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Abstract: Obesity is a chronic relapsing disease and a major public health concern due to its high
prevalence and associated complications. Paradoxically, several studies have found that obesity
might positively impact the prognosis of patients with certain existing chronic diseases, while
some individuals with normal BMI may develop obesity-related complications. This phenomenon
might be explained by differences in body composition, such as visceral adipose tissue (VAT), total
body fat (TBF), and fat-free mass (FFM). Indirect measures of body composition such as body
circumferences, skinfold thicknesses, and bioelectrical impedance analysis (BIA) devices are useful
clinically and in epidemiological studies but are often difficult to perform, time-consuming, or
inaccurate. Biomedical imaging methods, i.e., computerized tomography scanners (CT scan), dual-
energy X-ray absorptiometry (DEXA), and magnetic resonance imaging (MRI), provide accurate
assessments but are expensive and not readily available. Recent advancements in 3D optical image
technology offer an innovative way to assess body circumferences and body composition, though
most machines are costly and not widely available. Two-dimensional optical image technology
might offer an interesting alternative, but its accuracy needs validation. This review aims to evaluate
the efficacy of 2D and 3D automated body scan devices in assessing body circumferences and
body composition.

Keywords: digital biometry; obesity; body composition; 3D body scanners; 2D body scanners

1. Introduction

Obesity is a chronic multifactorial disease and a significant public health concern
due to its high prevalence worldwide and the possible associated health issues, including
cardiometabolic, vascular, kidney, and pulmonary diseases as well as some cancers and
neurodegenerative disorders [1–3]. Paradoxically, research has shown that obesity might
favorably affect the prognosis of patients with existing cardiovascular, renal, and respiratory
diseases as well as some cancers. There are also individuals with “normal weight” as
assessed by body mass index (BMI) that might develop complications that are traditionally
thought to be associated with obesity [4–11].

Obesity is largely defined using BMI given the ease of use, accessibility, and low cost of
this diagnostic method. However, using BMI alone confers significant limitations in obesity
diagnosis. Beyond BMI, specific aspects of body composition—specifically, increased
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intra-abdominal adiposity or visceral obesity, rather than the sole gross corpulence as
assessed by BMI—appear to increase the risk of obesity-associated diseases. In particular,
sarcopenic obesity, which is characterized by decreased muscle mass, fat infiltration in the
skeletal muscle, and increased total and regional fat mass, contributes to inflammation,
insulin resistance, and several other obesity-related complications [12,13]. In contrast,
subcutaneous adiposity has shown a protective effect [14]. These different phenotypes
of obesity due to body composition dysregulations have been suggested to explain the
obesity paradox, or why patients with normal weight as defined by BMI have metabolically
unhealthy (MU) phenotypes whereas patients with obesity have metabolically healthy
(MH) phenotypes [15,16].

2. Indirect Estimation of Body Composition

Indirect measures of obesity such as body circumferences, skinfold thicknesses, and
bioelectrical impedance analysis (BIA) devices are helpful clinically and in epidemiological
studies as they can be applied to many patients. They can also be used to predict body
compartment volumes and their relationship with several health issues. The various
methods of measuring body composition are outlined in Figure 1.
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2.1. Anthropometric Measurements

Several anthropometric measurements have been proposed to assess visceral adiposity,
such as waist circumference, waist-to-hip ratio, and sagittal abdominal diameter [17,18].
Although easy to measure and inexpensive, these markers cannot distinguish between
visceral adipose tissue (VAT) and subcutaneous abdominal adipose tissue (SAAT), thus
limiting the accurate estimation of VAT [19]. Other body circumferences and skinfold
thicknesses have been used to assess total body fat and muscle mass [20,21]. Such indirect
measurements are often difficult to determine and not reproducible as body circumferences
are most often manually measured. Additionally, indirectly predicting body composition
through complex anthropometric algorithms is time-consuming and inaccurate.

2.2. Bioelectrical Impedance Analysis

BIA offers a non-invasive method to estimate body composition by measuring elec-
trical currents through the body to determine impedance. Using impedance data and
prediction equations, BIA can estimate fat-free mass (FFM) and other body composition
measures [22]. One limitation of BIA-generated estimates is that the analysis requires
several assumptions. Still, the precision of modern BIA devices has been improved by
incorporating multi-frequency currents and demographic data such as age, gender, and
ethnicity [21].

