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Abstract: Hemophilia A is an X-linked disorder characterized by quantitative deficiency of coagula-
tion factor VIII (FVIII) caused by pathogenic variants in the factor 8 (F8) gene. Our study’s primary
objective was to identify genetic variants within the exonic region of F8 in 50 Colombian male par-
ticipants with severe hemophilia A (HA). Whole-exome sequencing and bioinformatics analyses
were performed, and bivariate analysis was used to evaluate the relationship between identified
variants, disease severity, and inhibitor risk formation. Out of the 50 participants, 21 were found
to have 17 different pathogenic F8 variants (var). It was found that 70% (var = 12) of them were
premature truncation variants (nonsense, frameshift), 17.6% (var = 3) were missense mutations, and
11.7% (var = 2) were splice-site variants. Interestingly, 35% (var = 6) of the identified variants have
not been previously reported in the literature. All patients with a history of positive inhibitors (n = 4)
were found to have high-impact genetic variants (nonsense and frameshift). When investigating the
relationship between variant location (heavy versus light chain) and specific inhibitor risk, 75% (n = 3)
of the inhibitor participants were found to have variants located in the F8 light chain (p = 0.075),
suggesting that conserved domains are associated with higher inhibitor risk. In summary, we identi-
fied genetic variants within the F8 that can possibly influence inhibitor development in Colombian
patients with severe HA. Our results provide a basis for future studies and the development of further
personalized treatment strategies in this population.
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1. Introduction

Hemophilia A (HA) is an inherited bleeding disorder characterized by quantitative
deficiency of coagulation factor VIII (FVIII) and caused by pathogenic variants in the
factor 8 (F8) gene located on the X chromosome (Xq28) [1–4]. The F8 gene has 26 exons
and 187,000 base pairs (bp), and encodes a high-molecular-weight glycoprotein that is
2351 amino acids (aa) long [3,5,6]. Mature FVIII protein consists of six domains arranged
in the following order: (A1-A2-B)–(A3-C1-C2) from the amino terminus to the carboxyl
terminus [5]. The first domain is known as “heavy chain” and the second as “light chain”.
Currently, there are more than 3,756 reported mutation variants within the F8 gene known
to be associated with HA [7–9].

Hemophilia A is estimated to affect one in 5000–10,000 live male births [5,10]. Ac-
cording to the 2023 Colombian national registry, developed by the Colombian Fund for
High-Cost Diseases (CAC), the incidence and prevalence of HA in Colombia were 0.83 and
4.68 for every 10,000 people, respectively. Out of 2421 reported patients with HA, 52.78% of
them were categorized as having a severe disease [11].

Standard treatment for severe HA (residual FVIII level less than 1%) patients includes
the use of FVIII concentrates, with the primary goal of achieving a minimum plasma con-
centration greater than or equal to 1% between FVIII scheduled infusions [12]. The efficacy
of replacement-based therapies can be affected by the development of immunoglobulin G
(IgG) FVIII-neutralizing alloantibodies. These inhibitors can develop in up to 25–30% of
patients with severe HA. The presence of inhibitors makes treatment with FVIII concen-
trates ineffective, increases the incidence of bleeding events, and affects the overall quality
of life of HA patients [1,13]. Inhibitors are classified based on their peak inhibitory titers,
with those with historic levels < 5 Bethesda units (BU) classified as low-responding (LR)
inhibitors and those with ≥ 5 BU as high-responding (HR) inhibitors. As of 2023, only 6%
of HA Colombian patients were reported as having positive inhibitor titers, 50% of them
being LR cases [11].

Given the genetic nature of HA, identifying F8 variants could allow for the detection
of possible variants that may be associated with the severity of the condition and inhibitor
formation [14]. Prior studies have usually focused on F8 mutations localized within intron
22 and intron 1, as they account for approximately 45% and 9% of HA cases, respectively,
and are the most common mutations reported in HA patients [15]. Considering that the F8
gene-coding region could have a significant number of other mutations, this study aimed
to identify variants in the exonic region of F8 in a cohort of Colombian patients with severe
HA using whole-exome sequencing (WES), and to examine their relationship with disease
severity and risk for inhibitor formation.

