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Abstract: Aedes mosquitoes play a pivotal role as vectors of several arboviral diseases, presenting
significant public health challenges worldwide. Their invasive success in tropical regions has raised
substantial medical concerns. In Guatemala, Aedes mosquitoes are widely distributed and are the
primary vectors of the dengue virus. Efforts to control and monitor Aedes populations have evolved
over time, incorporating strategies such as spatial repellents, larvicides, genetic modifications, and
targeted interventions. Previous research has shown the heterogeneous spatial-temporal distribu-
tion of these mosquitoes within each season, influenced by temperature variations and favorable
environmental conditions for breeding. This study analyzed hot-spot patterns of spatiotemporal egg
density in Santa Elena de la Cruz, Petén, Guatemala, from March to September 2022. The aim was to
determine whether these patterns were influenced by non-residential larval habitats with plant cover
that are not treated by healthcare entities, as well as the proximity between such habitats. Our find-
ings include the collection and registration of over 16,000 Aedes eggs during the study period. Local
analyses revealed hot-spot patterns in egg densities associated with non-residential larval habitats
and their proximity. These insights highlight critical focal points where targeted interventions could
be implemented more effectively, resulting in cost-efficient mosquito vector control.

Keywords: Aedes; arbovirus; density; dengue; distribution; vector control

1. Introduction

Despite years of vector control attempts, Aedes (Stegomyia) aegypti (L.) and Aedes
albopictus (Skuse) mosquitoes continue to play a pivotal role as primary vectors of arboviral
diseases, including dengue, yellow fever, chikungunya, and Zika virus throughout the
tropical and subtropical world [1–5]. The global impact of these mosquitoes as invasive
species is substantial, attributed to their adaptation to human-related factors such as inter-
national travel, trade, socioeconomic conditions, access to water, and ecological niches [6,7].
Over the past 50 years, both species have traversed continents, establishing themselves in
diverse regions influenced by human activities, densely populated areas lacking reliable
water supplies, proper waste management, adequate sanitation [7], and ideal environ-
mental conditions (i.e., temperature, humidity, and rainfall). Given their invasiveness and
potential public health implications, vigilant monitoring and strategic control measures for
the distribution of Aedes are of paramount importance [8].

The approach to addressing the distribution of Aedes vectors of arbovirus in Guatemala
has involved in situ collection and ecological niche modeling [9–15]. Their presence spans
nearly the entire territory, encompassing 21 of the country’s 22 departments, except for
Totonicapán [9]. The breeding grounds of these mosquitoes are intricately linked to indoor
containers used for water storage. During the dry season, these include items like barrels,
rubber tires, and metal cans, while the rainy season sees proliferation inside barrels and
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unused containers [10,11]. Notably, outdoor populations also exist in locations such as
schools, churches, factories, city parks, and cemeteries [12,14]. In the Guatemala context,
vacant lots emerge as the predominant non-residential larval habitat [9,13]. Vacant lots
encompass all land within the Republic’s boundaries that does not fall under common
or private ownership nor is legitimately claimed by corporations or legal entities. This
category also includes common land abandoned due to the verified dissolution of its
communal domain. In this study, the term “non-residential larval habitats” is used to
denote such spaces.

Some areas and larval habitats may produce more adult mosquitoes than others,
according to field surveys and population genetics studies that provide evidence for the
spatial heterogeneity of Aedes mosquitoes abundance [16,17]. The control of Aedes vectors
has undergone extensive discussion, leading to the conclusion that the most effective
approach involves a combination of techniques. This includes creating anthropogenic
spaces refractory to vectors, enhancing disease control strategies, and optimizing resource
management by focal point treatments that are more efficient than random control measures
(such as passive surveillance strategies recommended by vector surveillance manuals from
the 1990s) [18–21]. This often depends on the ability to predict areas with high potential
presence before they spread to other locations. Therefore, identifying these locations with
geographic coordinates holds a logical objective [22–25].

In Latin American countries, attempts have been made to achieve this by calculating
larval and pupal indices by study regions, followed by subsequent risk stratification [26].
These indices exhibit inherent variability in precision, as their reliability as estimators of
underlying risk decreases inversely with the population at risk. Urban expansion further
complicates the use of indices, mainly due to difficulties in reaching the entire population
of at-risk households necessary for index establishment.

An alternative approach to elucidate areas with potential elevated vector presence
lies in ecologically relevant models, such as niche models [27]. These models serve to
bridge knowledge gaps regarding the potential distribution of the vector by enabling
the description of favorable environmental conditions that permit the species to thrive
in specific areas without the need for immigration [28,29]. The area classification made
by geographical models tends to be homogeneous despite the potential distributions of
other organisms.