Given its widespread use and improved accuracy, BIA is utilized by several digital
biometry technologies as a means of measuring body fat and determining body composi-
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tion. BIA has been incorporated into intelligent scales, handheld devices, and smartwatches.
Smart scales developed by FitBit, Eufy, Garmin, and Withings employ BIA technology to
provide individuals with estimates of their body composition from home. While accessible,
easy to use, and low-cost, these devices have several disadvantages. They cannot measure
visceral fat, muscle, and bone mass to provide an indirect estimation of fat mass. Further-
more, they are easily influenced by hydration status, food intake, and skin temperature [21].
Thus, although BIA-based technology can provide helpful insights into body composition,
it is essential to recognize the limitations of using this technology in isolation to evaluate
metabolic health.

3. Gold-Standard Measurement of Body Composition

The gold-standard assessment of body composition involves tomographic imaging
techniques, including dual-energy X-ray absorptiometry (DEXA), computed tomography
scan (CT scan), and magnetic resonance imaging (MRI) [23,24]. MRI and CT scans offer
an accurate assessment of VAT, enabling its differentiation from SAAT. DEXA provides
an accurate assessment of total fat mass and muscle mass [19,25–29]. However, these
techniques are expensive, not routinely available, and can expose individuals to radiation
or be contraindicated for patients with implanted devices. Therefore, these diagnostic tools
are often limited to the research setting, as their high cost and limited accessibility create
barriers to use in the clinical setting.

In sum, while the aforementioned techniques have their own benefits, they also each
have unique limitations. These include the lack of reproducibility of body circumference
measurements, the indirect prediction of body composition using complex anthropometric
algorithms, high cost, limited availability, and exposure to radiation in some gold-standard
biomedical imaging techniques. To overcome these limitations, newer techniques in digital
biometry have emerged as potential tools to evaluate anthropometric and body composition
measurements. Recent iterations of 2D and 3D optical image technologies might offer an
innovative way to assess body circumferences and body composition that avoids some of
these limitations.

4. Objective

The present work aims to critically review these digital biometric tools’ precision,
efficacy, and limitations in providing accurate anthropometric measurements and body
composition estimates and the adequacy of their application in the obesity field.

5. Methods

A systematic review was conducted using PubMed, Google Scholar, Public Library of
Science (PLOS), Web of Science, and ScienceDirect to identify studies validating the use of
2D and 3D body scanners. A search strategy was utilized to identify published, full-text
articles. Terms such as “2D body scanners”, “3D body scanners”, “anthropometry”, “waist
circumference”, “hip circumference”, “body composition”, and “DEXA” were utilized in the
search. Supplemental studies were also identified during the review of the collected articles
and their references. The abstracts and studies identified were reviewed independently
by three authors. The evaluation criteria for the automated body scan devices’ abilities to
assess body circumferences and body composition were defined according to the AXIS-
adapted critical appraisal tool, which evaluates the quality of cross-sectional studies [30].
Studies were excluded if they were not full-text or lacked sufficient reporting of the methods
or results.

6. Results
6.1. 2D Body Scanners

Two-dimensional body scanning technology is emerging in digital biometry as a
valuable and practical tool for assessing body composition. This technology uses unique
processing algorithms to estimate anthropometric measurements, such as waist circumfer-



Life 2024, 14, 947 4 of 12

ence, from 2D images obtained from cameras and smartphones. In contrast to traditional
measurement methods, this technology is accessible, and in some cases, the data can be
obtained without specialized training or equipment. This easy-to-use and readily available
technology allows patients to obtain and monitor anthropometric measures at home, pro-
viding helpful information on their metabolic health. Several 2D body scanners are being
developed to accurately analyze body measurements comparable to conventional anthro-
pometry, including tape measures and calipers. These devices and the studies describing
their use and efficacy are summarized in Table 1.

Table 1. Summary of studies validating 2D body scanner applications.

Reference Sample
No. (n) Characteristics Objective Results Conclusion

Anisuzzaman
et al., 2019 [31] 20

Web-based application,
called Online Trial
Room, that measures
body dimensions from
2D images for clothing
size.

Compare automatic
measurements
generated by image
processing
techniques to
anthropometry.

