Navigating Adult-Onset IgA Vasculitis-Associated Nephritis
Abstract
:1. Introduction
2. Pathophysiological Mechanisms of IgAV
2.1. Increased Synthesis of Gd-IgA1
2.2. Production of Autoantibodies against Gd-IgA1
2.3. Gd-IgA1 Immune Complex Formation
2.4. Immune Complex Deposition
2.5. Role of Complement System
2.6. Infections
2.7. Genetics
3. Clinical Features and Associations of IgAV
3.1. Cutaneous [38]
3.2. Gastrointestinal
3.3. Joint
3.4. Renal
3.5. Others
3.6. Clinical Associations
4. Diagnosis
5. Histological Findings and Relevance on Prognosis
- (A)
- International Study of Kidney Disease in Children (ISKDC)
- (B)
- Oxford Classification
- (C)
- Haas Classification
- (D)
- Semiquantitative Classification (SQC)
6. Treatment of IgAVN
6.1. Glucocorticoids
6.2. Mycophenolate Mofetil (MMF)
6.3. Hydroxychloroquine (HCQ)
6.4. Azathioprine
6.5. Cyclophosphamide
6.6. Calcineurin Inhibitors (CNIs)
- (A)
- Cyclosporin
- (B)
- Tacrolimus
7. Novel Therapies of IgAN
7.1. Targets of Gut Immune System (against Formation of Gd-IgA1)
7.2. TRF-Budesonide
7.3. B-Cell-Directed Therapy
- (A)
- A Proliferation-Inducing Ligand (APRIL)-Neutralizing Monoclonal Antibodies [100]
- (B)
- Dual antagonists of BAFF and APRIL
7.4. B-Cell-Depleting Agents
7.5. Non-Immunologic Therapy
- (A)
- Sodium–Glucose Cotransporter-2 Inhibitors (SGLT2is)
- (B)
- Endothelin Receptor Antagonist
7.6. Complement Pathway Inhibitor
- (A)
- Lectin Pathway Inhibition—Inhibition of MASP-2
- (B)
- Alternative Pathway Inhibition
- (C)
- Terminal Pathway Inhibition
8. Treatment and Research Recommendations in IgAVN
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, L.; Li, Y.; Wu, X. IgA vasculitis update: Epidemiology, pathogenesis, and biomarkers. Front. Immunol. 2022, 13, 921864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, X.; Shi, S.; Liu, L.; Lv, J.; Zhang, H. Plasma galactose-deficient immunoglobulin A1 and loss of kidney function in patients with immunoglobulin A vasculitis nephritis. Nephrol. Dial. Transplant. 2020, 35, 2117–2123. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, R.J.; Julian, B.A. IgA nephropathy. N. Engl. J. Med. 2013, 368, 2402–2414. [Google Scholar] [CrossRef] [PubMed]
- Lapides, R.; Crespo-Quezada, J.; Thomas, T.; Carmona Pires, F.; Chera, G. IgA Vasculitis Followed by IgA Nephropathy without an Identifiable Trigger: The Same Disease or a Spectrum of Related Conditions? Cureus 2023, 15, e45639. [Google Scholar] [CrossRef]
- Gardner-Medwin, J.M.; Dolezalova, P.; Cummins, C.; Southwood, T.R. Incidence of Henoch-Schönlein purpura, Kawasaki disease, and rare vasculitides in children of different ethnic origins. Lancet 2002, 360, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.G.; Stratton, D.B.; Mansour, I.; Tanriover, B.; Culpepper, K.S.; Curiel-Lewandrowski, C. Navigating the initial diagnosis and management of adult IgA vasculitis: A review. JAAD Int. 2022, 8, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Wang, P.; Liu, C.; Li, S.; Yue, S.; Yang, Y. Multisystemic manifestations of IgA vasculitis. Clin. Rheumatol. 2020, 40, 43–52. [Google Scholar] [CrossRef]
- Lai, L.; Liu, S.; Azrad, M.; Hall, S.; Hao, C.; Novak, J.; Julian, B.A.; Novak, L. IgA Vasculitis with Nephritis in Adults: Histological and Clinical Assessment. J. Clin. Med. 2021, 10, 4851. [Google Scholar] [CrossRef]
- Williams, C.E.C.; Lamond, M.; Marro, J.; Chetwynd, A.J.; Oni, L. A narrative review of potential drug treatments for nephritis in children with IgA vasculitis (HSP). Clin. Rheumatol. 2023, 42, 3189–3200. [Google Scholar] [CrossRef]
- Hastings, M.C.; Rizk, D.V.; Kiryluk, K.; Nelson, R.; Zahr, R.S.; Novak, J.; Wyatt, R.J. IgA vasculitis with nephritis: Update of pathogenesis with clinical implications. Pediatr. Nephrol. 2022, 37, 719–733. [Google Scholar] [CrossRef]
- Chang, S.; Li, X.-K. The Role of Immune Modulation in Pathogenesis of IgA Nephropathy. Front. Med. 2020, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Huang, X.; Yu, G.; Qiao, J.; Cheng, J.; Wu, J.; Chen, J. Pathogenesis of IgA Vasculitis: An Up-To-Date Review. Front. Immunol. 2021, 12, 771619. [Google Scholar] [CrossRef]
- Yu, H.-H.; Yang, Y.-H.; Chiang, B.-L. Chapter 67—IgA Nephropathies. In Autoantibodies, 3rd ed.; Elsevier: Waltham, MA, USA, 2014; pp. 567–572. [Google Scholar]
- Ohyama, Y.; Yamaguchi, H.; Nakajima, K.; Mizuno, T.; Fukamachi, Y.; Yokoi, Y.; Tsuboi, N.; Inaguma, D.; Hasegawa, M.; Renfrow, M.B.; et al. Analysis of O-glycoforms of the IgA1 hinge region by sequential deglycosylation. Sci. Rep. 2020, 10, 671. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Raska, M.; Yamada, K.; Moldoveanu, Z.; Julian, B.A.; Wyatt, R.J.; Tomino, Y.; Gharavi, A.G.; Novak, J. Cytokines Alter IgA1 O-Glycosylation by Dysregulating C1GalT1 and ST6GalNAc-II Enzymes. J. Biol. Chem. 2014, 289, 5330–5339. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Lü, Q.; Zhao, H.; Cao, Y.; Yan, B.; Ma, Z. A study on the association between C1GALT1 polymorphisms and the risk of Henoch-Schönlein purpura in a Chinese population. Rheumatol. Int. 2013, 33, 2539–2542. [Google Scholar] [CrossRef]
