Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Incremental Running Test
2.3. Endurance Running Program
2.4. Sample Preparation
2.5. Hemoglobin Assay
2.6. AO Enzyme Activity Assays
2.7. GSH and MDA Assays
2.8. A and NA Assays
2.9. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
VO2 (mLO2/kg/min) | SOD (U/gHb) | CAT (kU7gHb) | GPx (mU7gHb) | |||||||
Before | After | Before | After | Before | After | Before | After | |||
1 | 54.18 | 57.28 | 3204.72 | 3250.73 | 104.89 | 95.95 | 13.07 | 12.28 | ||
2 | 52.18 | 57.27 | 2206.32 | 2148.71 | 89.2 | 76.92 | 16.57 | 15.99 | ||
3 | 40.25 | 42.55 | 2189.54 | 2251.95 | 148.28 | 126.18 | 10.33 | 12.46 | ||
4 | 48.29 | 57.97 | 2309.77 | 2347.64 | 83.44 | 103.01 | 15.76 | 16.78 | ||
5 | 52.08 | 54.06 | 3193.48 | 3157.34 | 96.6 | 106.86 | 12.36 | 12.16 | ||
6 | 52.82 | 51.56 | 2283.69 | 2257.28 | 134.27 | 142.65 | 11.26 | 12.36 | ||
7 | 44.22 | 53.65 | 1810.61 | 1968.82 | 107.33 | 113.06 | 12.36 | 13.26 | ||
8 | 46.85 | 51.26 | 2394.22 | 2372.82 | 123.06 | 135.34 | 12.62 | 13.98 | ||
9 | 60.11 | 67.24 | 1973.23 | 1967.83 | 102.19 | 120.27 | 17.86 | 17.96 | ||
10 | 59.46 | 62.72 | 2889.85 | 2974.44 | 127.38 | 142.55 | 14.78 | 15.79 | ||
11 | 61.28 | 60.92 | 2912.38 | 3151.12 | 112.48 | 126.62 | 13.37 | 14.24 | ||
12 | 51.11 | 53.28 | 1657.06 | 1683.59 | 117.93 | 139.29 | 14.57 | 13.62 | ||
13 | 63.12 | 69.13 | 3132.97 | 3093.86 | 85.64 | 105.31 | 18.95 | 18.99 | ||
14 | 52.13 | 54.11 | 2678.13 | 2659.02 | 124.75 | 171.74 | 17.24 | 16.98 | ||
15 | 51.69 | 59.82 | 3209.22 | 3261.8 | 112.18 | 118.7 | 16.47 | 17.57 | ||
16 | 51.65 | 53.71 | 2215.13 | 2134.38 | 95.75 | 101.28 | 15.62 | 16.25 | ||
17 | 41.25 | 50.28 | 1783.35 | 1863.98 | 118.59 | 124.89 | 16.26 | 16.02 | ||
18 | 53.85 | 54.42 | 2704.05 | 2753.87 | 139.38 | 133.27 | 11.86 | 12.28 | ||
19 | 56.35 | 56.85 | 2198.12 | 2158.8 | 129.88 | 129.8 | 14.21 | 13.98 | ||
20 | 45.22 | 51.12 | 2607.9 | 2621.89 | 103.48 | 104.29 | 18.69 | 16.98 | ||
21 | 48.68 | 54.25 | 1899.63 | 2127.2 | 113.96 | 155.88 | 12.00 | 11.78 | ||
22 | 56.11 | 58.65 | 3198.99 | 3097.03 | 143.6 | 162.98 | 14.56 | 15.27 | ||
23 | 52.69 | 57.45 | 1888.04 | 2002.26 | 122.86 | 138.79 | 17.26 | 16.25 | ||
24 | 53.67 | 58.22 | 2163.68 | 2106.28 | 140.66 | 168.71 | 11.26 | 12.25 | ||
25 | 50.08 | 53.28 | 2763.21 | 2788.38 | 138.19 | 121.05 | 12.32 | 13.38 | ||
26 | 55.45 | 61.12 | 2447.19 | 2486.99 | 115.01 | 119.89 | 14.48 | 13.63 | ||
27 | 42.58 | 53.56 | 1761.41 | 1765 | 115.69 | 104.62 | 14.18 | 15.18 | ||
28 | 51.23 | 56.85 | 1997.63 | 1987.32 | 135.53 | 134.58 | 12.57 | 13.52 | ||
29 | 47.28 | 56.35 | 2377.54 | 2455.02 | 158.57 | 187.47 | 14.24 | 15.63 | ||
30 | 55.69 | 61.68 | 1465.99 | 1445.29 | 123.56 | 131.95 | 16.26 | 15.92 | ||
31 | 53.48 | 59.63 | 2176.69 | 2193.9 | 168.24 | 117.04 | 14.49 | 15.22 | ||
32 | 56.11 | 63.56 | 2552.8 | 2605.27 | 103.87 | 113.17 | 14.57 | 13.98 | ||
33 | 43.95 | 55.21 | 3145.69 | 3103.67 | 129.64 | 143.77 | 11.24 | 11.27 | ||