2. Materials and Methods
2.1. Study Design

This cross-sectional study was performed via open invitation to 50 male participants
with severe HA (FVIII concentration < 1%) affiliated with Integral Solutions SD SAS,
a specialized medical care center in Colombia. The study was approved by the Institutional
Human Research Ethics Committee at CES University (Project ID: 1065).

2.2. Sample Collection and Sequencing

A total of 5 mL of peripheral whole blood was collected from each participant. DNA
was quantified via spectrophotometry (Nanodrop Lite) by measuring the absorbance at
260 nm, following the manufacturer’s instructions. Library preparation was performed
using an Agilent SureSelect M kit (v6.0). The sequencer applied was a NovaSeq6000 plat-
form (Illumina, San Diego, CA, USA), following the manufacturer’s instructions. Variant
prioritization was given for the filtering algorithm in Varseq 2.3.0, applying the following
strategy: quality (PASS and Missing); depth ≥ 20×; genotype quality ≥ 20.2; type of
variant and frequency, filtered via zygosity; effect: (LOF, Missense); and a pseudocontrol
population frequency ≤ 1% according to gnomAD exomes, gnomAD genomes, 1000G,
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ESP, Kaviar, Beacoz, and Bravo. Pathogenicity prediction was performed by filtering using
the threshold CADD ≥ 14 phred and Revel ≥ 0.75 to identify variants predicted to be
damaging using in silico bioinformatics tools (Figure 1). Pathogenicity assignment for the
remaining variants after filtering was performed according to the 2015 American College of
Medical Genetics and Genomics (ACMG) recommendations. Only those variants that were
likely to be pathogenic and/or variants of unknown significance (VUS) were reported. To
analyze copy number variation (CNV), our filtering strategy included deletions, duplica-
tions, p-value < 0.05, a Span of 10,0000 pb, and clinical interpretations of “likely pathogenic”
and “pathogenic”.
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Figure 1. Workflow for variant prioritization of single nucleotide variants and small inser-
tion/deletion variants. The filtering algorithm strategy used in Varseq 2.3.0 for prioritizing variants
in F8 and co-expression-associated genes is shown. This figure was made using BioRender.

2.3. Protein Structure Prediction

The canonical amino acid sequence of F8 was obtained from the UniProt database [16].
Considering this as our base, this sequence was modified according to the amino acid
changes in each of the included patients. Once this edit was completed, the FVIII protein
with the corresponding changes was modeled using the Swiss-Model Workspace [17]. In
total, 15 variants were modeled, and the generated models were downloaded in PDB format
in parallel with the download of the PDB file of the wild-type FVIII protein [16,18,19] and
uploaded into PyMOL [20] for visualization and editing. Subsequently, visualization of all
downloaded predictions was performed, coloring the mutated protein domains with the
same range of colors as the wild-type domains.

2.4. Statistical Analysis

For univariate (descriptive) analyses, we applied frequency statistics to describe the
behavior of each variable to be analyzed. For bivariate analyses, we applied Fisher’s
statistical test for small sample sizes. All estimates were performed at a confidence level of
95%. All statistical analyses were performed using SPSS Statistics for Windows version 23.

3. Results
3.1. F8 Variants Identified in Study Participants

Whole exome sequencing analysis identified potential pathogenic F8 variants in 21
of the 50 participants, with a total of 17 different F8 variants (Figure 2). The majority of
participants had frameshift variants (52.4%, n = 11), followed by nonsense variants (23.8%,
n = 5), missense variants (14.3%, n = 3), and splice-site variants (9.5%, n = 2) (Table 1). Some
57% (n = 12) of participants had variants located within the heavy chain, and 33.3% (n = 7)
within the light chain. Two (9.5%) participants presented splicing variants (Tables 1 and 2).
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and reverse directions. * indicates splice variants.

Out of the 21 participants with mutations, 16 had mutations resulting in early termi-
nation of protein expression. Of these, 5 presented variants generated by the change of a
single nitrogenous base, leading to an immediate termination codon (nonsense mutation).
Eleven participants presented deletions or duplications of one or more nitrogenous base,
which changed the reading frame (frameshift). No CNVs were detected.