- He, X.; Zhao, P.; Kang, S.; Ding, Y.; Luan, J.; Liu, Z.; Wu, Y.; Yin, W. C1GALT1 polymorphisms are associated with Henoch-Schönlein purpura nephritis. Pediatr. Nephrol. 2012, 27, 1505–1509. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Kiryluk, K.; Choi, M.; Li, Y.; Hou, P.; Xie, J.; Sanna-Cherchi, S.; Men, C.J.; Julian, B.A.; Wyatt, R.J.; et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 43, 321–327. [Google Scholar] [CrossRef]
- Gale, D.P.; Molyneux, K.; Wimbury, D.; Higgins, P.; Levine, A.P.; Caplin, B.; Ferlin, A.; Yin, P.; Nelson, C.P.; Stanescu, H.; et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J. Am. Soc. Nephrol. 2017, 28, 2158–2166. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Moldoveanu, Z.; Wyatt, R.J.; Barker, C.V.; Woodford, S.Y.; Lifton, R.P.; Mestecky, J.; Novak, J.; Julian, B.A. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 2008, 19, 1008–1014. [Google Scholar] [CrossRef]
- Caravaca-Fontán, F.; Gutiérrez, E.; Sevillano, Á.M.; Praga, M. Targeting complement in IgA nephropathy. Clin. Kidney J. 2023, 16 (Suppl. S2), ii28–ii39. [Google Scholar] [CrossRef]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G.; et al. The Pathophysiology of IgA Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1795–1803. [Google Scholar] [CrossRef]
- Heineke, M.H.; Ballering, A.V.; Jamin, A.; Ben Mkaddem, S.; Monteiro, R.C.; Van Egmond, M. New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schönlein purpura). Autoimmun. Rev. 2017, 16, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, T.; Brown, R.; Hall, S.; Moldoveanu, Z.; Goepfert, A.; Tomana, M.; Julian, B.A.; Mestecky, J.; Novak, J. In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. Results Immunol. 2012, 2, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Moldoveanu, Z.; Sanders, J.T.; Eison, T.M.; Suzuki, H.; Julian, B.A.; Novak, J.; Gharavi, A.G.; Wyatt, R.J. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 2011, 80, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Davin, J.C.; Coppo, R. Henoch-Schönlein purpura nephritis in children. Nat. Rev. Nephrol. 2014, 10, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Yasutake, J.; Makita, Y.; Tanbo, Y.; Yamasaki, K.; Sofue, T.; Kano, T.; Suzuki, Y. IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int. 2018, 93, 700–705. [Google Scholar] [CrossRef]
- Berthelot, L.; Papista, C.; Maciel, T.T.; Biarnes-Pelicot, M.; Tissandie, E.; Wang, P.H.; Tamouza, H.; Jamin, A.; Bex-Coudrat, J.; Gestin, A.; et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 2012, 209, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Rizk, D.; Takahashi, K.; Zhang, X.; Bian, Q.; Ueda, H.; Ueda, Y.; Reily, C.; Lai, L.Y.; Hao, C.; et al. New Insights into the Pathogenesis of IgA Nephropathy. Kidney Dis. 2015, 1, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Tang, S.C.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Primers 2016, 2, 16001. [Google Scholar] [CrossRef]
- Knoppova, B.; Reily, C.; Maillard, N.; Rizk, D.V.; Moldoveanu, Z.; Mestecky, J.; Raska, M.; Renfrow, M.B.; Julian, B.A.; Novak, J. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Front. Immunol. 2016, 7, 117. [Google Scholar] [CrossRef]
- Robert, T.; Berthelot, L.; Cambier, A.; Rondeau, E.; Monteiro, R.C. Molecular Insights into the Pathogenesis of IgA Nephropathy. Trends Mol. Med. 2015, 21, 762–775. [Google Scholar] [CrossRef]
- Chua, J.S.; Zandbergen, M.; Wolterbeek, R.; Baelde, H.J.; van Es, L.A.; de Fijter, J.W.; Bruijn, J.A.; Bajema, I.M. Complement-mediated microangiopathy in IgA nephropathy and IgA vasculitis with nephritis. Mod. Pathol. 2019, 32, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Roos, A.; Bouwman, L.H.; van Gijlswijk-Janssen, D.J.; Faber-Krol, M.C.; Stahl, G.L.; Daha, M.R. Human IgA activates the complement system via the mannan-binding lectin pathway. J. Immunol. 2001, 167, 2861–2868. [Google Scholar] [CrossRef]
- Yaseen, K.; Herlitz, L.C.; Villa-Forte, A. IgA Vasculitis in Adults: A Rare yet Challenging Disease. Curr. Rheumatol. Rep. 2021, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- López-Mejías, R.; Castañeda, S.; Genre, F.; Remuzgo-Martínez, S.; Carmona, F.D.; Llorca, J.; Blanco, R.; Martín, J.; González-Gay, M.A. Genetics of immunoglobulin—A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmun. Rev. 2018, 17, 301–315. [Google Scholar] [CrossRef]
- Audemard-Verger, A.; Pillebout, E.; Guillevin, L.; Thervet, E.; Terrier, B. IgA vasculitis (Henoch-Shönlein purpura) in adults: Diagnostic and therapeutic aspects. Autoimmun. Rev. 2015, 14, 579–585. [Google Scholar] [CrossRef]
- Pillebout, E.; Thervet, E.; Hill, G.; Alberti, C.; Vanhille, P.; Nochy, D. Henoch-Schönlein Purpura in adults: Outcome and prognostic factors. J. Am. Soc. Nephrol. 2002, 13, 1271–1278. [Google Scholar] [CrossRef]