Heterogeneous distributions are prevalent across individuals, species, and environ-
ments [20], frequently observed in many infectious and parasitic diseases where a small
number of hosts are most heavily infected while the rest of the population carries no
infections [25,30,31]. Unraveling the variables underlying such patterns entails studying
the presence of undisturbed spaces, examining individual density, and understanding
environmental characteristics that promote the establishment of the studied organisms [24].
In the case of mosquitoes, a common practice to identify regions generating higher quanti-
ties of vectors (individual production heterogeneity) is the utilization of statistical models.
These models highlight clusters of houses yielding disproportionately dense mosquito
populations, commonly referred to as “hotspots” [16,22].

Numerous studies employing such methodologies have unveiled the heterogeneous
temporal and spatial distribution of dengue-transmitting mosquitoes, highlighting re-
gions prone to producing significantly larger mosquito numbers compared to surrounding
ones [24–26]. Furthermore, it has been observed that the spatial-temporal distribution
of various arboviruses occurs simultaneously, implying that interventions aimed at one
disease can impact the prevalence of others [23]. Statistical models and local indicators of
spatial autocorrelation serve as valuable tools for identifying areas with high (hotspot) or
low (cold spot) values of a continuous variable, such as the number of eggs per ovitrap [26].
One notable statistical model is the local Getis-Ord analysis [Gi*(d)], which gauges the
concentration of spatial event values. This analysis aids in calculating local variations in
the mean of a variable, thereby pinpointing areas of interest [16].
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Given the significant medical implications posed by these disease vectors, there is a
heightened interest in identifying the ecological factors influencing the distribution and
density of Aedes populations. To establish the presence of locations generating higher
Aedes populations (individual production heterogeneity) over time and space, we analyzed
vector egg density patterns from March to September 2022 in Santa Elena de la Cruz,
Petén, Guatemala. Furthermore, we assessed whether the existence of these patterns was
influenced by nearby non-residential larval habitats.

2. Materials and Methods

The study area encompassed the municipality of Santa Elena de la Cruz, Petén, situated
at the geographical coordinates 16◦55′02′′ N 89◦53′56′′ W (Figure 1). This area, along with
the city of Flores, serves as the departmental capital of Petén. Santa Elena de la Cruz spans
approximately 4336 km2, housing around 90,000 inhabitants, and experiences a tropical
climate. The average annual temperature recorded in Santa Helena de la Cruz is 25.5 ◦C,
and the approximate precipitation is 1334 mm. Precipitation varies by 225 mm between the
driest month and the wettest month. The rainy season starts between the months of June
and July and ends at the beginning of the dry season between the months of December
and January. The highest relative humidity is measured in October (84.93%), the lowest
in April (56.07%). The region is predominantly rural, with over 79% of the population
residing in rural areas, characterized by limited access to basic services and a high poverty
rate, even below the national average (3%). As part of the research project DIGI 4.8.58.0.74
code B3CU-2022, authorization was obtained from the Petén Norte Health Area Directorate
to conduct sample collection activities and to request non-intervention of vector control
activities in the non-residential larval habitats selected during the period of our project.
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Figure 1. Study area (a) administrative boundaries of Guatemala, Belize, Honduras, and El Salvador
(b) Santa Elena de la Cruz, Petén (c) satellite image of panel (b), (d) closeup of collection area. The
black dots show the egg collection coordinates through the installation of ovitraps. The red dots show
the localities that were established as non-residential larval habitats with plant cover.
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2.1. Eggs Collection Process

A total of 60 sampling points were randomly selected using the QuantumGIS random
point tool [32] for collecting Aedes eggs. Each ovitrap was strategically positioned at least
100 m apart (exceeding the average flight distance of Aedes aegypti females [33]) to address
sample dependency effects. The eggs of Aedes were captured using ovitraps, which were 1-L
cylindrical black plastic containers covered with towel-type paper strips measuring 8 cm
in width and 35 cm in length. Each container was filled with 0.5 L of water. The exposed
paper extended 6–7 cm above the water level inside the ovitraps, ensuring consistency
across all ovitraps. Each ovitrap had holes positioned approximately 12 cm above the
ground, accommodating more than 600 milliliters. The ovitraps were installed around the
home in sheltered areas, protected from wind, direct sunlight, and rain, between 8:00 a.m.
and 10:00 a.m. h. They were always placed no higher than 50 cm above the ground. Even
though, for some weeks, the sampling points were inaccessible due to logistic issues (see
Supplementary Materials for exact dates), ovitraps were deployed once a week from March
to September of 2022 within Santa Elena de la Cruz.