34 | 52.11 | 55.65 | 2650.9 | 2700.14 | 131.52 | 115.74 | 12.75 | 13.57 | ||
35 | 59.16 | 64.28 | 2752.71 | 2779.79 | 144.21 | 133.58 | 12.65 | 12.06 | ||
36 | 58.23 | 63.25 | 1754.7 | 1781.3 | 152.84 | 146.79 | 16.96 | 17.37 | ||
37 | 53.36 | 57.18 | 2853.58 | 3016.34 | 114.38 | 118.8 | 14.06 | 15.73 | ||
38 | 45.81 | 52.62 | 1765.61 | 1780.16 | 115.88 | 107.73 | 12.65 | 12.49 | ||
39 | 56.18 | 60.26 | 2488.95 | 2485.17 | 132.03 | 118.08 | 17.32 | 18.85 | ||
40 | 51.92 | 56.45 | 3070.23 | 3016.67 | 105.67 | 113.64 | 16.59 | 17.26 | ||
41 | 51.28 | 57.22 | 1878.32 | 2104.95 | 154.03 | 152.26 | 12.06 | 16.62 | ||
42 | 53.87 | 58.32 | 2565.56 | 2590.73 | 122.36 | 127.43 | 13.5 | 14.55 | ||
GR (mU/gHb) | GSH (μmol/L) | MDA (μmol/L) | A (pg/mL) | NA (pg/mL) | ||||||
Before | After | Before | After | Before | After | Before | After | Before | After | |
1 | 3.96 | 4.11 | 622.35 | 676.69 | 1.65 | 2.17 | 2.2 | 2.1 | 120 | 433.3 |
2 | 5.26 | 5.22 | 514.69 | 697.63 | 2.06 | 1.85 | 22.2 | 76.9 | 226.7 | 73.3 |
3 | 3.59 | 3.72 | 1122.39 | 1065.99 | 1.82 | 1.14 | 67.4 | 15.8 | 293.3 | 320 |
4 | 4.69 | 4.52 | 635.27 | 677.54 | 1.36 | 1.44 | 40.6 | 73.5 | 126.7 | 186.7 |
5 | 4.22 | 3.98 | 811.2 | 761.41 | 1.65 | 1.38 | 96.3 | 3.6 | 246.7 | 160 |
6 | 3.85 | 4.22 | 618.34 | 753.8 | 1.42 | 2.35 | 30.2 | 3.4 | 200 | 173.3 |
7 | 3.92 | 4.25 | 720.59 | 645.69 | 1.58 | 1.31 | 71.3 | 8.5 | 226.7 | 312.1 |
8 | 4.26 | 4.22 | 1211.32 | 1070.23 | 2.52 | 1.22 | 50.7 | 49.3 | 120 | 306.7 |
9 | 5.37 | 4.49 | 711.15 | 1152.71 | 2.09 | 1.45 | 2.3 | 54.1 | 173.3 | 73.3 |
10 | 4.85 | 4.97 | 829.34 | 754.7 | 1.95 | 1.74 | 61.4 | 3.2 | 133.3 | 220 |
11 | 4.27 | 5.02 | 922.11 | 753.58 | 1.39 | 1.80 | 13.4 | 6.5 | 125 | 128 |
12 | 4.69 | 5.78 | 1386.25 | 865.61 | 1.69 | 1.31 | 13.6 | 22 | 75 | 170 |
13 | 5.45 | 5.63 | 1111.58 | 1388.95 | 2.25 | 1.08 | 6.2 | 5.6 | 166.7 | 18 |
14 | 5.11 | 5.13 | 958.36 | 750.9 | 1.28 | 1.83 | 5.8 | 6.6 | 120 | 127 |
15 | 4.98 | 5.27 | 857.95 | 1078.32 | 1.53 | 1.38 | 6.6 | 15.4 | 116 | 160 |
16 | 4.84 | 5.03 | 1056.89 | 672.82 | 1.74 | 1.37 | 6 | 3.2 | 120 | 16 |
17 | 5.2 | 5.34 | 695.11 | 851.95 | 1.34 | 1.15 | 132.5 | 89 | 430.2 | 398.6 |
18 | 3.82 | 3.95 | 878.35 | 748.71 | 2.68 | 2.41 | 56 | 48 | 156.8 | 222.6 |
19 | 4.52 | 3.86 | 1165.7 | 783.59 | 1.71 | 1.04 | 8.2 | 17 | 92.1 | 125.6 |
20 | 5.72 | 5.67 | 732.68 | 947.64 | 1.53 | 1.19 | 92.7 | 81.3 | 315.2 | 411.2 |
21 | 3.95 | 4.39 | 978.13 | 857.34 | 1.69 | 2.46 | 62.5 | 31.5 | 88.6 | 132.1 |
22 | 4.23 | 4.51 | 1209.22 | 957.28 | 1.03 | 1.00 | 14.1 | 22 | 611.2 | 571.3 |
23 | 5.22 | 5.13 | 615.13 | 1063.98 | 1.01 | 0.76 | 122.6 | 87.2 | 222.8 | 241.5 |
24 | 4.11 | 4.63 | 712.39 | 865.56 | 1.07 | 1.74 | 47.2 | 33.6 | 102 | 98.5 |
25 | 4.38 | 4.41 | 804.048 | 867.83 | 1.03 | 1.78 | 113 | 94.3 | 341.9 | 372.8 |
26 | 4.49 | 4.56 | 998.13 | 874.44 | 1.48 | 1.60 | 7.6 | 8.1 | 212.6 | 302.6 |
27 | 4.32 | 4.27 | 707.9 | 1268.82 | 1.80 | 2.02 | 12.8 | 8.2 | 615.3 | 722.1 |
