Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Two-Dimensional Morphology and Mineralized Structure of Halysites
3.2. Three-Dimensional Morphology of Halysites
3.3. The Elemental Analysis of Halysites
3.4. Halysites Reef Volume Calculation
4. Discussion
4.1. New Insights into 2D and 3D Morphological Reconstruction of Halysites
4.2. Implications for Halysites Reef Formation
4.3. Implications for Small Shelly Fossils Assessment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, J.; Guo, J.F.; Ou, Q. Evolutionary framework of early Cambrian cnidarians from south China. Earth Sci. Front. 2020, 27, 67–78. [Google Scholar] [CrossRef]
- Liao, W.H. Advance in study of the taxonomy of Cnidaria Palaeozoic corals. Acta Palaeontol. Sin. 2002, 41, 464–468. [Google Scholar] [CrossRef]
- Shu, D.G.; Conway, M. New diploblasts from Chengjiang fossil lagerstätte. Earth Sci. Front. 2006, 13, 227–233. [Google Scholar]
- Vinn, O. Phosphatic Biomineralization in Scyphozoa (Cnidaria): A Review. Minerals 2022, 12, 1316. [Google Scholar] [CrossRef]
- David, J.B. Paleoecology-Past, Present and Future; Wiley-Blackwell: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ricci, F.; Rossetto Marcelino, V.; Blackall, L.L.; Kühl, M.; Medina, M.; Verbruggen, H. Beneath the surface: Community assembly and functions of the coral skeleton microbiome. Microbiome 2019, 7, 159. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.B.; David, A.T.H. Introduction to Paleobiology and the Fossil Record; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Bhargava, O.N.; Bassi, U.K. Silurian reefal buildups: Spiti-Kinnaur, Himachal Himalaya, India. Facies 1986, 15, 35–51. [Google Scholar] [CrossRef]
- Gong, S.Y.; Li, Z.M.; Cai, S.W. Origin, Emigration and Paleogeography of Ordovician—Silurian Tabulata in Yangtze Region. Earth Sci.-J. China Univ. Geosci. 1997, 22, 129–134, (In Chinese, English Summary). [Google Scholar]
- Jin, C.T. Sequence of Silurian bed coral in Huanggexi, Daguan, Yunnan. Acta Palaeontol. Sin. 1984, 23, 4–140. (In Chinese) [Google Scholar]
- Wang, B.Y. Paleontological Characteristics of Tabulata and Heliolitoidea of Silurian in northern China and adjacent area. Xinjiang Geol. 1998, 2, 14, (In Chinese, English Summary). [Google Scholar]
- Yu, C.M. Coral Fossils in China: Fossils of Various Phyla in China; Science Press: Beijing, China, 1963. (In Chinese) [Google Scholar]
- Zhou, X.Y. A preliminary study on the biostratigraphy of Silurian Tabulata in Guizhou province. Acta Geol. Sin. 1983, 4, 34–44, (In Chinese, English Summary). [Google Scholar]
- Zapalski, M.K. Parasites in Emsian-Eifelian Favosites (Anthozoa, Tabulata) from the Holy Cross Mountains (Poland): Changes of distribution within colony. Geol. Soc. Lond. Spec. Publ. 2009, 314, 125–129. [Google Scholar] [CrossRef]
- Franc¸oise, D. Lower Cambrian archaeocyathan bioconstructions. Gen. Palaeontol. (Palaeoecol.) 2007, 6, 5–19. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhan, R.B. A new species of middle Rhuddanian Halysites (Tabulata) from Meitan, northern Guizhou, Southwest China. Est. J. Earth Sci. 2015, 64, 105–109. [Google Scholar] [CrossRef]
- Rong, J.Y.; Wang, Y.; Zhan, R.B.; Fan, J.X.; Huang, B.; Tang, P.; Li, Y.; Zhang, X.L.; Wu, R.C.; Wang, G.X.; et al. Silurian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 2019, 62, 89–111. [Google Scholar] [CrossRef]
- Li, Z.M.; Liu, G.X. New Halysitida from middle Silurian in north-west Hubei and south Shanxi. Earth Sci. 1988, 15, 481–486. [Google Scholar]