- Kang, Y.; Park, J.-s.; Ha, Y.-J.; Kang, M.-i.; Park, H.-J.; Lee, S.-W.; Lee, S.-K.; Park, Y.-B. Differences in Clinical Manifestations and Outcomes between Adult and Child Patients with Henoch-Schönlein Purpura. J. Korean Med. Sci. 2014, 29, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E. Adult Henoch-Schönlein purpura. La Presse Médicale 2008, 37, 1773–1778. [Google Scholar] [CrossRef]
- Thrash, B.; Patel, M.; Shah, K.R.; Boland, C.R.; Menter, A. Cutaneous manifestations of gastrointestinal disease: Part II. J. Am. Acad. Dermatol. 2013, 68, 211.E1–221.E33; quiz 244–216. [Google Scholar] [CrossRef]
- Gong, E.J.; Kim, d.H.; Chun, J.H.; Ahn, J.Y.; Choi, K.S.; Jung, K.W.; Lee, J.H.; Choi, K.D.; Song, H.J.; Lee, G.H.; et al. Endoscopic Findings of Upper Gastrointestinal Involvement in Primary Vasculitis. Gut Liver 2016, 10, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.C.; Kong, M.S.; Lin, S.J. Hepatobiliary involvement of Henoch-Schönlein purpura in children. Acta Paediatr. Taiwan 2000, 41, 63–68. [Google Scholar]
- Blanco, R.; Martínez-Taboada, V.M.; Rodríguez-Valverde, V.; García-Fuentes, M.; González-Gay, M.A. Henoch-Schönlein purpura in adulthood and childhood: Two different expressions of the same syndrome. Arthritis Rheum. 1997, 40, 859–864. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R.; Mazzucco, G.; Cagnoli, L.; Lupo, A.; Schena, F.P. Long-term prognosis of Henoch-Schönlein nephritis in adults and children. Italian Group of Renal Immunopathology Collaborative Study on Henoch-Schönlein purpura. Nephrol. Dial. Transplant. 1997, 12, 2277–2283. [Google Scholar] [CrossRef] [PubMed]
- Coppo, R.; Andrulli, S.; Amore, A.; Gianoglio, B.; Conti, G.; Peruzzi, L.; Locatelli, F.; Cagnoli, L. Predictors of outcome in Henoch-Schönlein nephritis in children and adults. Am. J. Kidney Dis. 2006, 47, 993–1003. [Google Scholar] [CrossRef]
- Shrestha, S.; Sumingan, N.; Tan, J.; Alhous, H.; McWilliam, L.; Ballardie, F. Henoch Schönlein purpura with nephritis in adults: Adverse prognostic indicators in a UK population. QJM Int. J. Med. 2006, 99, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Stanway, J.; Brown, N.; Pervez, A.; Van de Perre, E.; Tollitt, J.; Marketos, N.; Wong, N.; Dhaygude, A.; Ponnusamy, A.; O’Riordan, E.; et al. IgA vasculitis nephritis-outcomes in adult-onset disease. Rheumatology 2024, keae030. [Google Scholar] [CrossRef] [PubMed]
- Nadrous, H.F.; Yu, A.C.; Specks, U.; Ryu, J.H. Pulmonary…Henoch-Schönlein Purpura. Mayo Clin. Proc. 2004, 79, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Polizzotto, M.N.; Gibbs, S.D.; Beswick, W.; Seymour, J.F. Cardiac involvement in Henoch-Schönlein purpura. Intern. Med. J. 2006, 36, 328–331. [Google Scholar] [CrossRef]
- Garzoni, L.; Vanoni, F.; Rizzi, M.; Simonetti, G.D.; Goeggel Simonetti, B.; Ramelli, G.P.; Bianchetti, M.G. Nervous system dysfunction in Henoch-Schonlein syndrome: Systematic review of the literature. Rheumatology 2009, 48, 1524–1529. [Google Scholar] [CrossRef]
- Sánchez-Guerrero, J.; Gutiérrez-Ureña, S.; Vidaller, A.; Reyes, E.; Iglesias, A.; Alarcón-Segovia, D. Vasculitis as a paraneoplastic syndrome. Report of 11 cases and review of the literature. J. Rheumatol. 1990, 17, 1458–1462. [Google Scholar]
- Blanco, R.; González-Gay, M.A.; Ibáñez, D.; Alba, C.; Pérez de Llano, L.A. Henoch-Schönlein purpura as a clinical presentation of small cell lung cancer. Clin. Exp. Rheumatol. 1997, 15, 545–547. [Google Scholar]
- Arrizabalaga, P.; Saurina, A.; Solé, M.; Bladé, J. Henoch-Schönlein IgA glomerulonephritis complicating myeloma kidneys: Case report. Ann. Hematol. 2003, 82, 526–528. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Mills, J.A.; Michel, B.A.; Bloch, D.A.; Calabrese, L.H.; Hunder, G.G.; Arend, W.P.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; Lie, J.T.; et al. The American College of Rheumatology 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheum. 1990, 33, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Ozen, S.; Pistorio, A.; Iusan, S.M.; Bakkaloglu, A.; Herlin, T.; Brik, R.; Buoncompagni, A.; Lazar, C.; Bilge, I.; Uziel, Y.; et al. EULAR/PRINTO/PRES criteria for Henoch-Schönlein purpura, childhood polyarteritis nodosa, childhood Wegener granulomatosis and childhood Takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann. Rheum. Dis. 2010, 69, 798–806. [Google Scholar] [CrossRef]
- Khor, S.Y.; Osman, A.F.; Haddad, I.; AlAttal, S.; Khan, N. Adult-Onset Immunoglobulin A Vasculitis with Renal Involvement. Cureus 2022, 14, e23649. [Google Scholar] [CrossRef]
- Calviño, M.C.; Llorca, J.; García-Porrúa, C.; Fernández-Iglesias, J.L.; Rodriguez-Ledo, P.; González-Gay, M.A. Henoch-Schönlein purpura in children from northwestern Spain: A 20-year epidemiologic and clinical study. Medicine 2001, 80, 279–290. [Google Scholar] [CrossRef]
- Roache-Robinson, P.; Killeen, R.B.; Hotwagner, D.T. IgA Vasculitis (Henoch-Schönlein Purpura); StatPearls Publishing: St. Petersburg, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537252/ (accessed on 20 April 2024).