28 | 4.03 | 4.55 | 999.63 | 950.73 | 2.26 | 1.95 | 84.5 | 97.2 | 311.6 | 459.2 |
29 | 4.55 | 4.72 | 1298.99 | 993.86 | 2.22 | 1.59 | 36.7 | 42.1 | 752 | 798.7 |
30 | 5.06 | 5.11 | 1088.04 | 1259.02 | 1.14 | 1.69 | 42.1 | 27.5 | 844.6 | 911.7 |
31 | 4.34 | 4.48 | 963.68 | 1161.8 | 2.64 | 1.79 | 33.6 | 18.2 | 113.8 | 148.3 |
32 | 4.58 | 4.77 | 863.68 | 1034.38 | 0.77 | 1.78 | 92.2 | 78.8 | 225.6 | 284.9 |
33 | 3.77 | 3.96 | 947.19 | 1151.12 | 1.69 | 1.29 | 42.1 | 37.2 | 611.6 | 615.2 |
34 | 3.96 | 4.09 | 989.54 | 1153.87 | 1.86 | 1.77 | 7.2 | 12.4 | 352.5 | 398.6 |
35 | 4.11 | 4.58 | 1206.32 | 958.8 | 2.24 | 1.81 | 2.8 | 1.6 | 492.9 | 502.8 |
36 | 4.86 | 4.91 | 1004.72 | 997.03 | 1.37 | 1.67 | 111.3 | 84.3 | 98.1 | 102.6 |
37 | 4.36 | 4.52 | 909.77 | 1127.2 | 1.79 | 1.30 | 22.8 | 24.2 | 88.6 | 111.7 |
38 | 3.98 | 4.17 | 1393.48 | 1121.89 | 1.98 | 1.08 | 14.6 | 11.3 | 376.4 | 392.8 |
39 | 5.51 | 5.8 | 1283.69 | 1102.26 | 1.45 | 1.21 | 18.5 | 16 | 210 | 198.5 |
40 | 5.52 | 5.37 | 810.61 | 1306.28 | 1.73 | 1.21 | 32.1 | 17.2 | 88.2 | 75 |
41 | 4.21 | 4.35 | 994.22 | 1088.38 | 1.14 | 1.39 | 17.5 | 22.6 | 215.6 | 241.7 |
42 | 3.94 | 3.72 | 629.35 | 986.99 | 2.05 | 1.81 | 8 | 9 | 117.3 | 98.2 |
References
- Seman, S.; Srzentić Dražilov, S.; Ilić, V.; Tešić, M.; Stojiljković, S.; Arena, R.; Popović, D. Physical activity and exercise as an essential medical strategy for the COVID-19 pandemic and beyond. Exp. Biol. Med. 2021, 246, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Johnson, B.T.; Chen, S.; Chen, Y.; Livingston, J.; Pescatello, L.S. Tai Ji Quan as antihypertensive lifestyle therapy: A systematic review and meta-analysis. J. Sport Health Sci. 2021, 10, 211–221. [Google Scholar] [CrossRef]
- Klaperski, S.; von Dawans, B.; Heinrichs, M.; Fuchs, R. Effects of a 12-week endurance training program on the physiological response to psychosocial stress in men: A randomized controlled trial. J. Behav. Med. 2014, 37, 1118–1133. [Google Scholar] [CrossRef]
- Harber, M.P.; Kaminsky, L.A.; Arena, R.; Blair, S.N.; Franklin, B.A.; Myers, J.; Ross, R. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: Advances since 2009. Prog. Cardiovasc. Dis. 2017, 60, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Gröpel, P.; Urner, M.; Pruessner, J.C.; Quirin, M. Endurance- and resistance-trained men exhibit lower cardiovascular responses to psychosocial stress than untrained men. Front. Psychol. 2018, 9, 852. [Google Scholar] [CrossRef]
- Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- van der Valk, E.S.; Savas, M.; van Rossum, E.F.C. Stress and obesity: Are there more susceptible individuals? Curr. Obes. Rep. 2018, 7, 193–203. [Google Scholar] [CrossRef]
- Lloyd, C.; Smith, J.; Weinger, K. Stress and Diabetes: A Review of the Links. Diabetes Spectr. 2005, 18, 121–127. [Google Scholar] [CrossRef]
- Hammen, C.L. Stress and depression: Old questions, new approaches. Curr. Opin. Psychol. 2015, 4, 80–85. [Google Scholar] [CrossRef]