Root mean square error
(RMSE): neck 0.808,
shoulder 1.478, upper waist
4.454, lower waist 3.83,
length 0.907

Accurate
predictions in 12 of
20 volunteers, but
unable to
accurately assess
upper waist and
lower waist
measurements.

Foysal et al.,
2021 [32] 12

Android-based
application, entitled
SmartFit
Measurement, that
measures waist, low
hip and thigh
circumferences from
2D images for accurate
pant sizes.

Validate the
application’s
capability to
correctly measure
waist, low hip, and
thigh circumferences
compared to gold
standard
anthropometry.

Error range a with 95% CI:
−0.72−0.34 inches, margin
of error of 0.5346 in. 95.59%
accuracy in measurements

No significant
difference between
application and
manual
measurements.

Souza et al,
2020 [33] 38

Computer-based
program that uses
digital image
processing, CNNs and
machine learning for
body measurements.

Compare 2D image
measurements
obtained using
CNNs and machine
learning to skinfold
measurements
performed by a
specialist.

Mean
squared error (MSE) always
below 4.606 ± 3.412 cm
when using the Dense
Human Pose Estimation and
Expectation-Maximization
(EM) approach

Overall accurate
measurements that
were similar to
those obtained by
specialists.

Park et al,
2020 [34] 480

Mobile app, The
Weighing Cam, that
estimates pediatric
weight from 2D
images.

Validate the accuracy
of the application’s
pediatric weight
estimates compared
to that of the
Broselow tape.

Mean percent error (MPE)
0.99%, mean absolute
percentage error (MAPE)
5.06%, and root mean square
percentage error (RMSE)
11.32%. Compared to
Broselow tape, the Weighing
Cam had higher proportion
of estimated weights within
10% of actual weights
compared to Broselow tape
(69.2% vs. 58.9%).

Estimates from
imaging program
were more
accurate and
precise than the
Broselow tape.
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Table 1. Cont.

Reference Sample
No. (n) Characteristics Objective Results Conclusion

Widyanti et al,
2007 [35] 41

Computer-based
software generates
body circumference
measurements from
digital images.

Compare digital
measurements to
manual
measurement of 13
body parts.

Minimal differences
between digital
measurements and manual
measurements with
comparable TEM and
reliability co-efficient.

Digital
measurements of
body
circumferences are
a valid and reliable
alternative to
manual
measurements.

Majmudar,
et al, 2022 [36] 134

Computer-based
program, called Visual
Body Composition
(VBC), that uses 2D
photos to estimate
percentage total body
fat (%BF) using a
novel algorithm and
convolutional neural
networks (CNNs).

Evaluate the
accuracy of VBC’s
%BF estimates
against BIA devices
and ADP, with
DXA as reference.

Mean absolute error (MAE)
2.16% ± 1.54%, MAPE 6.4%.
Lowest MAE compared to
all other devices (p < 0.05).
Good concordance with
DXA (CCC 0.96).

Most accurate and
least biased
method for
estimating %BF
compared to other
devices.

Several studies found that 2D optical imaging devices and programs generated body
measurements that were similar to those obtained using manual anthropometric measure-
ments. The Online Trial Room is a web-based application that calculates measurements of
various body parts from 2D images of its users to provide them with clothing size estimates.
Although tested in a small sample size, this application showed promise in generating
accurate measurements and clothing size estimates. Compared to anthropometric mea-
sures, their device had root mean square error (RMSE) values of 0.808 for the neck, 1.478
for the shoulder, 4.454 for the upper waist, 3.83 for the lower waist, and 0.907 for the length,
suggesting that this 2D optical imaging application can provide estimates of body measure-
ments virtually without the need for in-person manual measurements [31]. The SmartFit
Measurement2 application, which aims to give measurements of waist, lower hip, and
thigh circumferences from front and side photos taken with a smartphone camera, similarly
showed an average accuracy level of 95.59% with a small margin of error (0.5346 inches)
when compared to body measurements obtained manually [32]. In a study of 41 indi-
viduals, Widyanti and colleagues used 2D imaging to provide estimates of various body
circumferences and concluded that their estimates were not significantly different from
those obtained by traditional methods, with comparable technical error of measurement
(TEM) and reliability coefficients (r = 0.91–0.99) [35].