- Wang, G.X.; Ian, G.P.; Yong Yi, Z. The youngest Ordovician (latest Katian) coral fauna from eastern Australia, in the uppermost Malachis Hill Formation of central New South Wales. Alcheringa Australas. J. Palaeontol. 2020, 44, 356–378. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Wang, G.X. The Llandoverian coral fauna from xikeer, western tarim basin. Acta Palaeontol. Sin. 2012, 51, 176–185, (In Chinese, English Summary). [Google Scholar] [CrossRef]
- Huang, Z.X.; Cheng, L.R. The Devonian and Silurian corals from Bange and their and Shenzha, northern Xizang. J. Chang. Univ. Earth Sci. 1988, 3, 249–257. (In Chinese) [Google Scholar]
- Li, Y.X. Silurian and Devonian Tabulate coral assemblages in the Beishan area, Gansu Province. Acta Palaeontol. Sin. 1983, 22, 73–143, (In Chinese, English Summary). [Google Scholar]
- Lin, B.Y.; Wang, B.Y. Middle and Late Silurian Tabulata and Heliolitida from the northern side of Bolhinur Mountains in Xinjiang. Xinjiang Geol. 1984, 1, 37–49, (In Chinese, English Summary). [Google Scholar]
- Wang, B.Y. Silurian faunal and paleogeographical characters of the Tianshan Mountains of Xinjiang. Xinjiang Geol. 1988, 6, 4, (In Chinese, English Summary). [Google Scholar]
- Hou, F.H.; Fang, S.X.; Wang, Z.Y.; Zhang, T.S.; Lan, G.; Deng, M.; Cai, Y.L. Organic reef in Lower Silurian. Guangyuan, Sichuan to Ningqiang, Shaanxi. Acta Sedimentol. Sin. 1994, 12, 7, (In Chinese, English Summary). [Google Scholar]
- Li, C.; Wu, X.J.; Fan, J.X.; Chen, Q.; Li, G.; Sun, Z.Y.; Zhang, Y.D. Carbon isotope chemostratigraphy of the Ordovician-Silurian transition interval of the Xike-1 drillcore in Guizhou, China. Geochemistry 2019, 48, 11, (In Chinese, English Summary). [Google Scholar]
- Deng, Z.Q. Some palaeozoic Tabulate corals from northern Xinjiang. In Palaeozoic Fossils of Northern Xinjiang; Academia Sinica; Nanjing University Press: Nanjing, China, 1999; pp. 187–269, (In Chinese, English Summary). [Google Scholar]
- Wang, G.X.; Zhan, R.B.; Deng, Z.Q. Latest Ordovician and earliest Silurian Tabulate corals of South China. GFF 2015, 136, 290–293. [Google Scholar] [CrossRef]
- Hu, Z.J.; Gong, L.Z.; Yang, S.W.; Wang, H.D. New Knowledge of the Ordovician Silurian Boundary Strata in Shiqian, Guizhou. J. Stratigr. 1983, 7, 140–142, (In Chinese, English Summary). [Google Scholar]
- Mao, Y.Y.; Li, Y.; Ni, C. Bio and lithofacies differentiations of the Leijiatun Formation (late Areonian, Llandovery, Siliurian) in Shiqian, NE Guizhou, SW China. J. Micropaleontol. 2015, 32, 12, (In Chinese, English Summary). [Google Scholar] [CrossRef]
- Liang, K.; Elias, R.J.; Lee, D.J. Morphometrics, growth characteristics, and phylogenetic implications of Halysites catenularius (Tabulata, Silurian, Estonia). J. Paleontol. 2018, 93, 215–231. [Google Scholar] [CrossRef]
- Golding, R.E.; Jones, A.S. Micro-CT as a novel technique for 3D reconstruction of molluscan anatomy. Molluscan Res. 2007, 27, 123–128. [Google Scholar] [CrossRef]
- Ren, J.J. Application of Computed Tomography and Other Techniques in Gaojiashan Lagerstätte. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, 2019. (In Chinese, English Summary). [Google Scholar]
- Li, J.H.; Pei, R.; Teng, F.F.; Qiu, H.; Tagle, R.; Yan, Q.Q.; Wang, Q.; Chu, X.L.; Xu, X. Micro-XRF study of the troodontid dinosaur Jianianhualong tengi reveals new biological and taphonomical signals. At. Spectrosc. 2020, 42, 1–11. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Z.F. Exploration of Cambrian fossils by micro-x ray fluorescence spectrometer. Acta Palaeontol. Sin. 2018, 57, 10, (In Chinese, English Summary). [Google Scholar]