- Rieu, P.; Noël, L.H. Henoch-Schönlein nephritis in children and adults. Morphological features and clinicopathological correlations. Ann. Med. Interne 1999, 150, 151–159. [Google Scholar]
- Glassock, R.J. Prognostic Scoring in IgA Vasculitis. Clin. J. Am. Soc. Nephrol. 2024, 19, 409–411. [Google Scholar] [CrossRef]
- Jelusic, M.; Sestan, M.; Cimaz, R.; Ozen, S. Different histological classifications for Henoch-Schönlein purpura nephritis: Which one should be used? Pediatr. Rheumatol. 2019, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Barbour, S.J.; Coppo, R.; Er, L.; Pillebout, E.; Russo, M.L.; Alpers, C.E.; Fogo, A.B.; Ferrario, F.; Jennette, J.C.; Roberts, I.S.D.; et al. Histologic and Clinical Factors Associated with Kidney Outcomes in IgA Vasculitis Nephritis. Clin. J. Am. Soc. Nephrol. 2024, 19, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Kifer, N.; Bulimbasic, S.; Sestan, M.; Held, M.; Kifer, D.; Srsen, S.; Gudelj Gracanin, A.; Heshin-Bekenstein, M.; Giani, T.; Cimaz, R.; et al. Semiquantitative classification (SQC) and Oxford classifications predict poor renal outcome better than The International Study of Kidney Disease in Children (ISKDC) and Haas in patients with IgAV nephritis: A multicenter study. J. Nephrol. 2023, 36, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Selvaskandan, H.; Barratt, J.; Cheung, C.K. Novel Treatment Paradigms: Primary IgA Nephropathy. Kidney Int. Rep. 2024, 9, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, 753–779. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, S1–S276. [Google Scholar] [CrossRef]
- Amatruda, M.; Carucci, N.S.; Chimenz, R.; Conti, G. Immunoglobulin A vasculitis nephritis: Current understanding of pathogenesis and treatment. World J. Nephrol. 2023, 12, 82–92. [Google Scholar] [CrossRef]
- Rauen, T.; Eitner, F.; Fitzner, C.; Sommerer, C.; Zeier, M.; Otte, B.; Panzer, U.; Peters, H.; Benck, U.; Mertens, P.R.; et al. Intensive Supportive Care plus Immunosuppression in IgA Nephropathy. N. Engl. J. Med. 2015, 373, 2225–2236. [Google Scholar] [CrossRef]
- Lv, J.; Wong, M.G.; Hladunewich, M.A.; Jha, V.; Hooi, L.S.; Monaghan, H.; Zhao, M.; Barbour, S.; Jardine, M.J.; Reich, H.N.; et al. Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA 2022, 327, 1888–1898. [Google Scholar] [CrossRef]
- Xu, G.; Tu, W.; Jiang, D.; Xu, C. Mycophenolate Mofetil Treatment for IgA Nephropathy: A Meta-Analysis. Am. J. Nephrol. 2008, 29, 362–367. [Google Scholar] [CrossRef]
- Ren, P.; Han, F.; Chen, L.; Xu, Y.; Wang, Y.; Chen, J. The combination of mycophenolate mofetil with corticosteroids induces remission of Henoch-Schönlein purpura nephritis. Am. J. Nephrol. 2012, 36, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Chen, L.L.; Ren, P.P.; Le, J.Y.; Choong, P.J.; Wang, H.J.; Xu, Y.; Chen, J.H. Mycophenolate mofetil plus prednisone for inducing remission of Henoch-Schönlein purpura nephritis: A retrospective study. J. Zhejiang Univ. Sci. B 2015, 16, 772–779. [Google Scholar] [CrossRef]
- Hou, F.F.; Xie, D.; Wang, J.; Xu, X.; Yang, X.; Ai, J.; Nie, S.; Liang, M.; Wang, G.; Jia, N. Effectiveness of Mycophenolate Mofetil Among Patients with Progressive IgA Nephropathy: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2254054. [Google Scholar] [CrossRef]
- Stefan, G.; Mircescu, G. Hydroxychloroquine in IgA nephropathy: A systematic review. Renal Fail. 2021, 43, 1520–1527. [Google Scholar] [CrossRef]
- Tang, C.; Si, F.L.; Lv, J.C.; Shi, S.F.; Zhou, X.J.; Liu, L.J.; Zhang, H. Hydroxychloroquine reduces proteinuria in Chinese patients with IgA vasculitis nephritis. J. Nephrol. 2023, 36, 2401–2403. [Google Scholar] [CrossRef]
- Floege, J.; Rauen, T.; Tang, S.C.W. Current treatment of IgA nephropathy. Semin. Immunopathol. 2021, 43, 717–728. [Google Scholar] [CrossRef]
- Shin, J.I.; Park, J.M.; Shin, Y.H.; Kim, J.H.; Lee, J.S.; Kim, P.K.; Jeong, H.J. Can azathioprine and steroids alter the progression of severe Henoch-Schönlein nephritis in children? Pediatr. Nephrol. 2005, 20, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Anastasia Ptinopoulou, V.S. Cyclophosphamide in Rapidly Progressive IgA Nephropathy. 2023. Available online: https://pubs.glomcon.org/cyclophosphamide-in-rapidly-progressive-iga-nephropathy/ (accessed on 25 May 2024).
- Natale, P.; Palmer, S.C.; Ruospo, M.; Saglimbene, V.M.; Craig, J.C.; Vecchio, M.; Samuels, J.A.; Molony, D.A.; Schena, F.P.; Strippoli, G.F.M. Immunosuppressive agents for treating IgA nephropathy. Cochrane Database Syst. Rev. 2020, 3, CD003965. [Google Scholar] [CrossRef] [PubMed]
- Pillebout, E.; Alberti, C.; Guillevin, L.; Ouslimani, A.; Thervet, E. Addition of cyclophosphamide to steroids provides no benefit compared with steroids alone in treating adult patients with severe Henoch Schönlein Purpura. Kidney Int. 2010, 78, 495–502. [Google Scholar] [CrossRef]
- Audemard-Verger, A.; Terrier, B.; Dechartres, A.; Chanal, J.; Amoura, Z.; Le Gouellec, N.; Cacoub, P.; Jourde-Chiche, N.; Urbanski, G.; Augusto, J.F.; et al. Characteristics and Management of IgA Vasculitis (Henoch-Schönlein) in Adults: Data From 260 Patients Included in a French Multicenter Retrospective Survey. Arthritis Rheumatol. 2017, 69, 1862–1870. [Google Scholar] [CrossRef]
- Song, Y.-H.; Cai, G.-Y.; Xiao, Y.-F.; Wang, Y.-P.; Yuan, B.-S.; Xia, Y.-Y.; Wang, S.-Y.; Chen, P.; Liu, S.-W.; Chen, X.-M. Efficacy and safety of calcineurin inhibitor treatment for IgA nephropathy: A meta-analysis. BMC Nephrol. 2017, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.N.; Lai, F.M.; Li, P.K.; Vallance-Owen, J. Cyclosporin treatment of IgA nephropathy: A short term controlled trial. Br. Med. J. (Clin. Res. Ed.) 1987, 295, 1165–1168. [Google Scholar] [CrossRef] [PubMed]
- Kalliakmani, P.; Benou, E.; Goumenos, D.S. Cyclosporin A in adult patients with Henoch-Schönlein purpura nephritis and nephrotic syndrome; 5 case reports. Clin. Nephrol. 2011, 75, 380–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.F.; Hao, G.X.; Li, C.Z.; Yang, Y.J.; Liu, F.J.; Liu, L.; Yuan, X.Y.; Li, R.H.; Dong, L.; Dong, Q.; et al. Off-label use of tacrolimus in children with Henoch-Schönlein purpura nephritis: A pilot study. Arch. Dis. Child 2018, 103, 772–775. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Huang, T.; Liu, X.; Wang, L.; Xu, G. Effectiveness and safety of tacrolimus treatment for IgA nephropathy: A prospective cohort study. Med. Clin. 2022, 158, 596–602. [Google Scholar] [CrossRef]
- Kim, Y.C.; Chin, H.J.; Koo, H.S.; Kim, S. Tacrolimus decreases albuminuria in patients with IgA nephropathy and normal blood pressure: A double-blind randomized controlled trial of efficacy of tacrolimus on IgA nephropathy. PLoS ONE 2013, 8, e71545. [Google Scholar] [CrossRef] [PubMed]
- Fellström, B.C.; Barratt, J.; Cook, H.; Coppo, R.; Feehally, J.; de Fijter, J.W.; Floege, J.; Hetzel, G.; Jardine, A.G.; Locatelli, F.; et al. Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): A double-blind, randomised, placebo-controlled phase 2b trial. Lancet 2017, 389, 2117–2127. [Google Scholar] [CrossRef] [PubMed]
- Lafayette, R.; Kristensen, J.; Stone, A.; Floege, J.; Tesař, V.; Trimarchi, H.; Zhang, H.; Eren, N.; Paliege, A.; Reich, H.N.; et al. Efficacy and safety of a targeted-release formulation of budesonide in patients with primary IgA nephropathy (NefIgArd): 2-year results from a randomised phase 3 trial. Lancet 2023, 402, 859–870. [Google Scholar] [CrossRef]
- Lafayette, R.; Barbour, S.; Israni, R.; Wei, X.; Eren, N.; Floege, J.; Jha, V.; Kim, S.G.; Maes, B.; Phoon, R.K.S.; et al. A phase 2b, randomized, double-blind, placebo-controlled, clinical trial of atacicept for treatment of IgA nephropathy. Kidney Int. 2024, 105, 1306–1315. [Google Scholar] [CrossRef]
- Atacicept in Subjects with IgA Nephropathy (ORIGIN 3). 2021. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04716231 (accessed on 28 May 2024).