Others have shown that convolutional neural networks (CNNs) can be used to predict
body measurements and body composition using 2D images taken via a smartphone.
Souza and colleagues found that measurements generated by their 2D imaging processing
application using the Dense Human Pose Estimation and Expectation-Maximization (EM)
method provided accurate estimates of body measurements. In comparison with the
skinfold measurements performed by a specialist, the mean squared error (MSE) was
0.0744 ± 0.0363 for the fist, 1.037 ± 0.863 for the forearm, 3.971 ± 2.309 for the breastplate,
1.836 ± 1.231 for the waist, 3.381 ± 4.704 for the relaxed biceps, 3.744 ± 3.734 for the thigh,
and 4.606 ± 3.412 for the calf [33].

One study by Park and colleagues found that 2D body scanners can be used to provide
estimates of weight in pediatric patients. In a study of 480 pediatric patients, they found
that the Weighing Cam, an Android-compatible 2D body scanner, was able to accurately
estimate pediatric body weight with a mean percent error (MPE) of 0.99%, mean absolute
percentage error (MAPE) of 5.06%, and root mean square prediction error (RMSPE) of
11.32%. In comparison to the Broselow tape, today’s gold standard of estimating weight in
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pediatric emergency medicine, the Weighing Cam produced more precise estimates and
showed smaller bias (mean difference = 1.98% (95% confidence interval: 2.91% to 1.05%) for
MPE and 1.76% (95% confidence interval: 2.45% to 1.06%) for MAPE). The weight estimates
produced by the Weighing Cam technology were more likely to be within 10% and 20% of
the study subject’s actual weight (69.2% and 92.5%, respectively) than the Broselow tape
(58.9% and 88.7%, respectively). The Weighing Cam could also produce weight estimates
for all participants regardless of size, unlike the Broselow tape, which further exemplifies
the potential of 2D technology to replace current practices of evaluating body size and
measurements [34].

Beyond anthropometric measurements, 2D optical imaging has been shown to estimate
body composition with comparable efficacy to advanced imaging techniques such as DEXA.
In a study by Majmudar and colleagues, a novel computer vision method that utilizes
CNNs, entitled Visual Body Composition (VBC), produced estimates of the percentage of
total body fat from 2D images that were comparable to those generated by DEXA (Lin’s
concordance correlation coefficient of 0.96). When compared to BIA methods, VBC had
the lowest mean absolute error and standard deviation (2.16 ± 1.54%) from DEXA as well
(p < 0.05 for all comparisons) [36]. Overall, this study showed that body composition
estimates generated from 2D body scanning technology can be accurate and without bias
when compared to the DEXA gold standard.

Overall, it is clear that 2D optical imaging techniques can provide reliable and accurate
body measurements comparable to traditional anthropometric measures. Furthermore,
these devices have several advantages over conventional measurements, including ef-
ficiency, convenience of home use, and affordability, which enhance their potential for
widespread use. However, it is important to note that many of the studies reviewed were
completed with small sample sizes, making these results difficult to extrapolate to the larger
public. For instance, Anisuzzman and colleagues studied the Online Trial Room in 20 adults
and failed to include details on the subjects’ ages, weights, or heights [31]. Similarly, Foysal
and colleagues had a sample size of 12 individuals (10 men and 2 women) [32]. As a
result, further work is needed to ensure that these technologies can provide reliable and
accurate data in a diverse, large-scale population before their use is implemented in the
clinical setting.

6.2. 3D Body Scanners

Similar to 2D optical imaging techniques, 3D scanners are able to rapidly and effec-
tively generate detailed and precise anthropometric measurements. Several studies have
demonstrated that 3D body scanners can accurately and reliably measure waist and hip cir-
cumferences similar to traditional anthropometric methods such as tape measures [37–42].
Furthermore, many of these devices have been validated in patients who have overweight
or obesity [37,41,42]. The characteristics of these devices and the results of their validation
studies are summarized in Table 2.

Table 2. Summary of studies validating 3D body scanners for body circumference measurements.

Reference Sample
No. (n) Characteristics Objective Results Conclusion

Pepper et al.,
2010 [37] 70

Portable
3-dimensional laser
imaging device, called
the Xu scanner, that
measures body
circumferences.