- Luo, L.Q.; Zhan, X.C.; Li, G.G. X-ray Fluorescence Spectrometer (Analytical Instrument Usage and Maintenance Series) (Precision); Chemical Industry Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Saleh, F.; Pittet, B.; Sansjofre, P.; Guériau, P.; Lalonde, S.; Perrillat, J.P.; Vidal, M.; Lucas, V.; El Hariri, K.; Kouraiss, K.; et al. Taphonomic pathway of exceptionally preserved fossils in the Lower Ordovician of Morocco. Geobios Paleontol. Stratigr. Paleoecol. 2020, 60, 99–115. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Strotz, L.C.; Topper, T.P.; Chen, F.Y.; Chen, Y.L.; Liang, Y.; Zhang, Z.L.; Skovsted, C.B.; Brock, G.A. An encrusting kleptoparasite-host interaction from the early Cambrian. Nat. Commun. 2020, 11, 2625. [Google Scholar] [CrossRef]
- Walczak, M.; Tarsińska-Petruk, D.; Płotek, M.; Goryl, M.; Kruk, M.P. MA-XRF study of 15th–17th century icons from the collection of the National Museum in Krakow, Poland. X-ray Spectrom. 2018, 48, 303–310. [Google Scholar] [CrossRef]
- Schrøder, A.E.; Wielandt, D.K.P.; Rasmussen, J.A.; Carnevale, G.; Storey, M. Benchtop micro–X-ray fluorescence, µXRF: An exciting tool for anatomical studies of fossil bony fishes. Lethaia 2023, 56, 1–29. [Google Scholar] [CrossRef]
- Li, D.; Tan, L.; Guo, F.; Cai, Y.; Sun, Y.; Xue, G.; Cheng, X.; Yan, H.; Cheng, H.; Edwards, R.L.; et al. Application of Avaatech X-ray fluorescence core-scanning in Sr/Ca analysis of speleothems. Sci. China Earth Sci. 2019, 62, 964–973. [Google Scholar] [CrossRef]
- Leitão, R.G.; Silva, M.P.; Diniz, M.S.; Guerra, M. Mapping the distribution of mercury (II) chloride in zebrafish organs by benchtop micro-energy dispersive X-ray fluorescence: A proof of concept. J. Trace Elem. Med. Biol. 2022, 69, 126874. [Google Scholar] [CrossRef]
- Steven, S.; Christina, C.; Eduardo, L.-D. Macro X-ray fluorescence scanning (MA-XRF) as tool in the authentication of paintings. Microchem. J. 2018, 137, 139–147. [Google Scholar] [CrossRef]
- Liang, K.; Elias, R.J.; Lee, D.J. The early record of halysitid Tabulate corals, and morphometrics of Catenipora from the Ordovician of north-central China. Pap. Palaeontol. 2018, 4, 363–379. [Google Scholar] [CrossRef]
- Foote, M.; Miller, A.I. Principles of Paleontology, 3rd ed.; W.H. Freeman: New York, NY, USA, 2007. [Google Scholar]
- Zhang, Z.L.; Zhang, Z.F.; Holmer, L. Studies on the shell ultrastructure and ontonogy of the oldest Acrotretid brachiopods from south China. Acta Palaeontol. Sin. 2017, 36, 21, (In Chinese, English Summary). [Google Scholar] [CrossRef]
- Berkowski, B.; Zapalski, M.K. Large dwellers of the Silurian Halysites biostrome: Rhizosessile life strategies of cystiphyllid rugose corals from the Llandovery of Gotland. Lethaia 2018, 51, 581–595. [Google Scholar] [CrossRef]
- Lee, D.J.; Noble, J.P.A. Colony development and formation in halysitid corals. Lethaia 1990, 23, 179–193. [Google Scholar] [CrossRef]
- Wang, G.X.; Deng, Z.Q. Application of the cluster analysis to classification of Cateniporids. Acta Palaeontol. Sin. 2010, 4, 9, (In Chinese, English Summary). [Google Scholar] [CrossRef]
- Lee, D.J.; Elias, R.J. Mode of growth and life-history strategies of a late Ordovician halysitid coral. J. Paleontol. 1991, 65, 191–199. [Google Scholar] [CrossRef]
- Hammer, Ø. Computer-aided study of growth patterns in tabulate corals, exemplified by Catenipora heintzi from Ringerike, Oslo Region. Nor. Geol. Tidsskr. 1999, 79, 219–226. [Google Scholar] [CrossRef]
- Hammer, O. Regulation of astogeny in halysitid tabulates. Acta Palaeontol. Pol. 1998, 43, 635–651. [Google Scholar]
- Webby, B.D. Succession of Ordovician coral and stromatoporoid faunas from central-western New South Wales. In International Paleontological Symposium on the Study of Fossil Corals Novosibirsk, Russia, Drevnie Cnidaria II; Sokolov, B.S., Ed.; Trudy Instituta geologii i geofiziki: Moskva, Russia, 1975; pp. 57–67. [Google Scholar]