- Lafayette, R.; Maes, B.; Lin, C.; Barbour, S.; Phoon, R.; Kim, S.G.; Tesar, V.; Floege, J.; Jha, V.; Barratt, J. #3848 ORIGIN trial: 24-WK primary analysis of a randomized, double-blind, placebo-controlled PH2B study of atacicept in patients with IgAN. Nephrol. Dial. Transplant. 2023, 38 (Suppl. S1), gfad063a_3848. [Google Scholar] [CrossRef]
- Brooks, A. Updated Clinical Data for Povetacicept in IgA Nephropathy Support Advancement to Phase 3 Trial. Available online: https://www.hcplive.com/view/updated-clinical-data-povetacicept-iga-nephropathy-support-advancement-phase-3-trial (accessed on 25 May 2024).
- Lafayette, R.A.; Canetta, P.A.; Rovin, B.H.; Appel, G.B.; Novak, J.; Nath, K.A.; Sethi, S.; Tumlin, J.A.; Mehta, K.; Hogan, M.; et al. A Randomized, Controlled Trial of Rituximab in IgA Nephropathy with Proteinuria and Renal Dysfunction. J. Am. Soc. Nephrol. 2017, 28, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Vo, N.; Lee, S.-H.; Ranganathan, D.; Inker, L.; El-Shahawy, M.; Spinelli, T.; Sheth, K.; Devries, T.; Camargo, M.; et al. FC052: Atrasentan for the Treatment of IGA Nephropathy: Interim Results from the Affinity Study. Nephrol. Dial. Transplant. 2022, 37 (Suppl. S3), gfac107-004. [Google Scholar] [CrossRef]
- Brooks, A. Atrasentan Achieves Positive Topline Results in Phase 3 Trial for IgA Nephropathy. 2023. Available online: https://www.hcplive.com/view/atrasentan-achieves-positive-topline-results-in-phase-3-trial-for-iga-nephropathy (accessed on 28 May 2024).
- Dixon, B.P.; Greenbaum, L.A.; Huang, L.; Rajan, S.; Ke, C.; Zhang, Y.; Li, L. Clinical Safety and Efficacy of Pegcetacoplan in a Phase 2 Study of Patients with C3 Glomerulopathy and Other Complement-Mediated Glomerular Diseases. Kidney Int. Rep. 2023, 8, 2284–2293. [Google Scholar] [CrossRef]
- Lim, R.S.; Yeo, S.C.; Barratt, J.; Rizk, D.V. An Update on Current Therapeutic Options in IgA Nephropathy. J. Clin. Med. 2024, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Zhou, Y.; Xu, X.; Huang, K.; Chen, P.; Wu, Y.; Jin, B.; Hu, Q.; Chen, G.; Zhao, S. Current knowledge of targeted-release budesonide in immunoglobulin A nephropathy: A comprehensive review. Front. Immunol. 2022, 13, 926517. [Google Scholar] [CrossRef]
- Barratt, J.; Lafayette, R.; Kristensen, J.; Stone, A.; Cattran, D.; Floege, J.; Tesar, V.; Trimarchi, H.; Zhang, H.; Eren, N.; et al. Results from part A of the multi-center, double-blind, randomized, placebo-controlled NefIgArd trial, which evaluated targeted-release formulation of budesonide for the treatment of primary immunoglobulin A nephropathy. Kidney Int. 2023, 103, 391–402. [Google Scholar] [CrossRef]
- Smerud, H.K.; Bárány, P.; Lindström, K.; Fernström, A.; Sandell, A.; Påhlsson, P.; Fellström, B. New treatment for IgA nephropathy: Enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol. Dial. Transplant. 2011, 26, 3237–3242. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.K.; Barratt, J.; Liew, A.; Zhang, H.; Tesar, V.; Lafayette, R. The role of BAFF and APRIL in IgA nephropathy: Pathogenic mechanisms and targeted therapies. Front. Nephrol. 2024, 3, 1346769. [Google Scholar] [CrossRef]
- Mathur, M.; Barratt, J.; Chacko, B.; Chan, T.M.; Kooienga, L.; Oh, K.H.; Sahay, M.; Suzuki, Y.; Wong, M.G.; Yarbrough, J.; et al. A Phase 2 Trial of Sibeprenlimab in Patients with IgA Nephropathy. N. Engl. J. Med. 2024, 390, 20–31. [Google Scholar] [CrossRef]
- Perkovic, V.; Barratt, J.; Radhakrishnan, J.; Rizk, D.; Trimarchi, H.; Khawaja, Z.; Leiske, J.; Sorensen, B.; King, A.; Jones-Burton, C.; et al. A Phase 3, Randomized, Double-Blind, Placebo-Controlled Study of Zigakibart (BION-1301) in Adults with IgA Nephropathy. Available online: https://www.chinooktx.com/file.cfm/52/docs/era_2023_beyond_study_design_final_20230602.pdf (accessed on 25 May 2024).