Compare the
reliability and
validity of a
3-dimensional
laser body scanner
to traditional
anthropometry
measurements
with a tape
measure.

- Standard error of the
mean (SEM) for waist
(WC) and hip
circumferences (HC):
0.13 ± 0.13 and –0.24 ±
0.19 with p > 0.05.

- All intraclass correlation
coefficients (ICC) for
circumference
measurements ≥0.99.

The 3D laser
yielded similar
results to gold
standard
anthropometry
and showed
consistent
measurements
with minimal
variations.
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Table 2. Cont.

Reference Sample
No. (n) Characteristics Objective Results Conclusion

Jaeschke et al.,
2015 [38] 60

Laser-based 3D body
scanner device,
VitussmartXXL, that
creates a 3D image and
calculates body
measurements.

Evaluate the
accuracy and
reliability of waist
and hip
circumferences
generated by the
3D body scanner
compared to
manual
anthropometry.

- WC correlation
coefficients (r): 0.91–0.97
for men and 0.94–0.96
for women.

- HC r: 0.65–0.97 for men
and 0.80–0.98 for
women.

- ICCs for WC and HC
measurements were
>0.98.

WC and HC
generated by the
3D body scanner
were higher than
manual
anthropometry,
but strongly
correlated with
anthropometry
and were highly
reliable.

Medina-
Inojosa et al,
2016 [39]

83

Automated
non-invasive 3D
optical scanner
entitled 3D Body
Volume Index (BVI)
scanning system, that
produces body images
and generates a
maximum of 400 body
measurements.

Assess
reproducibility
and reliability of
anthropometric
measures
generated by 3D
body scanner
compared to
anthropometry.

- 3D scanner variability:
WC 1.3 ± 0.9cm and HC
0.8 ± 0.1cm.

- p-value for difference in
means between manual
and automated
measurements <0.05.

- ICCs for all
measurements >0.95.

3D body scanner
showed lower
variability in
circumference
measurements
compared to
manual
measurements and
were highly
reliable.

Tinsley et al,
2023 [40] 69

Second-generation
at-home 3D body
scanner by Prism Labs,
Inc. (Los Angeles, CA,
USA)

Evaluate the
precision of a 3D
body scanner.

- WC: precision error (PE)
of 0.5cm and
root-mean-square
coefficient of variation
(RMS-%CV) of 0.6%.

- HC: PE of 0.4 cm and
RMS-%CV 0.4%.

- ICCs for both WC and
HC > 0.99.

3D body scanner
showed precise
and consistent
measurements of
WC and HC.

Ng et al, 2016
[41] 39

Commercially
available 3D body
scanner device, called
Fit3D Proscanner
(Fit3D, Redwood City,
CA, USA), that
generates a 360-degree
body image and
reports body
circumferences.

Compare the
accuracy of body
circumference
measurements
generated by 3D
scanner to manual
anthropometry.

- Coefficient of
determination (R2):
WC= 0.95 and HC= 0.92.

- Statistically significant
mean differences
between 3D scanner and
tape measure: WC= 1.75
cm (95% CI 0.58–2.91
cm) and HC= 3.17 (95%
CI 1.93–4.41 cm)

WC and HC
generated by 3D
scanner were
strongly associated
with those
obtained using
tape
measurements, but
there were
significant mean
differences
between
measurements.

Derouchey
et al, 2020 [43] 49

Portable single
stationary camera on a
rotating platform,
called the Styku S100,
that generates 3D
images and
determines body
circumference and
composition
measurements.

Assess the
accuracy and
test–retest
reliability of the 3D
scanner in
determining body
circumferences,
surface areas, and
volumes of
athletes.

- Low random error
(mean standardized
typical error: scan 1 vs.
4., 0.14, 95% CI of
0.10–0.17)

- Low systemic error
(mean standardized bias:
scan 1 vs. 4, 0.04, 95%
CI: 0.02–0.06).