Out of the 17 identified F8 variants, 70% (var = 12) exhibited terminated protein
synthesis (nonsense and frameshift mutations), suggesting alterations of the protein, 17.6%
(var = 3) were missense mutations, and 11.7% (var = 2) were split-site variants (Table 3).
Moreover, 65% (var = 11) of the variants were found within the heavy chain, whereas 35%
(var = 6) were located in the light chain.

Variants in the light chain were mainly found in the A3 and C2 domains. Most of these
variants exhibited early termination in protein synthesis, destabilizing the overall structure
of FVIII, which can lead to a loss of affinity and interaction between FVIII and other hemo-
static proteins involved in the coagulation process. This was observed, for example, in the
c.6972C>A p.(Tyr2324Ter) variant, which is truncated at the nucleotide positions 2303–2332,
representing the carboxyl-terminal sequence and one of the 3 VWF binding regions, which
will lead to early FVIII proteolysis [21]. The c.6666G>A p.(Trp2222Ter) and c.6721C>T
p.(Gln2241Ter) variants exhibit early termination in the C2 domain, also associated with
a decrease in affinity to VWF. These mutations also cause aminophospholipid protein bind-
ing sites to lose phosphatidylserine residues on the surface of platelets, affecting platelet
packaging [22]. The c.6045G>A p. (Trp2015Ter) and c.5882G> p. (Trp1961Ter) variants
present early termination of protein expression in the A3 domain, leading to the loss of FVIII
function and loss of multiple sites that contribute to the binding between LRP (high-density
lipoprotein receptors) and FVIII [5].) Finally, the c.5447_5448dupGG p. (Gln1817GlyfsTer55)
variant is associated with truncating protein synthesis that affects the FVIII region from
amino acids 1803–1818, which is critical for the function of the cofactor [23].
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Table 1. Causative variants identified using whole-exome sequencing in Colombian patients with severe hemophilia A (hg38).

Patient
Code Gene cDNA Variant

NM_00132.4 (F8) Exon Protein Position Variant Effect ACMG
Classification Inhibitors Affected Protein Domains

ISMG03 F8 c.6045G>A exon 19 of 26 position
47 of 117 p.(Trp2015Ter) nonsense Pathogenic Without inhibitor

-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG04 F8 c.5882G>A exon 18 of 26 position
67 of 183 p.(Trp1961Ter) nonsense Pathogenic High response (8.0)

-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG05 F8 c.6972C>A exon 26 of 26 position
72 of 1961 p.(Tyr2324Ter) nonsense Pathogenic Without inhibitor -F5/8 type C2 (partial: 2193-2345)

ISMG06 F8 c.2724delT exon 14 of 26 position
611 of 3106 p.(Pro909HisfsTer15) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG07 F8 c.2724delT exon 14 of 26 position
611 of 3106 p.(Pro909HisfsTer15) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG08 F8 c.4296_4300delTTCTC exon 14 of 26 position
2183-2187 of 3106 p.(His1434SerfsTer6) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG09 F8 c.5447_5448dupGG exon 16 of 26 before
position 76 of 213 p.(Gln1817GlyfsTer55) Frameshift Pathogenic Without inhibitor

-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG14 F8 c.670+1G>T
intron 5 of 25 position

1 of 2433 splicing,
intronic)

p.? Pathogenic Without inhibitor

ISMG17 F8 c.389-2A>G
intron 3 of 25 position
3823 of 3824 splicing,

intronic)
p.? Pathogenic Without inhibitor

ISMG19 F8 c.1795G>T exon 12 of 26 position
43 of 151 p.(Asp599Tyr) Missense Likely pathogenic Without inhibitor -F5/8 type A 2 (Plastocyanin-like 4)

ISMG21 F8 c.3836G>A exon 14 of 26 position
1723 of 3106 p.(Arg1279Lys) Missense VUS Without inhibitor -F5/8 type B

ISMG22 F8 c.1946G>C exon 13 of 26 position
43 of 210 p.(Cys649Ser) Missense Pathogenic Without inhibitor -F5/8 type A 2 (Plastocyanin-like 4)
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Table 1. Cont.