- Lv, J.; Liu, L.; Hao, C.; Li, G.; Fu, P.; Xing, G.; Zheng, H.; Chen, N.; Wang, C.; Luo, P.; et al. Randomized Phase 2 Trial of Telitacicept in Patients with IgA Nephropathy with Persistent Proteinuria. Kidney Int. Rep. 2023, 8, 499–506. [Google Scholar] [CrossRef]
- Dong, Y.; Shi, S.; Liu, L.; Zhou, X.; Lv, J.; Zhang, H. Effect of SGLT2 inhibitors on the proteinuria reduction in patients with IgA nephropathy. Front. Med. 2023, 10, 1242241. [Google Scholar] [CrossRef] [PubMed]
- Podestà, M.A.; Sabiu, G.; Galassi, A.; Ciceri, P.; Cozzolino, M. SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines 2023, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Dapagliflozin in Non-diabetic Stage IV CKD (ADAPT). 2024. Available online: https://clinicaltrials.gov/study/NCT04794517?term=NCT04794517&rank=1 (accessed on 28 May 2024).
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef] [PubMed]
- The ASSIST Study (NCT05834738) Randomized, Double-Blind, Placebo-Controlled, Crossover Study of Atrasentan in Subjects with IgA Nephropathy (ASSIST). 2023. Available online: https://clinicaltrials.gov/study/NCT05834738?term=NCT05834738&rank=1 (accessed on 28 May 2024).
- Poppelaars, F.; Faria, B.; Schwaeble, W.; Daha, M.R. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J. Clin. Med. 2021, 10, 4715. [Google Scholar] [CrossRef]
- Lafayette, R.A.; Rovin, B.H.; Reich, H.N.; Tumlin, J.A.; Floege, J.; Barratt, J. Safety, Tolerability and Efficacy of Narsoplimab, a Novel MASP-2 Inhibitor for the Treatment of IgA Nephropathy. Kidney Int. Rep. 2020, 5, 2032–2041. [Google Scholar] [CrossRef]
- Maillard, N.; Wyatt, R.J.; Julian, B.A.; Kiryluk, K.; Gharavi, A.; Fremeaux-Bacchi, V.; Novak, J. Current Understanding of the Role of Complement in IgA Nephropathy. J. Am. Soc. Nephrol. 2015, 26, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
- Derman, C. Study Supports the Efficacy, Safety of Ravulizumab for Patients with IgA Nephropathy. 2023. Available online: https://www.hcplive.com/view/study-supports-the-efficacy-safety-ravulizumab-patients-with-iga-nephropathy (accessed on 25 May 2024).
- Barratt, J.; Liew, A.; Yeo, S.C.; Fernström, A.; Barbour, S.J.; Sperati, C.J.; Villanueva, R.; Wu, M.J.; Wang, D.; Borodovsky, A.; et al. Phase 2 Trial of Cemdisiran in Adult Patients with IgA Nephropathy: A Randomized Controlled Trial. Clin. J. Am. Soc. Nephrol. 2024, 19, 452–462. [Google Scholar] [CrossRef]
- Bruchfeld, A.; Magin, H.; Nachman, P.; Parikh, S.; Lafayette, R.; Potarca, A.; Miao, S.; Bekker, P. C5a receptor inhibitor avacopan in immunoglobulin A nephropathy-an open-label pilot study. Clin. Kidney J. 2022, 15, 922–928. [Google Scholar] [CrossRef]
- Lundberg, S.; Westergren, E.; Smolander, J.; Bruchfeld, A. B cell-depleting therapy with rituximab or ofatumumab in immunoglobulin A nephropathy or vasculitis with nephritis. Clin. Kidney J. 2016, 10, 20–26. [Google Scholar] [CrossRef]
- Al Harash, A.; Saeli, S.; Lucke, M.; Arora, S. IgA Vasculitis Nephritis: A Case Series and Comparison of Treatment Guidelines. Case Rep. Rheumatol. 2020, 2020, 8863858. [Google Scholar] [CrossRef]
Classification Title | Diagnostic Criteria |
---|---|
ACR diagnostic criteria (1990) [56] | Two of the following:
|
1994 Chapel Hill Criteria [35] (Revised in 2012) | IgAV was defined as vasculitis with IgA1-dominant immune deposits, affecting small vessels (predominantly capillaries, venules, or arterioles) that often involve the skin and gastrointestinal tract, and cause arthritis and glomerulonephritis. |
EULAR/PRINTO/PRES diagnostic criteria (2010) [57] | Purpura or petechiae and one of the following:
|
Sites of Therapy Based on Pathophysiology | Therapy | Trials | Inclusion Criteria | Outcomes |
---|---|---|---|---|
Gut mucosal immune system | Targeted-Release Budesonide—Nefecon | NEFIGAN phase 2b | >18 years old, with biopsy-confirmed primary IgAN, persistent proteinuria > 0.5 g/day despite optimized RAAS inhibitors, eGFR > 45 mL/min/1.73 m2 150 patients randomized into 3 groups: placebo, half-dose Budesonide at 8 mg/day, or full-dose Budesonide at 16 mg/day (all still on RAAS inhibitors) for 9 months [90] | 9-month treatment with Nefecon resulted in reduced proteinuria and stabilized eGFR |
NefigArd Phase 3 | ≥18 years old, with primary IgAN, eGFR 35–90 mL/min per 1.73 m2, and uPCR ≥ 0.8 g/g or proteinuria ≥ 1 g/24 h) despite optimized RAAS inhibitors 364 patients randomized into 2 groups: 16 mg/day oral Nefecon and matching placebo for 9 months [91] | 9-month treatment with Nefecon provided a clinically relevant reduction in eGFR decline and a durable reduction in proteinuria versus placebo | ||
APRIL-neutralizing monoclonal antibodies | Sibeprenlimab | RCT Phase 3 trial—NCT05248646 | Phase 2 multicenter double-blind randomized controlled trial evaluated 12 monthly intravenous infusions of Sibeprenlimab at doses of 2, 4, or 8 mg per kilogram body weight versus placebo Phase 3 trial >18 years old, biopsy-confirmed IgAN, stable and maximally tolerated dose of RAAS inhibitors for at least 3 months, screening uPCR ≥ 0.75 g/g or urine protein ≥ 1.0 g/day, eGFR ≥ 30 mL/min/1.73 m2 530 patients randomized into 2 groups: Sibeprenlimab 400 mg subcutaneously every 4 weeks compared to placebo for 9 months | Phase 2 trial demonstrated greater reduction in 24 h uPCR from baseline as compared to placebo Ongoing phase 3 trial |