- Esch, T.; Stefano, G.B.; Fricchione, G.L.; Benson, H. Stress in cardiovascular diseases. Med. Sci. Monit. 2002, 8, RA93–RA101. [Google Scholar] [PubMed]
- Lu, S.; Wei, F.; Li, G. The evolution of the concept of stress and the framework of the stress system. Cell Stress 2021, 5, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Pluut, H.; Curșeu, P.L.; Fodor, O.C. Development and validation of a short measure of emotional, physical, and behavioral markers of eustress and distress (MEDS). Health 2022, 10, 339. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; McEwen, B.S. Stress habituation, body shape and cardiovascular mortality. Neurosci. Biobehav. Rev. 2015, 56, 139–150. [Google Scholar] [CrossRef]
- Popovic, D.; Lavie, C.J. Stress, cardiovascular diseases and exercise—A narrative review. Heart Mind 2023, 7, 18–24. [Google Scholar] [CrossRef]
- Popovic, D.; Damjanovic, S.; Popovic, B.; Kocijancic, A.; Labudović, D.; Seman, S.; Stojiljković, S.; Tesic, M.; Arena, R.; Lasica, R. Physiological behavior during stress anticipation across different chronic stress exposure adaptive models. Stress 2022, 25, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Deuster, P.A.; Chrousos, G.P.; Luger, A.; DeBolt, J.E.; Bernier, L.L.; Trostmann, U.H.; Kyle, S.B.; Montgomery, L.C.; Loriaux, D.L. Hormonal and metabolic responses of untrained, moderately trained, and highly trained men to three exercise intensities. Metabolism 1989, 38, 141–148. [Google Scholar] [CrossRef]
- Salmon, P. Effects of physical exercise on anxiety, depression, and sensitivity to stress: A unifying theory. Clin. Psychol. Rev. 2001, 21, 33–61. [Google Scholar] [CrossRef]
- Throne, L.C.; Bartholomew, J.B.; Craig, J.; Farrar, R.P. Stress reactivity in fire fighters: An exercise intervention. Int. J. Stress Manag. 2000, 7, 235–246. [Google Scholar] [CrossRef]
- Rimmele, U.; Zellweger, B.C.; Marti, B.; Seiler, R.; Mohiyeddini, C.; Ehlert, U.; Heinrichs, M. Trained men show lower cortisol, heart rate and psychological responses to psychosocial stress compared with untrained men. Psychoneuroendocrinology 2007, 32, 627–635. [Google Scholar] [CrossRef]
- Messan, F.; Tito, A.; Gouthon, P.; Nouatin, K.B.; Nigan, I.B.; Blagbo, A.S.; Lounana, J.; Medelli, J. Comparison of catecholamine values before and after exercise-induced bronchospasm in professional cyclists. Tanaffos 2017, 16, 136–143. [Google Scholar] [PubMed]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996, 16, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Goode, H.F.; Cowley, H.C.; Walker, B.E.; Howdle, P.D.; Webster, N.R. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit. Care Med. 1995, 23, 646–651. [Google Scholar] [CrossRef]
- Djordjevic, D.; Cubrilo, D.; Macura, M.; Barudzic, N.; Djuric, D.; Jakovljevic, V. The influence of training status on oxidative stress in young male handball players. Mol. Cell Biochem. 2011, 351, 251–259. [Google Scholar] [CrossRef]