Patient
Code Gene cDNA Variant

NM_00132.4 (F8) Exon Protein Position Variant Effect ACMG
Classification Inhibitors Affected Protein Domains

ISMG23 F8 c.6666G>A exon 24 of 26 position
92 of 149 p.(Trp2222Ter) Nonsense Pathogenic Without inhibitor

-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG25 F8 c.6721C>T exon 24 of 26 position
147 of 149 p.(Gln2241Ter) Nonsense Pathogenic Low response (0.6) -F5/8 type C 2

ISMG30 F8 c.298dupT exon 3 of 26 before
position 34 of 123 p.(Tyr100LeufsTer2) Frameshift Pathogenic Without inhibitor

-F5/8 type A 1
-F5/8 type A 2
-Region B
-F5/8 type A 3
-F5/8 type C 1
-F5/8 type C 2

ISMG31 F8 c.2609delC exon 14 of 26 position
496 of 3106 p.(Pro870LeufsTer7) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A 3 (complete: 1713-2040)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG32 F8 c.298dupT exon 3 of 26 before
position 34 of 123 p.(Tyr100LeufsTer2) Frameshift Pathogenic High response (16.0)

-F5/8 type A 1
-F5/8 type A 2
-Region B
-F5/8 type A 3
-F5/8 type C 1
-F5/8 type C 2

ISMG34 F8 c.2945dupA exon 14 of 26 before
position 833 of 3106 p.(Asn982LysfsTer9) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A 3 (complete: 1713-2040)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG35 F8 c.298dupT exon 3 of 26 before
position 34 of 123 p.(Tyr100LeufsTer2) Frameshift Pathogenic Without inhibitor

-F5/8 type A 1
-F5/8 type A 2
-Region B
-F5/8 type A 3
-F5/8 type C 1
-F5/8 type C 2

ISMG38 F8 c.5447_5448dupGG exon 16 of 26 before
position 76 of 213 p.(Gln1817GlyfsTer55) Frameshift Pathogenic Low response (1.0)

-F5/8 type A3(Plastocyanin-like 5)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)

ISMG43 F8 c.4379delA exon 14 of 26 position
2266 of 3106 p.(Asn1460IlefsTer5) Frameshift Pathogenic Without inhibitor

-B (partial: 760-1667)
-F5/8 type A 3 (complete: 1713-2040)
-F5/8 type C1 (complete: 2040-2188)
-F5/8 type C2 (complete: 2193-2345)



Life 2024, 14, 1041 7 of 14

Table 2. Identified Variants by Type and Location.

n (%)

Chain

Heavy

A1 3 (14.3%)

A2 2 (9.5%

B 7 (33.3%)

Light

A3 4 (19.0)

C1 0 (0.0)

C2 3 (14.3%)

Splicing 2 (9.5%)

Type of variants

Frameshift 11 (52.4)

Missense 3 (14.3%)

Nonsense 5 (23.8%)

Splicing 2 (9.5%)

Table 3. Specific F8 Variants Identified in the Study Cohort.

Variants n (%) Domain Coding Impact

c.298dupT 3 (14.3%) A1 Frameshift
c.1795G>T 1 (4.8%) A2 Missense
c.1946G>C 1 (4.8%) A2 Missense
c.2724delT 2 (9.5%) B Frameshift
c.2609delC 1 (4.8%) B Frameshift

c.2945dupA 1 (4.8%) B Frameshift
c.3836G>A 1 (4.8%) B Missense

c.4296_4300delTTCTC 1 (4.8%) B Frameshift
c.4379delA 1 (4.8%) B Frameshift

c.5447_5448dupGG 2 (9.5%) A3 Frameshift
c.5882G>A 1 (4.8%) A3 Nonsense
c.6045G>A 1 (4.8%) A3 Nonsense
c.6666G>A 1 (4.8%) C2 Nonsense
c.6721C>T 1 (4.8%) C2 Nonsense
c.6972C>A 1 (4.8%) C2 Nonsense
c.389-2A>G 1 (4.8%) - Splicing
c.670+1G>T 1 (4.8%) - Splicing

Total 21 (100%)

Variants in the heavy chain, such as c.2724delT p.(Pro909HisfsTer15), c.4296_4300delTTCTC
p.(His1434SerfsTer6), c.2609delC p.(Pro870LeufsTer7), c.2945dupA p.(Asn982LysfsTer9), and
c.4379delA p.(Asn1460IlefsTer5), exhibit early termination of the FVIII B domain which,
although cleaved upon FVIII activation, is important in the structure of FVIII to allow
appropriate interaction with activated FIX (FIXa) and the tenase complex (X) [23]. Two
additional missense variants were identified in the A2 domain: c. 1795G>T p. (Asp599Tyr)
and c.1946G>C p. (Cys649Ser). In the A1 domain, the most frequently identified variant
was the c.298dupT p. (Tyr100LeufsTer2), which is known to lead to premature termination
of FVIII protein expression (Figure 3).
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3.2. Relationship between F8 Identified Variants and Inhibitor Risk