During each visit, the procedure involved replacing the paper lining the interior of
the ovitraps with a fresh one. These paper strips were carefully collected and placed in
individual plastic bags for transportation to the laboratory. Eggs adhering to the paper
strips were quantified using a stereo microscope Leica EZ4E (Leica Microsystems, Wet-
zlar, Germany). After taxonomic assessment using both a stereo microscope and picture
keys [34,35], all collected eggs were stored in semi-sterile 1.5 mL vials to isolate them from
RNases. Storage was maintained at −20 ◦C within the facilities of the Centro Universi-
tario de Zacapa (CUNZAC) molecular biology laboratory. Recorded results from positive
ovitrap occurrences and corresponding egg quantities were systematically stored in an
electronic data sheet. Geographic information was projected onto the GTM Coordinate
Reference System, using the QuantumGIS Geographic Information System (Qgis3) for the
data projection process [32].

2.2. Larvae Collection Process

Thirty-five non-residential larval habitats adjacent to the sampling points were ran-
domly selected for this study due to limitations on funding and personnel. These parcels
were characterized by grass, shrubbery, and tree cover. Each of these spaces underwent
examination for the presence of the vector, employing a man-hour search approach. The
search sequence followed a clockwise direction. All containers suspected to contain Aedes
larvae found by one person in one hour were scrutinized, and any deposits bearing ev-
idence of the vector’s presence were duly marked. Upon identification, we took the
three-stage and fourth-stage larvae from each container using 10-milliliter plastic pipettes.
The collected larvae were then carefully transferred into one-milliliter flasks containing
70% alcohol. Each flask was labeled, encompassing geographic coordinates, the source of
the sample, the collector’s name, and the collection date.

Subsequently, the collected material was transported to the laboratory for further anal-
ysis. Genera identification of the specimens was undertaken using established taxonomic
keys [36,37], alongside references provided by the vector-borne disease program of the
Ministry of Health. The larval collections were conducted from the first week of October to
the last week of November 2022.

Geographic coordinates were documented, complemented by the capture of pho-
tographs of the sites (Figure 1). The photographs were taken once between the months of
October and November. Additionally, aerial reconnaissance was made with a Phantom 4
drone, maintaining an elevation of 450 m above sea level and allowing us to obtain images
in jpg format capturing the study area. The photographs had a 60% to 70% overlap between
locations visited. The geospatial coordinates of the drone images were then transferred to
QuantumGIS3 (QGIS3) using Python and Folium in a Jupyter Notebook to establish the
swept area and extract the photographs corresponding to the coordinates of non-residential
larval habitats. Afterward, we calculated the Green-Red Vegetation Index and the Visible
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Atmospherically Resistant Index of the pictures in QGIS3 to select the non-residential larval
habitats with plant cover, as previously described [38]. We also obtained precipitation data
from the Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología from
the months of our study.

2.3. Cluster Analysis of Inhabited Building

We conducted a cluster analysis to mitigate any potential impact from house grouping.
We use the geographic coordinates of each building in Santa Elena Petén provided by
Open Street Map services. We compared the observed clustering of houses with the
clustering of ovitraps positive for Aedes (ecologically viable). The Ripley and Getis K
function, implemented through the Kest, lohboot, and envelope functions within the
Spatstat package [39], was employed for this purpose. Additionally, the K functions were
corrected to account for edge effects [40]. The spatial clustering patterns were thoroughly
examined using the R programming environment [41]. Statistical parameters of K(r)
(999 permutations) were derived from entomological data and compared against statistical
parameters from dwelling information (with distances quantified in meters). House clusters
were inferred when the observed K(r) values surpassed the theoretical random distribution
of houses, K(r), for a specific distance (r).

Likewise, the same criteria were applied to ovitraps, evaluating whether the observed
K(r) value exceeded the distribution of houses at the same distance (r) [16] and the flight
range of the mosquito’s adult stage, which can be up to 100 m over their lifespan [40].
In certain scenarios, this range narrows to approximately 30 m, depending on food and
breeding site availability [16,42].