- Liu, F.; Skovsted, C.B.; Topper, T.P.; Zhang, Z.F. Soft part preservation in hyolithids from the lower Cambrian (Stage 4) Guanshan Biota of South China and its implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 562, 110079. [Google Scholar] [CrossRef]
- Hu, Y.Z.; Strotz, L.C.; Knaust, D.; Wang, J.; Liang, Y.; Zhang, F. Distinguishing borings and burrows in intraclasts. Est. J. Earth Sci. 2023, 443, 106302. [Google Scholar] [CrossRef]
- Ou, Q.; Han, J.; Zhang, Z.F.; Hu, D.; Mayer, G. Three Cambrian fossils assembled into an extinct body plan of cnidarian affinity. Proc. Natl. Acad. Sci. USA 2017, 114, 8835. [Google Scholar] [CrossRef]
- Duan, X.; Li, Z.; Liu, M.; Zou, Y.C. Progress of the Iron-mediated soil organic carbon preservation and mineralization. Adv. Earth Sci. 2022, 37, 202–211. [Google Scholar] [CrossRef]
- Adachi, N.; Yoichi, E.; Jianbo, L. Early Ordovician shift in reef construction from microbial to metazoan reefs. PALAIOS 2011, 26, 106–114. [Google Scholar] [CrossRef]
- Xue, Y.S.; Tang, T.F.; Yu, C.L. Discovery of oldest skeletal fossils from upper Simian Doushantuo Formation in Weng’an, Guizhou, and its significance. Acta Palaeontol. Sin. 1992, 31, 10. [Google Scholar] [CrossRef]
- Li, Y.X. The reef facies and mixed facies lower Silurian of Shaanxi, Gansu and Ningxia districts. Geol. Rev. 1980, 26, 479–485. [Google Scholar]
- Wood, R.A.; Grotzinger, J.P.; Dickson, J.A.D. Proterozoic Modular Biomineralized Metazoan from the Nama Group, Namibia. Science 2002, 296, 2383–2386. [Google Scholar] [CrossRef]
- Scrutton, C.T. The Palaeozoic corals, I: Origins and relationships. Proc. Yorks. Geol. Soc. 1997, 51, 177–208. [Google Scholar] [CrossRef]
- Liu, P.J.; Yin, C.Y.; Tang, F. Fossils of microtubule shaped metazoans with multiple bifurcations in the Weng’an biota. Chin. Sci. Bull. 2006, 51, 488–490. [Google Scholar] [CrossRef]
- Chen, J.Y.; Oliveri, P.; Gao, F.; Dornbos, Q.S.; Li, C.W.; Bottjer, D.J.; Davidson, E.H. Precambrian Animal Life: Probable Developmental and Adult Cnidarian Forms from Southwest China. Dev. Biol. 2002, 248, 182–196. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.H.; Yuan, X.L.; Andrew, H.K. Eumetazoan fossils in terminal Proterozoic phosphorites? Proc. Natl. Acad. Sci. USA 2000, 97, 13684–13689. [Google Scholar] [CrossRef] [PubMed]
- Park, T.Y.; Woo, J.; Lee, D.J.; Lee, D.C.; Lee, S.B.; Han, Z.Z.; Chough, S.K.; Choi, D.K. A stem-group cnidarian described from the mid-Cambrian of China and its significance for cnidarian evolution. Nat. Commun. 2011, 2, 442. [Google Scholar] [CrossRef]
- Jean, L.; Françoise, D.; Anna, G.; David, G. The oldest tabulate coral and the associated archaeocyatha, Lower Cambrian, Flinders Ranges, South Australia. Geobios 1991, 24, 697–718. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Hu, Y.; Liu, P.; Liang, Y.; Chen, F.; Qiu, H.; Strotz, L.C.; Liang, K.; Zhang, Z. Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China. Life 2024, 14, 1014. https://doi.org/10.3390/life14081014
Ren X, Hu Y, Liu P, Liang Y, Chen F, Qiu H, Strotz LC, Liang K, Zhang Z. Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China. Life. 2024; 14(8):1014. https://doi.org/10.3390/life14081014
Chicago/Turabian StyleRen, Xinyi, Yazhou Hu, Peiyu Liu, Yue Liang, Feiyang Chen, Hao Qiu, Luke C. Strotz, Kun Liang, and Zhifei Zhang. 2024. "Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China" Life 14, no. 8: 1014. https://doi.org/10.3390/life14081014
APA StyleRen, X., Hu, Y., Liu, P., Liang, Y., Chen, F., Qiu, H., Strotz, L. C., Liang, K., & Zhang, Z. (2024). Multiple Non-Destructive Approaches to Analysis of the Early Silurian Chain Coral Halysites from South China. Life, 14(8), 1014. https://doi.org/10.3390/life14081014