Out of the 21 participants, 4 (19%) had a history of FVIII inhibitors, 2 were LR and 2
were HR. Inhibitor development in all 4 participants occurred after exposure to high doses
(>80 IU/kg/day, for 3 to 7 days) of plasma-derived F8 concentrates for the control of acute
bleeding episodes. All 4 participants exhibited variants that cause early termination of FVII
synthesis (Table 4).

Table 4. Observed Variants on Patients with Inhibitors.

Inhibitors Variants
(NM_000132.4) Coding Impact Chain (Light/Heavy) Frequency (%)

Without inhibitors See Table 1 17(81%)

Low response c.5447_5448dupGG (Exon 16)
c.6721C>T (Exon 24)

Frameshift
Nonsense

A3
C2 2 (9.5%)

High response c.5882G>A (Exon 18)
c.298dupT (Exon 3)

Nonsense
Frameshift

A3
A1 2 (9.5%)

Total 21 (100%)

High-impact variants (nonsense, frameshift) were found in all 4 patients. No rela-
tionship was found between coding impact and inhibitor development (p = 0.45) (Table 5).
All high-impact variants (nonsense, frameshift) seemed to affect 100% of the patients
with inhibitors.

Table 5. Statistical test between coding impact and the presence of inhibitors.

Inhibitors

Coding Impact Yes No * p-Value

Frameshift 2 9

0.457

Missense 0 3
Nonsense 2 3
Splicing 0 2

Total 4 17
* Fisher’s exact test.

When investigating the relationship between the variant’s location (heavy versus light
chain) and their specific inhibitor risk, of the inhibitor participants (n = 4) were found to
have variants located within the light chain (p = 0.075; Table 6).
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Table 6. Variant Location and Inhibitor Risk.

Inhibitors

Chain Location Yes No p-Value

Heavy 1 11

0.075Light 3 4

Total 4 17
Fisher’s exact test. Note: additional patients harbored splicing variants in the absence of inhibitors.

3.3. Previously Unreported F8 Variants

Our analysis found six variants which were not reported in the CHAMP update 2020
report, VarSome Suite, Franklin Genoox, or NCBI: c.2724delT, c.389-2A>G, c.1795G>T,
c.2609delC, c.298dupT, and c.5447_5448dupGG.

The c.298dupT variant was present in three participants. Two of them have received
primary prophylaxis for more than 15 years without a history of inhibitors or joint damage.
The third participant was an older adult who has previously received tertiary prophylaxis
and currently has high-response inhibitors following an on-demand regimen, with no
bleeding in the last 12 months. Variants c.389-2A>G, c.1795G, and c.2609delC were all
present in one participant, who had no joint damage or inhibitors.

The c.2724delT variant was found in two participants currently on prophylaxis regimen
without joint damage or history of inhibitors. Finally, the c.5447_5448dupGG variant
was present in two other participants currently receiving tertiary prophylaxis with no
significant bleeding phenotype in the last 12 months, although one of them currently has
low-response inhibitors.

3.4. Three-Dimensional Structure of the F8 Protein

In silico protein modeling allowed us to identify and study the mechanism by which
the variants detected in F8 in our patients affected the structure, localization, and interaction
of the FVIII protein and other proteins. Figure 4 shows the 3D structure of the canonical
FVIII protein, where the domains are differentiated by color and the affected amino acids
are labeled. Figure 5 represents the tertiary structure models of FVIII, showing where the
nine variants seem to affect the domains in the heavy chain, which was truncated in most
cases. Figure 6 shows the tertiary structure models of FVIII in the light chain, where the
protein was truncated in all cases.
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4. Discussion

Several studies have investigated the role of F8 variants in patients with HA [9,24].
Their findings suggest that the frequency and type of F8 variants, as well as their potential
association with inhibitor risk formation, depend on the specific studied population. Due to
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its known high prevalence, prior HA studies in Colombia have mostly focused on analyzing
the role of intron 22 inversion, but have not investigated the prevalence and role of variants
located within the exonic region of F8 [15].