2.4. Hot-Spots Analysis

To identify recurrent population clusters responsible for elevated egg density (local
analysis), we used the number of eggs per ovitrap. This information was interpolated
across the surveyed localities on a weekly basis through the implementation of Inverse
Distance Weighting (IDW) in QGIS3 [32]. We used a matrix of 1768 squares of 100 mts2.
Based on these results, local analyses were conducted using the Gi* statistic in the GeoDa
tool [43]. To ensure meaningful week-to-week egg number comparison and to neutralize
the influence of varying evaluated zone sizes on the number of positive containers, the
values were standardized using Z scores: Z = (Ni − µ)/S, where Ni is the number of eggs
per area, µ is the mean number of eggs per study area, and S denotes the standard deviation
of eggs within the study area. For each area, Z values were transformed to values between
0 and 1 by dividing them into the maximum value obtained in the Z standardization. The
Gi* statistic was applied to these values. The resulting distribution was compared against
a random distribution with a statistical significance value (p < 0.01) by 999 Monte Carlo
permutations. This allowed each polygon to be classified as a member of a group or not.
Gi*(d) = 0 indicated a random distribution of mosquitoes. In this study, values greater than
2.575 (with a confidence level of 0.01) with 999 Monte Carlo permutations were considered
representative polygons, as previously described [16]. The graphical representation of these
outcomes was executed and visualized using the design tool in the QGIS3.

2.5. Relationship between Hotspot and Non-Residential Larval Habitats

Finally, we propose a relationship between the hot-spot eggs, the non-residential
larval habitats with plant cover, and the distances between each parcel, which remained
untouched by healthcare personnel during the study, Equation (1). We suggest that the
adjacent non-residential areas produce larvae that contribute to the maintenance of hot spots
over time, characterized by productive ovitraps. To assess this relationship, a generalized
linear multilevel model with a Poisson distribution was used. Additionally, Gaussian
process regression was employed to estimate a function governing the covariance between



Life 2024, 14, 1013 6 of 16

pairs of plots situated at varying distances. This covariance function, in turn, informed the
model predicting the number of eggs across plots:

Hi = Poisson(λi)

Hi = exp
(

kterreno[i]

)
α

Lβ
i
γ

k ∼ MVNormal((0, . . . , 0), K)

Kij = η2 exp
(
−ρ2D2

ij

)
+ δijσ

2

α ∼ Exponential(1)

β ∼ Exponential(1)

γ ∼ Exponential(1)

η2 ∼ Exponential(1)

ρ2 ∼ Exponential(0.5)

(1)

where H number of eggs observed, in the I observation, λi number of eggs expected, L
is the number of larvae, α is the rate of increase of larvae, γ is the rate of decrease of
larvae, β is the flexibility of increase of larvae (decreasing returns), kterreno[i] variation
factor that works as a weight in the form of a proportion (K = 0 exp (0) = 1, expected value

of α
Lβ

i
γ ). The a priori probability distribution was regularized except for the variation

factor, for which a Gaussian process was used. K is the variation factor, whose probability
distribution is Gaussian (multilevel) and is conditioned by the multiplication of a matrix of
means (all zero) by K, a covariance matrix using pairwise distances between non-residential
larval habitats with plant cover. H is the covariance matrix, ρ is the rate of decrease of K
with distance, D is the distance squared (which causes the covariance to decrease faster
at intermediate distances), and δijσ

2 is the variance. ρ2 and η2 must be positive, so we
used exponentials.

2.6. Priors and Fixed Effects

Because of the effect of priors on the models and the lack of information about the
dynamics of hot-spot maintenance related to non-residential larval habitats, for this analysis,
we adopt “uninformative” exponential priors for parameters α, γ, β, eta, and rho, aiming
to produce estimates like those obtained through maximum likelihood inference. In our
model, the varying effects are represented by the vector K, which has a length of 35 (variable
effects), one for each land value. These effects are modeled using an uncentered Gaussian
process, with L_SIGMA as the Cholesky decomposition matrix of the SIGMA covariance
matrix. We have three traditional fixed effect parameters (α, γ, β) and two fixed effects (eta
and rho) that do not directly affect the response λ independently of the K units.

2.7. Overfitting Avoiding and Software

To avoid overfitting, we fit seven different models to our data. Differences between
models were changing the scales of the variables (log10 of eggs), the number of iterations
(2000, 3000, 15,000), the original scale of distance matrix (km to meters), the uninformative
priors (exp (0.1)), and the control parameters (adapt_delta, stepsize, max_treedepth).