- Aguiló, A.; Tauler, P.; Fuentespina, E.; Tur, J.A.; Córdova, A.; Pons, A. Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol. Behav. 2005, 84, 1–7. [Google Scholar] [CrossRef]
- Neubauer, O.; Reichhold, S.; Nersesyan, A.; König, D.; Wagner, K.H. Exercise-induced DNA damage: Is there a relationship with inflammatory responses? Exerc. Immunol. Rev. 2008, 14, 51–72. [Google Scholar] [PubMed]
- Martinovic, J.; Dopsaj, V.; Dopsaj, M.J.; Kotur-Stevuljevic, J.; Vujovic, A.; Stefanovic, A.; Nesic, G. Long-term effects of oxidative stress in volleyball players. Int. J. Sports Med. 2009, 30, 851–856. [Google Scholar] [CrossRef]
- Vollaard, N.B.; Shearman, J.P.; Cooper, C.E. Exercise-induced oxidative stress:myths, realities and physiological relevance. Sports Med. 2005, 35, 1045–1062. [Google Scholar] [CrossRef]
- Hadžović-Džuvo, A.; Valjevac, A.; Lepara, O.; Pjanić, S.; Hadžimuratović, A.; Mekić, A. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn. J. Basic Med. Sci. 2014, 14, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, R.J.; Goldfarb, A.H. Anaerobic exercise and oxidative stress: A review. Can. J. Appl. Physiol. 2004, 29, 245–263. [Google Scholar] [CrossRef]
- de Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; de Andrade, R.V.; Simões, H.G. The antioxidant effect of exercise: A systematic review and meta-analysis. Sports Med. 2017, 47, 277–293. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of running exercise on oxidative stress biomarkers: A systematic review. Front. Physiol. 2021, 11, 610112. [Google Scholar] [CrossRef] [PubMed]
- Stöggl, T.L.; Sperlich, B. Editorial: Training intensity, volume and recovery distribution among elite and recreational endurance athletes. Front. Physiol. 2019, 10, 592. [Google Scholar] [CrossRef]
- Beaver, W.L.; Wasserman, K.; Whipp, B.J. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. 1986, 60, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Binder, R.K.; Wonisch, M.; Corra, U.; Cohen-Solal, A.; Vanhees, L.; Saner, H.; Schmid, J.-P. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Cardiovasc. Prev. Rehabil. 2008, 15, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Kanniainen, M.; Pukkila, T.; Kuisma, J.; Molkkari, M.; Lajunen, K.; Räsänen, E. Estimation of physiological exercise thresholds based on dynamical correlation properties of heart rate variability. Front. Physiol. 2023, 14, 1299104. [Google Scholar] [CrossRef]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Astorino, T.A.; Willey, J.; Kinnahan, J.; Larsson, S.M.; Welch, H.; Dalleck, L.C. Elucidating determinants of the plateau in oxygen consumption at VO2max. Br. J. Sports Med. 2005, 39, 655–660. [Google Scholar] [CrossRef]
- Anselmi, F.; Cavigli, L.; Pagliaro, A.; Valente, S.; Valentini, F.; Cameli, M.; Focardi, M.; Mochi, N.; Dendale, P.; Hansen, D.; et al. The importance of ventilatory thresholds to define aerobic exercise intensity in cardiac patients and healthy subjects. Scand. J. Med. Sci. Sports 2021, 31, 1796–1808. [Google Scholar] [CrossRef]