- Strong test-retest
correlations (mean ICC
0.98)

Styku S100 is a
reliable tool to
measure body
circumference,
surface areas, and
volumes of
athletes.
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Beyond body circumference data, these advanced technologies utilize 3D imaging to
construct models allowing for assessment of body composition such as fat mass, bone mass,
and visceral fat. This technology’s detailed and comprehensive output is comparable to
other whole-body imaging technology, including CT, MRI, and DEXA, without the cost
and radiation exposure associated with these tools [44]. The validity and accuracy of 3D
body scanners have been demonstrated in several studies. Bourgeois et al. found that
the trunk volume estimates generated by the Styku S100 scanner correlated strongly with
DEXA trunk volume estimates (R2 0.98, p < 0.0001). Though the mean total body volume
estimates differed from those generated by ADP, they also correlated strongly. In a study of
188 diverse patients, Bennett et al. found that the overall fat-free mass (FFM) calculated by
the Styku S100 scanner showed a small mean difference of 1.2 ± 3.4 kg from that measured
by DEXA. For fat mass (FM), the mean difference was 1.3 ± 3.4 kg. The concordance
correlation coefficients (CCCs) for FFM and FM were 0.97 (95% CI: 0.96–0.98) and 0.95 (95%
CI: 0.94–0.97), respectively, demonstrating the high agreement between the two modalities.
The study also found no significant differences in the measurements when the groups
were stratified by BMI, sex, and race/ethnicity [45]. Other studies have demonstrated that
anthropometric measurements generated from these devices can be entered into complex
prediction formulas to provide estimates of body fat percentage that are accurate and
comparable to those of DEXA scans. For example, using the Size Stream SS20 3D optical
system in combination with a 4C model, Harty and colleagues were able to predict body fat
percentage with an R2 value of 0.78 compared to DEXA [46]. Similarly, Ng and colleagues
were also able to accurately predict body composition using statistical modeling and the
Fit 3D body scanner. Their estimates of fat mass and visceral fat were similar to the results
from DEXA (fat mass R2 value: 0.88 in males and 0.93 in females; visceral fat R2 value:
0.67 in males and 0.75 in females) [47].

Three-dimensional body scanning has also been used to track changes in body shape
by generating 3D avatars of the users. The technology was utilized for this purpose in a
study including post-bariatric surgery patients by Kroh et al. In their study, they found
that 3D body scanning was an accurate and effective means of tracking changes in body
shape compared to traditional anthropometric data [48]. They also importantly showed
that 3D body scanning was an effective means of measuring body composition over time
in patients with obesity.

7. Discussion

This comprehensive review delves into the current landscape of digital biometry
and available technological advancements, from smartphone applications to advanced
imaging techniques, including 2D body scanners and 3D body scanners. Overall, the
studies outlined demonstrate that these tools can provide accurate, precise, and reliable
estimates of anthropometric measurements and body composition in individuals.

Both 2D and 3D body scanners provide body circumference estimates that correlate
strongly with conventional anthropometry measurement techniques such as manual tape
measurements. Three-dimensional scanners provide more precise and reliable measure-
ments compared to 2D scanners, as 3D scanners provide a level of accuracy and detail that
cannot be obtained from 2D scanners. In the majority of studies, the 3D optical devices had
ICC values > 0.98, demonstrating that they can provide consistent reliable measurements
that are superior to manual measurements [37–40,43]. Furthermore, compared to the stud-
ies involving 2D scanners, the 3D scanners have been validated and studied in larger, more
diverse populations. Current studies involving 2D imaging are smaller in scale and include
fewer patients with obesity, limiting the generalizability of their findings.

Beyond their superiority in circumference measurements, 3D scanners can provide
accurate insights into body composition. These scanners have been shown to produce
accurate and reliable estimates of FFM and FM that are comparable to today’s gold stan-
dards, including ADP and DEXA [41,46,47], while only one 2D scanner, the Visual Body
Composition (VBC), could generate more advanced body composition data comparable
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to DEXA and CT [36]. Overall, both 2D and 3D imaging techniques are more accurate
than BIA devices, which rely on indirect complex anthropometric algorithms to generate
information on body composition. By accurately assessing body composition, 3D body
scanners can provide more insight into one’s metabolic health.