Zigakibart | NCT05852938 BEYOND study | Ongoing phase 3 trial >18 years old, biopsy-proven IgAN, eGFR ≥ 30 mL/min/1.73 m2, total urine protein ≥ 1.0 g/day and uPCR ≥ 0.7 g/g as measured from an adequate 24 h urine collection, stable on a maximally tolerated dose of ACEi/ARB for at least 12 weeks, body mass index (BMI) between 18 and 40 kg/m2, screening weight of 45 to 150 kg. 292 patients randomized into 2 groups: Zigakibart 600 mg SC every 2 weeks versus placebo for total of 104 weeks | Reduction in proteinuria as early as 12 weeks with an associated reduction in Gd-IgA1 levels | |
Antibody inhibiting APRIL and BAFF | Atacicept | ORIGIN Trial [92] (NCT04716231) ORIGIN III Trial [93] | Double-blind, placebo-controlled phase 2b clinical trial with biopsy-proven IgAN 116 patients randomized in a 2:2:1:2 fashion to Atacicept 150 mg, 75 mg, 25 mg versus placebo Ongoing phase 3 trial ≥18 years old, 24 h total urine protein excretion ≥ 1.0 g or uPCR ≥ 1.0 mg/mg based on a 24 h urine sample during the screening period, biopsy-proven IgAN, eGFR > 30 mL/min/1.73 m2, on stable prescribed RAAS inhibitors, SBP < 150 200 patients randomized into 2 groups: Atacicept 150 mg versus placebo | Phase 2b clinical trial showed a dose-dependent reduction in proteinuria and Gd-IgA1 antibody levels Phase 3 trial is ongoing |
Atacicept | JANUS Trial [94] (NCT02808429) | Phase 2 study >18 years old, biopsy-proven IgAN, screening uPCR > 0.75 to <6 mg/g, stable ACEi/ARB for at least 8 weeks 16 patients randomized in a 1:1:1 fashion to Atacicept 25 mg, 75 mg versus placebo | Reduction in proteinuria and Gd-IgA levels and is safe to be used in IgAN patients. | |
Telitacicept | NCT04905212 | Phase 2 multicenter, randomized, double-blind, controlled trial >18 years old, biopsy-proven IgAN, 24 h total protein ≥ 0.75 g, eGFR > 30 mL/min per 1.73 m2, on ACEi/ARB, diuretics, or other anti-hypertensives 44 Chinese patients randomized in 1:1:1 fashion to Telitacicept 160 mg, 240 mg versus placebo | Ongoing phase 3 trial | |
Povetacicept | RUBY-3 Trial [95] | A multiple-ascending-dose, multi-cohort, open-label, phase 1b/2a study of Povetacicept ≥18 years of age, biopsy-confirmed autoimmune glomerulonephritis including IgAN, biopsy-confirmed diagnosis ≤ 10 years prior to the start of screening, screening uPCR ≥ 0.5 g, on maximal tolerated ACEi/ARB dose for at least 12 weeks. 41 patients who received either Povetacicept 80 mg or 240 mg. | Treatment with both doses was found to be associated with reduction in proteinuria, stable renal function, and reduction in Gd-IgA1 with good safety profile [95] | |
Depletion of plasma cells | Rituximab (anti-CD 20) | RCT NCT04525729 | Phase 4 trial with Rituximab combined with RAAS inhibitors will be compared with RAAS inhibitors for IgAN patients, to explore a more effective and safer regimen for IgA >18–75 years old, biopsy-proven IgAN, eGFR > 30 mL/min/1.73 m2, 24 h proteinuria > 1 g with maximal tolerated ACEi/ARB for 3 months, serum albumin > 25 g/L 116 patients randomized to 2 groups: Rituximab with RAAS inhibitors versus RAAS inhibitors | Did not show reduction in proteinuria, stabilization of renal function, or reduction in Gd-IgA1 and anti-Gd-IgA1 antibody levels |
RCT [96] | An open-label, multicenter study conducted over 1-year follow-up Biopsy-proven IgA nephropathy and proteinuria > 1 g/d, maintained on ACEi/ARB with well-controlled BP and eGFR < 90 mL/min per 1.73 m2 34 patients randomized into 2 groups: standard with Rituximab versus standard therapy | It did not significantly improve renal function or reduction in proteinuria | ||
Felzartamab (anti-CD 38) | RCT (NCT05065970) | Randomized, placebo-controlled, multicenter, double-blind, 2a trial ≥18 to ≤80 years old, biopsy-proven IgAN, proteinuria at screening visit ≥ 1.0 g/day, adequate treatment with ACEi/ARB for ≥3 and adequate blood pressure (BP) control. | Efficacy shown in preliminary phase 1/2A trials in anti-phospholipase A2 receptor (PLA2R) antibody-positive membranous nephropathy | |
Bortezomib | RCT | Bortezomib has been studied in a pilot open-label trial involving 8 patients with IgAN | 3 out of these 8 patients achieved complete remission after 4 doses of Bortezomib at 1-year follow-up, suggesting that plasma cell depletion could potentially improve outcomes in IgAN | |
Non-immunotherapy | SGLT-2 | DAPA-CKD | eGFR > 25 and <75 mL/min/1.73 m2, uPCR > 200 mg/g and <5000 mg/g, on single-agent RAAS inhibitor for 4 weeks | Sustained decline in eGFR by 50%, ESKD or death from cardio-renal causes |
EMPA-KIDNEY | eGFR > 30, <45 mL/min/1.73 m2 OR eGFR > 45, <90 mL/min/1.73 m2 with uPCR > 300 mg/g | Sustained declined in eGFR by 40%, or to 10 ESKD or death from cardio-renal causes | ||
SGLT2 Inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium (SMART-C) | Meta-analysis of 13 randomized controlled trials to provide pooled estimates of effect of SGLT2is | SGLT2is reduced the risk of kidney disease progression by 40% in patients with glomerular disease, specifically in IgAN | ||
ADAPT Trial (NCT04794517) | Randomized, prospective, double-blind, placebo-controlled phase 2b 18 years old, non-diabetic CKD-IV, persistent proteinuria (24 h urinary protein excretion ≥ 0.5 g in at least two consecutive evaluations >1 week apart), eGFR 15 to 30 mL/min/1.73 m2, maximal tolerated ACEi/ARB 93 patients randomized into 2 groups: 10 mg Dapagliflozin and placebo group | Ongoing trial, in phase 2 | ||
Endothelin receptor antagonists | Sparsentan | PROTECT trial | A double-blind, randomized, active-controlled, phase 3 study 18 years old, biopsy-proven IgAN, proteinuria > 1 g/day, eGFR ≥ 30 mL/min/1.73 m2, maximally tolerated ACEi/ARB 203 patients randomized in 1:1 fashion: either Sparsentan 400 mg or Irbesartan 300 mg | Interim analysis showed a significant reduction from baseline in proteinuria (~49.8%) versus Irbesartan (−15.1%) at 36 weeks |