- Midgley, A.W.; McNaughton, L.R.; Jones, A.M. Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med. 2007, 37, 857–880. [Google Scholar] [CrossRef]
- Boullosa, D.; Esteve-Lanao, J.; Casado, A.; Peyré-Tartaruga, L.A.; Gomes da Rosa, R.; Del Coso, J. Factors affecting training and physical performance in recreational endurance runners. Sports 2020, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Jamnick, N.A.; Pettitt, R.W.; Granata, C.; Pyne, D.B.; Bishop, D.J. An examination and critique of current methods to determine exercise intensity. Sports Med. 2020, 50, 1729–1756. [Google Scholar] [CrossRef] [PubMed]
- Seiler, S. What is best practice for training intensity and duration distribution in endurance athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Knopp, M.; Appelhans, D.; Schönfelder, M.; Seiler, S.; Wackerhage, H. Quantitative analysis of 92 12-week sub-elite marathon training plans. Sports Med.—Open 2024, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; Sandbakk, Ø.; Seiler, S.; Tønnessen, E. The training characteristics of world-class distance runners: An integration of scientific literature and results-proven practice. Sports Med.—Open 2022, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Stojiljković, V.; Todorović, A.; Radlović, N.; Pejić, S.; Mladenović, M.; Kasapović, J.; Pajović, S.B. Antioxidant enzymes, glutathione and lipid peroxidation in peripheral blood of children affected by coeliac disease. Ann. Clin. Biochem. 2007, 44, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Catalase. In Red Cell Metabolism. A Manual of Biochemical Methods; Beutler, E., Ed.; Grune & Stratton: New York, NY, USA, 1982; pp. 105–106. [Google Scholar]
- Sakellariou, G.K.; Jackson, M.J.; Vasilaki, A. Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic. Res. 2014, 48, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef]
- Marzatico, F.; Pansarasa, O.; Bertorelli, L.; Somenzini, L.; Della Valle, G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J. Sports Med. Phys. Fitness 1997, 37, 235–239. [Google Scholar] [PubMed]
- Knez, W.L.; Jenkins, D.G.; Coombes, J.S. Oxidative stress in half and full Ironman triathletes. Med. Sci. Sports Exerc. 2007, 39, 283–288. [Google Scholar] [CrossRef]
- Dékány, M.; Nemeskéri, V.; Györe, I.; Harbula, I.; Malomsoki, J.; Pucsok, J. Antioxidant status of interval-trained athletes in various sports. Int. J. Sports Med. 2006, 27, 112–116. [Google Scholar] [CrossRef]
- Sadowska-Krępa, E.; Kłapcińska, B.; Pokora, I.; Domaszewski, P.; Kempa, K.; Podgórski, T. Effects of six-week ginkgo biloba supplementation on aerobic performance, blood pro/antioxidant balance, and serum brain-derived neurotrophic factor in physically active men. Nutrients 2017, 9, 803. [Google Scholar] [CrossRef]