Our model is easily estimated using Markov Chain Monte Carlo (MCMC) techniques.
Four Hamiltonian MCMCs were used for the calculation of the posterior probability,
5000 iterations within each chain, and 1000 iterations of samples for warmup. We had to
change the control parameters to avoid divergence transitions (adapt_delta: 0.999, stepsize:
0.01, max_treedepth: 12). We fit the models and sample from the posterior distribution of
the parameters with the rethinking package in R [44].
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3. Results
3.1. Eggs Collection

A total of 16,599 eggs were collected over the eighteen weeks. Notably, every container
tested showed positive results in at least one of the visits. There was a 300 percent increase
in the number of collected eggs starting from the thirteenth week, coinciding with the
onset of the rainy season in July (Figure 2) at fifty percent of the sampling points (50th to
100th percentile).
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3.2. Larvae Collection

Non-residential larval habitats were visited, yielding an average value of 1 container
per site (Median = 1; Interquartile range = 1), 37 fourth-stage larvae (Median = 37; Interquar-
tile range = 57), and 2 pupae (Median = 2; Interquartile range = 8), per evaluated point
(Figure 3).

Life 2024, 14, x FOR PEER REVIEW 7 of 17 
 

 

stepsize: 0.01, max_treedepth: 12). We fit the models and sample from the posterior distri-
bution of the parameters with the rethinking package in R [44]. 

3. Results 
3.1. Eggs Collection 

A total of 16,599 eggs were collected over the eighteen weeks. Notably, every con-
tainer tested showed positive results in at least one of the visits. There was a 300 percent 
increase in the number of collected eggs starting from the thirteenth week, coinciding with 
the onset of the rainy season in July (Figure 2) at fifty percent of the sampling points (50th 
to 100th percentile). 

  
(A) (B) 

Figure 2. (A) Eggs were collected with ovitraps in Santa Elena de la Cruz, Petén, for 18 weeks be-
tween March and September. (B) Correlation between precipitation and total number of eggs col-
lected per week. 

3.2. Larvae Collection 
Non-residential larval habitats were visited, yielding an average value of 1 container 

per site (Median = 1; Interquartile range = 1), 37 fourth-stage larvae (Median = 37; Inter-
quartile range = 57), and 2 pupae (Median = 2; Interquartile range = 8), per evaluated point 
(Figure 3). 

 
Figure 3. Larvae, containers, and pupae were collected in non-residential larval habitats covered 
with plants (grass, shrubs, and trees) in Santa Elena de la Cruz Petén in October. The x marks the 
mean of the number of containers, Pupae, and Larvae. Dots marks the value of the samples. 

3.3. Inhabited Buildings Clusters Analysis 

Figure 3. Larvae, containers, and pupae were collected in non-residential larval habitats covered with
plants (grass, shrubs, and trees) in Santa Elena de la Cruz Petén in October. The x marks the mean of
the number of containers, Pupae, and Larvae. Dots marks the value of the samples.

3.3. Inhabited Buildings Clusters Analysis

To address the potential clustering of houses and the interference such patterns might
introduce in subsequent analyses, we selected random points within the locality.

Table 1 shows the comparison between the theoretical and observed distance of houses
and ovitraps. A value of K greater than the theoretical distance indicates no signs of
aggregation in the distribution of houses. Clusters are identified when the observed K
values exceed the theoretical K distribution of houses at a given distance. For positive
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ovitraps, the K(r) values typically surpass the theoretical values associated with houses at
distances below one hundred meters. However, the confidence intervals are notably broad
within this range, making it challenging to definitively determine the presence of groupings
among positive ovitraps. Beyond the one-hundred-meter threshold, the assumption of
grouping becomes less evident. This is logical, given that the ovitraps were initially placed
at distances exceeding one hundred meters. Consequently, the model’s ability to distinguish
groupings below this distance is limited.

Table 1. Results of the reduced second-moment function of Ripley and Getis in Santa Elena, Petén.

R K(r) CIinf CIsup K’(r)H CIinf CIsup K(r)O CIinf CIsup

25 2032.3 1998.9 2063 3249.1 3215.8 3283.5 6604.9 0 16,512
50 7819.6 7760.5 7878.9 11,668.5 11,578.5 11,759.5 13,209.8 3302.5 26,419
100 31,278.3 31,164.2 31,396.9 42,694.4 42,405 42,949.5 13,209.8 3302.5 26,419
150 71,299 71,079 71,527.5 92,051.2 91,531 92,545.9 40,390.1 19,814 63,507
200 126,342.7 126,059 126,672 156,752.3 155,976 15,752 99,834.3 65,960 135,400

R: Distance in meters, K(r): Theoretical, K’(r)H: Observed in houses, K(r)O: Observed in positive ovitraps. CIinf:
Lower confidence interval. CIsup: Upper confidence interval. Clusters can be identified through the theoretical
distance calculated against the observed distance of the containers and houses studied.

At distances exceeding one hundred meters, the distribution of ovitraps shows an
absence of distinct groups. The consistently positive results across all sampling points
underscore the ecological viability of the ovitraps (Supplementary Data S1). This data
pattern reaffirms the effectiveness and reliability of the ovitraps in capturing and assessing
female Aedes activity.