In our cohort, and similar to the systematic review by Gouw et al. [25], frameshift
type variants were the most common type of identified F8 variants (52%), followed by
nonsense variants, present in 24% of study participants. Interestingly, missense variants
were only present in 14% of our cohort. This finding differs from those reported by Gouw
and Atik [25,26], where the prevalence of this type of variant ranged between 34% and
45% (Table 7). Nonsense mutations had a similar reported prevalence in comparison to
these two studies (24% versus 23% and 25%, respectively). Splice-site variants were more
frequently encountered in our cohort.

Table 7. Comparison of the results reported by meta-analyses.

Coding Impact Cohort (%) Gouw et al. (%) Atik et al. (%)

Missense 14 34 45
Nonsense 24 23 25
Frameshift 52 36 25

Splice variant 10 7 5
Data were adapted from a meta-analysis by Gouw et al. [25], and a mutation study by Atik et al. [26], taking only
the type of variation found in the study cohort as 100%.

When looking at variants associated with an early termination of the FVIII protein
(frameshift and nonsense mutations), their frequency was higher in our cohort compared
to the results reported by Gouw and Atik (76% versus 59% and 50%, respectively). Inter-
estingly, in our cohort, most of the participants (75%) with positive inhibitor history had
their variants located in the light chain. This finding also differs from the one reported by
Gouw et al. (75% versus 52%, respectively) [8]. We can then hypothesize, and as reported
by Oldenburg et al. [27], Carcao and Goudemans [28], and Gensana et al. [29], that the
more domains are conserved, the greater the possibility of generating inhibitors. This may
be because when more domains are conserved, more epitope sites become available to
generate inhibitors, triggering an immune response to exogenous FVIII [30].

Another important difference worth highlighting is that, despite IgG epitopes having
been most commonly reported to be localized in the A2 and C2 domains where missense
variants increase the risk of developing inhibitors up to four-fold [31], in our cohort,
variants located in the A2 domain had the lowest prevalence (11.7%, n = 2). These variants
were all missense mutations without associated inhibitor risk. This finding could possibly
explain the low incidence (5.7%) of patients with hemophilia A and inhibitors reported in
the Colombian national registry [11] in comparison to the 25–30% inhibitor rate reported in
several other studies [32].

Our study identified six mutations that had not been previously reported in the
literature. This finding might suggest that in Colombia, for every ten identified F8 variants,
three might differ from those reported in other populations. This genetic characteristic could
possibly explain the different phenotype and inhibitor prevalence observed in Colombian
patients with HA. Our findings mandate the need to develop future studies exploring
the role of specific treatment regimens based on individual patient genotype, as this
strategy might not only lead to improved treatment outcomes but might also impact the
cost-effectiveness of these personalized therapies.

Nevertheless, we need to acknowledge that one of the limitations of WES analysis
is that it can only detect variants in the exonic region of F8. In hemophilia, about 50% of
patients have variants in the exonic region, for which the use of other methods that allow
for the detection of intron 1 and intron 22 inversions is mandated.



Life 2024, 14, 1041 12 of 14

5. Conclusions

Our study shows differences in the frequency and type of pathogenic F8 variants
in a cohort of Colombian patients with HA compared to other previously reported HA
populations. Furthermore, more than a third of identified F8 variants have not been
previously described in the literature. Interestingly, none of these novel variants were
associated with a risk for FVIII inhibitor formation. In our cohort, we also found a greater
association of inhibitor presence between F8 variants located in the FVIII light chain
compared to the heavy chain, which could indicate that the more conserved the domains
are, the greater the probability of inhibitor generation. Moreover, those variants located in
the C2 domain seemed to have the highest risk for inhibitor formation

Based on our findings, we propose that population-specific F8 genotype information,
along with patient bleeding phenotype, can help to develop personalized treatment regi-
mens to further optimize their effectiveness and safety. Population-specific F8 genotyping
can also allow for the identification of HA patients with the highest risk for inhibitor
formation. Certainly, these are two important steps towards advancing precision medicine
adapted to diverse patient populations.
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