- Linke, A.; Adams, V.; Schulze, P.C.; Erbs, S.; Gielen, S.; Fiehn, E.; Möbius-Winkler, S.; Schubert, A.; Schuler, G.; Hambrecht, R. Antioxidative effects of exercise training in patients with chronic heart failure: Increase in radical scavenger enzyme activity in skeletal muscle. Circulation 2005, 111, 1763–1770. [Google Scholar] [CrossRef]
- Samjoo, I.A.; Safdar, A.; Hamadeh, M.J.; Raha, S.; Tarnopolsky, M.A. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr. Diabetes 2013, 3, e88. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, K.L.; Ballard, K.D.; Deal, M.A.; Tagariello, L.C.; Karrow, J.M.; Volk, G.A.; Meisler, A.; Connors, I.D.; Mott, R.E. Associations among physical activity level and skeletal muscle antioxidants in older adults. J. Phys. Act. Health 2020, 17, 895–901. [Google Scholar] [CrossRef]
- Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford: London, UK, 2015. [Google Scholar]
- Eaton, J.W. Catalases and peroxidases and glutathione and hydrogen peroxide: Mysteries of the bestiary. J. Lab. Clin. Med. 1991, 118, 3–4. [Google Scholar] [PubMed]
- Cordiano, R.; Di Gioacchino, M.; Mangifesta, R.; Panzera, C.; Gangemi, S.; Minciullo, P.L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules 2023, 28, 5979. [Google Scholar] [CrossRef] [PubMed]
- Bast, A.; Haenen, G.R. Regulation of lipid peroxidation by glutathione and lipoic acid: Involvement of liver microsomal vitamin E free radical reductase. Adv. Exp. Med. Biol. 1990, 264, 111–116. [Google Scholar] [CrossRef]
- Aw, T.Y. Intestinal glutathione: Determinant of mucosal peroxide transport, metabolism, and oxidative susceptibility. Toxicol. Appl. Pharmacol. 2005, 204, 320–328. [Google Scholar] [CrossRef]
- Jones, D.P.; Carlson, J.L.; Mody, V.C.; Cai, J.; Lynn, M.J.; Sternberg, P. Redox state of glutathione in human plasma. Free Radic. Biol. Med. 2000, 28, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.H.; Reichhold, S.; Hölzl, C.; Knasmüller, S.; Nics, L.; Meisel, M.; Neubauer, O. Well-trained, healthy triathletes experience no adverse health risks regarding oxidative stress and DNA damage by participating in an ultra-endurance event. Toxicology 2010, 278, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, O.; König, D.; Kern, N.; Nics, L.; Wagner, K.H. No indications of persistent oxidative stress in response to an ironman triathlon. Med. Sci. Sports Exerc. 2008, 40, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Spanidis, Y.; Stagos, D.; Orfanou, M.; Goutzourelas, N.; Bar-Or, D.; Spandidos, D.; Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J. Strength Cond. Res. 2017, 31, 582–594. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Li, J.; Liu, Z.; Chuang, C.C.; Yang, W.; Zuo, L. Redox mechanism of reactive oxygen species in exercise. Front. Physiol. 2016, 7, 486. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.K.; Goldstein, E.; Schrager, M.; Ji, L.L. Exercise training and skeletal muscle antioxidant enzymes: An update. Antioxidants 2023, 12, 39. [Google Scholar] [CrossRef]