3.4. Eggs Hot-Spot Analysis

Figure 4 shows areas with statistically significant higher egg counts compared to
adjacent squares (p < 0.01). Specifically, the areas highlighted with six or seven weeks
of above-average egg counts are surrounded by non-residential larval habitats that have
not been intervened by vector control strategies. The spatial placement of these habitats
might impact the persistence of egg densities over time, although the influence of distance
remains somewhat ambiguous.
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3.5. Relation of Non-Residential Larval Habits in Hot-Spot Production: Evaluation of the Model

In Table 2, we compare seven models using the Widely Applicable Information Cri-
terion (WAIC). This criterion provides simple estimates of out-of-sample model accuracy,
giving us a rough measure of our model’s flexibility and, therefore, overfitting risk. We
observe that the values of efficient approximate leave-one-out (LOO) cross-validation using
Pareto smoothed importance sampling (PSIS) correspond with the WAIC, so we used the
last criterion to compare our models. We chose the 7th model from different adjusted
models after comparing them (lower WAIC and SE).

Table 2. Gaussian approximations for each parameter’s marginal distribution of the multilevel model
and its evaluation by out-of-sample relative K-L divergence.

Model WAIC pWAIC Standar Error

1 127.6 0.7 2.21
2 134.0 1.3 3.46
3 254.1 15.5 28.61
4 182.4 9.2 7.01
5 129.6 1.3 2.21
6 183.1 5.9 25.85

* 7 95.9 1.4 3.79
7 95.9 1.4 3.71

PSIS: efficient approximate leave-one-out (LOO) cross-validation using Pareto smoothed importance sampling
(PSIS). WAIC: Widely Applicable Information Criterion. * lppd: log pointwise predictive density. pWAIC: the
effective number of parameters.

The trace and trank plots of the four chains from the Markov Chain Monte Carlo
(MCMC) traces of the higher model (7) look healthy. Both chains are stationary around
the same values (resemble “white noise” around a stable mean), according to their corre-
sponding priors, and mixing is good. There are no wild detours into extreme values, and
no single chain consistently stays in one region of the parameter space (Figure 5). We were
able to avoid divergent transitions with the changes in the control parameters of the model
and with the use of non-informative priors and non-centered parameterization.
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3.6. Multilevel Model Results

Table 3 shows the plausibility of each parameter value after averaging over the plau-
sibility of each other parameter given by a Gaussian distribution with pointwise mean
and standard deviation. The 5.5% and 94.5% correspond to an 89% credible interval (CI).
The Rhat ratio of all the parameters calculated by the multilevel model shows that total
variance shrinks to average variance within the four chains used. The effective number of
samples in all the parameters is far above 20,000, which is plenty for accurate inference of
the posterior.

Table 3. Gaussian approximations for each parameter’s marginal distribution of the multilevel model.

Mean Standar Deviation 5.50% 94.50% n_eff Rhat

γ 0.881016996 0.639191811 0.1587952 2.06881852 46,818.543 1.00008543
β 0.067488959 0.053101507 0.00541973 0.1676695 68,750.3299 0.99998469
α 1.117058114 0.805886235 0.20272539 2.62788381 47,446.6902 1.00013199
etasq 0.080203564 0.131349391 0.00374498 0.23398684 24,402.3169 0.99999281
rhosq 1.73661865 1.921797854 0.02956985 5.3976698 71,109.0244 0.99999232

n_eff: number of independent samples. Rhat: Gelman-Rubin convergence diagnostic. γ: flexibility of increase of
larvae. β: rate of decrease of larvae. α: rate of increase of larvae. etasq: covariance matrix. rhosq: rate of decrease of
K with distance.

The parameter for the rate of decrease of larvae (γ) has a mean value of 0.88. The
compatibility interval (0.16, 2.07) shows that plausible values of g can vary quite a bit,
although, in general, they seem to be concentrated at values less than 2.07. The parameter
for the rate of increase of larvae (α) has a mean value of 1.12 with a considerable standard
deviation of 0.81, indicating high uncertainty. The compatibility interval (0.20, 2.63) shows
a wide range of plausible values, suggesting that a could have a significant effect. The
parameter for the flexibility of increase of larvae (β) has a mean value of 0.07, with a
standard deviation of 0.05, indicating low uncertainty, and the compatibility interval
(0.01, 0.17) suggests that the effect of larvae on λ is small but positive. The low mean and
small compatibility interval of the eta parameter suggest that the variability between the
k effects is not very high. The rho parameter has a mean of 1.74 and a high standard
deviation of 1.92, indicating considerable uncertainty. Since we expect eggs to vary greatly
between locations, it is important to consider that the high uncertainty in the rhos range of
compatibility (0.03, 5.40) suggests that there is a lot of variability in how non-residential
larval habitat effects are spatially correlated.

