Rubio, A.; Velázquez, S.M.; Schweigmann, N.; Wiegand, T. Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Trop. 2005, 95, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Landau, K.I.; van Leeuwen, W.J.D. Fine scale spatial urban land cover factors associated with adult mosquito abundance and risk in Tucson, Arizona. J. Vector Ecol. 2012, 37, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Rueda, L.M.; Patel, K.J.; Axtell, R.C.; Stinner, R.E. Temperature-Dependent Development and Sur-vival Rates of Culex quinquefaciatus and Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 1990, 27, 892–898. [Google Scholar] [CrossRef]
- Nelson, M.J. Aedes aegypti Biología y Ecología; Organización Panamerica-na de la Salud: Washington, DC, USA, 1986. [Google Scholar]
- Servicio Nacional de Erradicación de la Malaria. Memoria Anual 1974; Ministerio de Salud Pública y Asistencia Social: Guatemala City, Guatemala, 1975. [Google Scholar]
- Ponciano, J.A.; Polanco, W.; Barrios, M. Dengue outbreaks pattern in southern Guatemala. Cienc. Tecnol. Y Salud 2019, 6, 158–170. [Google Scholar] [CrossRef]
- Ramasamy, R.; Surendran, S.N. Global Climate Change and Its Potential Impact on Disease Transmission by Salinity-Tolerant Mosquito Vectors in Coastal Zones. Front. Physiol. 2012, 3, 198. [Google Scholar] [CrossRef] [PubMed]
R | K(r) | CIinf | CIsup | K’(r)H | CIinf | CIsup | K(r)O | CIinf | CIsup |
---|---|---|---|---|---|---|---|---|---|
25 | 2032.3 | 1998.9 | 2063 | 3249.1 | 3215.8 | 3283.5 | 6604.9 | 0 | 16,512 |
50 | 7819.6 | 7760.5 | 7878.9 | 11,668.5 | 11,578.5 | 11,759.5 | 13,209.8 | 3302.5 | 26,419 |
100 | 31,278.3 | 31,164.2 | 31,396.9 | 42,694.4 | 42,405 | 42,949.5 | 13,209.8 | 3302.5 | 26,419 |
150 | 71,299 | 71,079 | 71,527.5 | 92,051.2 | 91,531 | 92,545.9 | 40,390.1 | 19,814 | 63,507 |
200 | 126,342.7 | 126,059 | 126,672 | 156,752.3 | 155,976 | 15,752 | 99,834.3 | 65,960 | 135,400 |
Model | WAIC | pWAIC | Standar Error |
---|---|---|---|
1 | 127.6 | 0.7 | 2.21 |
2 | 134.0 | 1.3 | 3.46 |
3 | 254.1 | 15.5 | 28.61 |
4 | 182.4 | 9.2 | 7.01 |
5 | 129.6 | 1.3 | 2.21 |
6 | 183.1 | 5.9 | 25.85 |
* 7 | 95.9 | 1.4 | 3.79 |
7 | 95.9 | 1.4 | 3.71 |
Mean | Standar Deviation | 5.50% | 94.50% | n_eff | Rhat | |
---|---|---|---|---|---|---|
γ | 0.881016996 | 0.639191811 | 0.1587952 | 2.06881852 | 46,818.543 | 1.00008543 |
β | 0.067488959 | 0.053101507 | 0.00541973 | 0.1676695 | 68,750.3299 | 0.99998469 |
α | 1.117058114 | 0.805886235 | 0.20272539 | 2.62788381 | 47,446.6902 | 1.00013199 |
etasq | 0.080203564 | 0.131349391 | 0.00374498 | 0.23398684 | 24,402.3169 | 0.99999281 |
rhosq | 1.73661865 | 1.921797854 | 0.02956985 | 5.3976698 | 71,109.0244 | 0.99999232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-López, J.D.; Barrios-Izás, M.A.; Vieira Lista, M.C.; Muro, A. Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life 2024, 14, 1013. https://doi.org/10.3390/life14081013
Soto-López JD, Barrios-Izás MA, Vieira Lista MC, Muro A. Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life. 2024; 14(8):1013. https://doi.org/10.3390/life14081013
Chicago/Turabian StyleSoto-López, Julio D., Manuel A. Barrios-Izás, María Carmen Vieira Lista, and Antonio Muro. 2024. "Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production" Life 14, no. 8: 1013. https://doi.org/10.3390/life14081013
APA StyleSoto-López, J. D., Barrios-Izás, M. A., Vieira Lista, M. C., & Muro, A. (2024). Role of Non-Residential Larval Habitats in Aedes Spatiotemporal Egg Production. Life, 14(8), 1013. https://doi.org/10.3390/life14081013