- Radak, Z.; Zhao, Z.; Koltai, E.; Ohno, H.; Atalay, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid. Redox Signal. 2013, 18, 1208–1246. [Google Scholar] [CrossRef]
- Miyata, M.; Kasai, H.; Kawai, K.; Yamada, N.; Tokudome, M.; Ichikawa, H.; Goto, C.; Tokudome, Y.; Kuriki, K.; Hoshino, H.; et al. Changes of urinary 8-hydroxydeoxyguanosine levels during a two-day ultramarathon race period in Japanese non-professional runners. Int. J. Sports Med. 2008, 29, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, A.; Manini, P.; d’Ischia, M. Oxidation chemistry of catecholamines and neuronal degeneration: An update. Curr. Med. Chem. 2011, 18, 1832–1845. [Google Scholar] [CrossRef]
- Álvarez-Diduk, R.; Galano, A. Adrenaline and noradrenaline: Protectors against oxidative stress or molecular targets? J. Phys. Chem. B 2015, 119, 3479–3491. [Google Scholar] [CrossRef]
- Baker, J.; Buchan, D. Metabolic stress and high intensity exercise. Phys. Med. Rehabil. Res. 2017, 2, 1–2. [Google Scholar] [CrossRef]
- Brooks, S.; Burrin, J.; Cheetham, M.E.; Hall, G.M.; Yeo, T.; Williams, C. The responses of the catecholamines and beta-endorphin to brief maximal exercise in man. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 230–234. [Google Scholar] [CrossRef]
- Greiwe, J.S.; Hickner, R.C.; Shah, S.D.; Cryer, P.E.; Holloszy, J.O. Norepinephrine response to exercise at the same relative intensity before and after endurance exercise training. J. Appl. Physiol. 1999, 86, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, M.; Galbo, H. Effect of physical training on the capacity to secrete epinephrine. J. Appl. Physiol. 1988, 64, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.J.; Galbo, H. Sympathetic nervous activity during exercise. Annu. Rev. Physiol. 1983, 45, 139–153. [Google Scholar] [CrossRef]
- Mitchell, J.H. Cardiovascular control during exercise: Central and reflex neural mechanisms. Am. J. Cardiol. 1985, 55, 34D–41D. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojiljković, S.; Gavrilović, L.; Pejić, S.; Pajović, S.B.; Macura, M.; Nikolić, D.; Bubanj, S.; Stojiljković, V. Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men. Life 2024, 14, 921. https://doi.org/10.3390/life14080921
Stojiljković S, Gavrilović L, Pejić S, Pajović SB, Macura M, Nikolić D, Bubanj S, Stojiljković V. Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men. Life. 2024; 14(8):921. https://doi.org/10.3390/life14080921
Chicago/Turabian StyleStojiljković, Stanimir, Ljubica Gavrilović, Snežana Pejić, Snežana B. Pajović, Marija Macura, Dragan Nikolić, Saša Bubanj, and Vesna Stojiljković. 2024. "Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men" Life 14, no. 8: 921. https://doi.org/10.3390/life14080921
APA StyleStojiljković, S., Gavrilović, L., Pejić, S., Pajović, S. B., Macura, M., Nikolić, D., Bubanj, S., & Stojiljković, V. (2024). Effects of Endurance Training on Antioxidant and Hormonal Status in Peripheral Blood of Young Healthy Men. Life, 14(8), 921. https://doi.org/10.3390/life14080921