Figure 6 presents a visual representation of the relations found with the multilevel
model (Supplementary Materials S2). The numbers represent the non-residential habitats.
According to the multilevel approach, the intensity of correlation tends to be stronger
among non-residential habitats that are closer to each other. There is a stronger correlation
between two groups of non-residential larval habitats, 4–8 and 9–13. The direct impact
of these correlations on hot-spot eggs might be challenging to discern, but notable spatial
trends are evident.

There is a stronger correlation between non-residential larval habitats within hot-spot
areas compared to those in adjacent areas (ρ2: 0.0802, 0.0037–0.2339 89% CI. η2: 1.7366,
0.0295–5.3976 89% CI). This observation aligns with the outcomes of our previous hot-spot
analyses. These results collectively indicate patterns not only in terms of egg quantities
over both time and space but also in the larvae generated within the surrounding vicinity
of the hotspots.

The relationship between non-residential larval habitats and hot spots is depicted in
Figure 7. The multilevel model shows how the number of larvae in non-residential habitats
is an explanatory framework for understanding hot-spot egg counts (Figure 7) following a
Poisson distribution. This suggests a potential link between larval populations in uninhab-
ited areas and the dynamics observed in adjacent regions of higher egg productivity.
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represented according to the density of larvae found in the non-residential larval habitats.

According to the fitted model, changes in hot-spot egg counts can follow the dynamics
of larvae in non-residential larval habitats (Table 3). Hot-spot areas with strong correlations
with non-residential larval habitats (4–8 and 9–13) have egg counts estimated by the model
corresponding to the number of larvae found in surrounding parcels (Figure 7) within
the 80th percentile of the posterior interval (PI). In Parcel 8, fewer eggs were observed
than expected for the number of larvae found. Another strongly spatially correlated group
consists of plots 9–13. In this group (4–8), plots 9 and 10 show discrepancies between the
observed and expected egg counts based on the number of larvae in the surroundings,
according to the model (95th PI). Parcels 31, 32, and 34 (refer to Supplementary Data S1)
exhibit cumulative egg counts that surpass the anticipated count based on their respective
larval populations (95th PI). We also observed no correlation between these parcels, as
shown in Figure 6.
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4. Discussion

Our study has provided valuable insights into the dynamic and spatially varying
nature of arbovirus-transmitting vectors over time and space within a village in Guatemala.
Understanding the ecological factors that influence these patterns, as well as the bionomics
of these organisms, is pivotal for implementing focal interventions and more effective
vector control strategies, indirectly reducing arbovirus transmission. Our results support
the existence of a concentrated distribution of Aedes eggs and reveal a significant correlation
between the presence of non-residential habitat larvae and higher egg counts in adjacent
hot-spot areas. This suggests that non-residential larval habitats play a crucial role in
sustaining mosquito populations, potentially serving as a primary source of infestation in
nearby residential areas.

We identified hot spots that are notably clustered in the central districts of Santa Elena,
with sporadic distribution towards the periphery. It is noteworthy that these identified
points exhibit stability over time. Hot spots are often situated 150 m away from non-
residential larval habitats with favorable conditions for vector persistence, which reinforce
the high densities of mosquitoes over time. Non-residential larval habitats can harbor
viable eggs due to quiescence mosquitoes (up to one year when desiccated) until suitable
conditions recur [45]. The presence of points responsible for elevated vector densities
presents an opportunity for targeted intervention strategies in mosquito control and for
optimizing resource allocation compared to conventional uniform interventions [26,40].
This approach could effectively reduce the overall mosquito population and the risk of
disease transmission.

The correlation between the hot-spots egg density and non-residential larval habitats
larvae identified in ecologically viable containers allows us to pinpoint critical locations of
high importance in the resilience of Aedes egg populations across space. Interestingly, our re-
sults also suggest a potential effect of the distance from non-residential larval habitats on the
hot-spot number of eggs. Similar effects have been demonstrated in other organisms [20],
highlighting the importance of targeted interventions in areas where larval production
is significant. While the model generally predicts egg counts based on larval presence in
surrounding areas, there are notable discrepancies in certain plots (e.g., Parcel 8, 9, and 10).
These discrepancies highlight the complexity of mosquito breeding behaviors and suggest
that other environmental or ecological factors might be influencing egg distribution.