SPARTACUS trial NCT05856760 | Phase 2 trial >18 years old, biopsy-proven IgAN, uACR ≥ 0.3 g/g at screening, An eGFR value of ≥25 mL/min/1.73 m2 at screening and stable use of SGLT2is 12 weeks prior to screening 60 patients randomized into 2 groups: receiving Sparsentan and SGLT2is | Ongoing trial | ||
Atrasentan | AFFINITY trial [97] | Open-label phase 2 trial >18 years old, biopsy-proven IgAN, maximally tolerated ACEi/ARB dose, uPCR between 0.5 and less than 1.0 g/g, screening eGFR ≥ 30 mL/min/1.73 m2 20 patients received 0.75 mg Atrasentan daily | >43% reduction in proteinuria after 12 weeks | |
Phase 3 trial—ALIGN [98] | Randomized, multicenter, double-blind, placebo-controlled phase 3 clinical trial Biopsy-proven IgAN, maximally tolerated ACEi/ARB dose for at least 12 weeks, screening 24 h total protein > 1 g/day, eGFR ≥ 30 mL/min/1.73 m2 320 patients randomized into 2 groups: receiving 0.75 mg Atrasentan versus placebo daily for 132 weeks, with stable dose of SGLT2is | At week 36, Atrasentan achieved significant reduction in proteinuria compared to placebo | ||
Complement pathway inhibitors | Lectin pathway—MASP2 inhibitor: Narsoplimab | ARTEMIS-IGAN | Randomized, double-blind, placebo-controlled trial phase 3 trial >18 years old, with biopsy-proven IgAN within 8 years of screening, screening 24 h total protein > 1 g/day, eGFR ≥ 30 mL/min/1.73 m2 450 patients randomized into 2 groups in 1:1 fashion of weekly Narsoplimab versus placebo for 12 weeks | The ARTEMIS-IGAN trial did not show statistical reduction in proteinuria as compared to placebo Proteinuria reduction in the placebo group was substantially greater than reported in other IgA nephropathy clinical trials |
Alternative pathway—Factor B inhibitor: Iptacopan | APPLAUSE-IgAN | Multicenter, randomized, double-blind, placebo-controlled phase 3 trial ≥18 years old, with biopsy-proven primary IgAN at high risk of progression to kidney failure, maximally tolerated ACEi/ARB dose 470 patients randomized into 2 groups: Iptacopan 200 mg twice daily versus placebo for 24 months | Interim analysis demonstrated significant proteinuria reduction with Iptacopan as compared to placebo at 9 months | |
Alternative pathway—Factor B inhibitor: IONIS-FB-LRX | NCT04014335 | Single-arm open-label phase 2 trial >18–75 years old, females who are not pregnant and non-lactating, with biopsy-proven IgAN, with proteinuria and hematuria 25 patients, receiving IONIS-FB-LRx for 24 weeks | Ongoing trial | |
Alternative pathway—Factor D inhibitor: Vemircopan | NCT05097989 | Randomized, double-blind, placebo-controlled, multicenter phase 2 trial >18–≤75 years old, biopsy-proven lupus nephritis or IgAN, 24 h mean proteinuria ≥ 1 g/day on 2 occasions, stable dose of ACEi/ARB, well-controlled blood pressure 70 patients randomized into 3 groups: Vemircopan 120 mg and 180 mg and placebo for 24 weeks | Ongoing trial | |
Terminal pathway inhibitor: Pegcetacoplan | NCT03453619 [99] | Open-label phase 2 trial >18 years old, with biopsy-proven IgAN, LN, primary MN, or C3G, proteinuria > 750 mg/g (either 24 h urine collection or uPCR), eGFR ≥ 30 mL/min/1.73 m2, stable or worsening renal disease despite on stable and optimized treatment 21 patients received Pegcetacoplan subcutaneous infusion daily for 16 weeks | Reduction in mean proteinuria from baseline to week 48 of 50.9% in the intent-to-treat population and 65.4% in the per-protocol population. eGFR was stable over 48 weeks. Mean soluble C5b-9 levels decreased by 57.3% by week 48. | |
Terminal pathway—C5 inhibitor: Ravulizumab | NCT04564339 | Double-blind, randomized, placebo-controlled phase 2 trial >18–75 years old, proteinuria ≥ 1 (g/day or g/g), vaccinated against meningococcus, Haemophilus influenzae type b (Hib), and Streptococcus pneumoniae, diagnosis of primary IgAN, compliance with stable and optimal RAAS treatment for ≥3 months 120 patients randomized into 4 groups: lupus nephritis receiving Ravulizumab, lupus nephritis with placebo, IgAN receiving Ravulizumab and IgAN with placebo for at least 26 weeks. | Reduction in proteinuria compared to placebo at 26 weeks (40.3% vs. 10.9%) [100] | |
Terminal pathway—C5 inhibitor: Cemdisiran | NCT03841448 | Randomized, double-blind, placebo-controlled phase 2 trial >18–65 years old, 24 h proteinuria > 1 g/day and hematuria, currently being treated for IgAN with stable, optimal therapy, including RAAS inhibitors. 31 patients randomized into 2 groups receiving Cemdisiran injection and placebo. | Ongoing trial | |
Terminal pathway—C5a inhibitor: Avacopan | NCT02384317 | Open-label, phase 2 trial Diagnosis of IgAN, eGFR > 60 mL/min/1.73 m2, proteinuria (first morning uPCR > 1 g/g) | Ongoing trial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, M.Y.; Chua, F.Z.Y.; Chang, Z.Y.; Chua, Y.T.; Chan, G.C. Navigating Adult-Onset IgA Vasculitis-Associated Nephritis. Life 2024, 14, 930. https://doi.org/10.3390/life14080930
Gan MY, Chua FZY, Chang ZY, Chua YT, Chan GC. Navigating Adult-Onset IgA Vasculitis-Associated Nephritis. Life. 2024; 14(8):930. https://doi.org/10.3390/life14080930
Chicago/Turabian StyleGan, Ming Ying, Freda Zhi Yun Chua, Zi Yun Chang, Yan Ting Chua, and Gek Cher Chan. 2024. "Navigating Adult-Onset IgA Vasculitis-Associated Nephritis" Life 14, no. 8: 930. https://doi.org/10.3390/life14080930
APA StyleGan, M. Y., Chua, F. Z. Y., Chang, Z. Y., Chua, Y. T., & Chan, G. C. (2024). Navigating Adult-Onset IgA Vasculitis-Associated Nephritis. Life, 14(8), 930. https://doi.org/10.3390/life14080930