Relative to DEXA and CT, 3D scanners are more affordable and accessible, but overall,
they remain with limited availability and often require detailed training and instruction.
The cost of purchasing a commercially available 3D scanner ranges from USD 400 to 240,000
depending on the technology, and this excludes any maintenance or software management
fees [49]. Given their cost and the need for training and instruction in order to operate, they
are mostly utilized in public settings such as gyms, health clinics, etc. These constraints
impose a barrier for patients requiring serial monitoring who are homebound or lack the
resources to access these settings routinely. This is an area that is evolving, however, as a
pilot study was recently published on the use of contactless mobile 3D body scanning to
assess anthropometric parameters in athletes. This study demonstrated that this mobile
digital technology has promising perspectives when performed by trained users with
rigorous data and appropriate software [50].

Two-dimensional body scanners, on the other hand, are often operated through smart-
phone technology, making them highly accessible and increasing their reach to patients
at home. This provides a huge advantage for health monitoring, especially in clinics with
limited resources and as healthcare delivery becomes increasingly virtual. Although many
2D technologies are not commercially available at this time, the costs associated with these
programs will almost certainly be lower than those of 3D scanners. The use of remote
monitoring should allow for obesity-related care to reach more patients and reduce the
healthcare costs associated with diagnosing and treating obesity.

With these advantages, the novel technologies described in this review are emerging
as a viable alternative to traditional body composition measurements and will potentially
transform how obesity is diagnosed and managed. The reports generated by these tools
can provide fast and accurate assessments of body composition and, therefore, metabolic
health, aiding healthcare providers in more effectively identifying patients at risk of obesity-
related health complications. These technologies also facilitate better monitoring of the
efficacy of obesity interventions by accurately tracking changes in body composition. This
enables physicians to determine if the interventions utilized by patients generate positive
changes in body composition, such as loss of visceral adiposity, associated with reducing
obesity-related health complications. Furthermore, research has shown that patients report
improved experiences when using 2D images to monitor weight loss, which can enhance
motivation and adherence [51].

Despite these advancements, there are notable limitations in optical imaging technolo-
gies. As noted, many of the studies reviewed involved small sample sizes, limiting their
applicability to the general population. More research is needed with larger, more diverse
populations, especially including patients with obesity, to better evaluate the accuracy and
reliability of these devices in this population. Current iterations of 3D scanners have been
shown to be less accurate in patients with obesity, which is an area that must be improved
upon before these technologies are used routinely in the healthcare setting [52]. There
is hope that as the technology advances, the camera and detection systems will become
increasingly accurate, which is a phenomenon that has already been demonstrated in a
study by Tinsley et al. In their study, the authors showed that the precision error and
t-mean-square coefficient of variation were halved from the first-generation prototype of
the Fit 3D Proscanner to the second-generation prototype [40]. Furthermore, the machine
learning algorithms that these programs use to generate body composition reports will
become increasingly accurate as more data are collected.

Lastly, further research is also necessary to evaluate the efficacy of these devices in
clinical settings and their effectiveness in assessing altered body composition phenotypes
and predicting obesity-related complications. There are early studies which have started
to show that body composition data obtained by 3D imaging technology correspond ac-



Life 2024, 14, 947 10 of 12

curately with other metabolic health parameters [38], but as this technology is adopted in
the clinical setting, it is critical that the technology is validated as an accurate predictor
of body composition in relation to metabolic health. Body scanning technology has im-
portant potential for use in future studies for monitoring changes in body composition
related to obesity treatments, e.g., anti-obesity medication and bariatric/metabolic surgery,
which is of particular interest given the concern for muscle mass loss associated with
these interventions. It may also have utility in better predicting metabolically unhealthy
phenotypes in some patients who otherwise have a normal BMI and could benefit from
medical interventions to improve their overall metabolic health.

8. Conclusions

In conclusion, digital biometry represents a transformative advancement with the
potential to better predict metabolic health. As the limitations of BMI and weight as the sole
measures of obesity and associated metabolic health disturbances become more evident,
the need for comprehensive body composition data grows increasingly critical. Digital
biometry offers innumerable benefits over traditional body composition measurement tools
such as calipers, scales, and tape measures, notably due to its ease of use and improved
accuracy. Moreover, digital biometry, primarily in the form of 3D body scanning, is close to
providing analyses of body composition with a depth and accuracy comparable to those
of established imaging techniques such as DEXA and CT, while bypassing the logistical
and economic barriers commonly associated with these methods. Preliminary studies have
already illuminated the precision and reliability of these novel technologies, mainly 2D and
3D scanners, but continued research is needed to refine and validate these technologies for
clinical application.
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