Simulation results indicate that interventions targeting hot spots could yield more
effective outcomes compared to homogeneous interventions [22]. This aligns with previous
proposals advocating for focused efforts in dengue vector control and surveillance, as
previously suggested [16,20,22,24], but highlighting a new component in Aedes dynamics:
non-residential larval habitats. Healthcare facilities can enhance their impact by strategi-
cally addressing and intervening in non-residential larval habitats that serve as breeding
hotspots for mosquitoes. These strategies should not only focus on residential areas but also
consider the broader environmental context, including neglected non-residential zones.

It’s worth noting that we did not measure the relationship between larval numbers
and plant composition, which could be an important factor to consider in future research,
as previously reported [46,47].

The geographic distance relationship outlined by our results may be influenced by
unaccounted variables, such as similarities between geographically proximate terrains.
Factors like population density, proximity to commercial areas or shopping centers, distance
to waste disposal sites, and the presence of discarded tires could potentially play a role.
These variables could contribute to the observed patterns in Aedes distribution and density.

Another important consideration is the relatively low survival rate of mosquitoes,
with reported rates of around 3% from the egg to adult stage [48,49]. Measuring eggs in the
field might not fully capture the risk of dengue transmission posed by adult females. The
presence and density of Aedes mosquitoes, as gauged through egg counts, do not directly
indicate the risk of arbovirus contagion. While this aspect is not the central focus of our
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study, if a risk indicator of viral transmission is desired, we recommend measuring the
population of fed adult female mosquitoes alongside estimates of population age.

Arboviral diseases surpass the capacity of health care institutions to control them,
a reality underscored since the reinfestation of Aedes aegypti in Guatemala in 1973 [50].
Addressing and mitigating this issue requires multi-sectoral participation. However, the
prevailing socioeconomic crisis in most of the at-risk populations constrains the full po-
tential benefits that comprehensive participation from all affected sectors could bring to
vector control. Therefore, the utilization of methodologies adapted to the current societal
state, influenced by arboviruses, is indispensable for effective vector control and surveil-
lance. Given their demonstrated reliability, ovitraps could be deployed more widely to
gather comprehensive data on mosquito distribution and to evaluate the impact of control
interventions over larger areas.

While various factors contribute to the distribution of A. aegypti and A. albopictus, in-
cluding urbanization and sanitary conditions, climate exerts the most significant influence
on species and disease distribution [51]. Although our study does not show a relationship
between precipitation and the density of Aedes eggs (Figure 2B), it is imperative to empha-
size that if current climate trends persist, the expansion of vectors distribution, as well as the
viruses they transmit, will likely intensify [52], rendering control efforts more challenging.

It becomes evident that further research is imperative to broaden our understanding of
mosquito population dynamics and adaptability. This entails incorporating a wider range of
variables and acknowledging their interactions to inform and guide intervention strategies.
Healthcare systems of affected countries can prioritize disease control through vector
surveillance and management in regions prone to producing significantly larger mosquito
numbers compared to surrounding areas. These goals, focusing on spatiotemporal patterns,
can be achieved through the utilization of spatial analysis, as we successfully demonstrate.
Furthermore, we establish the effect of the proximity of non-residential larval habitats with
plant cover on hot-spot patterns as a new variable to consider.

The spatial analysis framework employed in this study holds promise in its potential
application to analyze oviposition patterns in other vector mosquitoes, such as Anopheles
spp. or Culex spp. These species may exhibit analogous spatial oviposition patterns
contingent on their ecological behaviors. By implementing this approach, healthcare
institutions can enhance their effectiveness by strategically targeting and intervening
within non-residential larval habitats responsible for mosquito breeding hotspots. This
optimization can yield more streamlined and effective control measures and strategies
in the ongoing battle against mosquito-borne diseases. The integration of such analyses
can catalyze advancements in public health efforts and enhance our ability to mitigate the
impact of these diseases on affected populations.

Our findings underscore the importance of considering both residential and non-
residential habitats in mosquito control efforts. Seasonal fluctuations in dengue cases, which
are well-documented, often mask the underlying patterns of Aedes mosquitoes’ activity
despite their significance for public health. Presently, the vector control strategy tends to
be reactive; however, our findings suggest a shift towards a preventive approach. The
significant correlation between larvae in non-residential areas and hot-spot egg numbers
underscores the need for comprehensive and targeted vector control strategies aimed at
eradicating hotspots and their potential breeding grounds, including uninhabited habitats.
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mdpi.com/article/10.3390/life14081013/s1, Data S1: Data and S2: Parameter estimate information of
the model.
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